|
Anja Böckenholt

CRC Colloquium:
Prof. Dr. Christopher Deninger (Universität Münster): Special values of Hasse-Weil and Ruelle zeta functions.

Thursday, 07.12.2023 14:00 im Raum M5

Mathematik und Informatik

After a discussion of Hasse-Weil zeta functions of arithmetic varieties X, beginning with the Riemann zeta function, we explain Lichtenbaum's conjecture for their values at zero. We then discuss a class of dynamical systems whose closed orbits behave in some sense like the closed points of an arithmetic variety. Under some extra conditions we show that using the Cheeger-Müller secondary index theorem an analogue of Lichtenbaum's conjecture can be proved for their Ruelle zeta functions. Moreover, for any arithmetic variety X, we sketch the construction of a dynamical system whose periodic orbits correspond to the closed points of X. In particular, for X = spec Z we obtain a dynamical system whose periodic orbits correspond to the prime numbers p, with the length of the orbit being log p.



Angelegt am Thursday, 06.04.2023 08:47 von Anja Böckenholt
Geändert am Monday, 27.11.2023 10:34 von Anja Böckenholt
[Edit | Vorlage]

Vorträge des SFB 1442
Kolloquium Wilhelm Killing