Prof. Dr. Wolfram Pernice

Prof. Dr. Wolfram Pernice

Busso-Peus-Straße 10
48149 Münster

T: +49 0251 83-63957

  • Further Affiliation at the University of Münster

  • Honors

    ERC Consolidator Grant – European Research Council (ERC)
  • Projects

    • MNF – Münster Nanofabrication Facility ()
      Individual Granted Project: DFG - Core Facilities | Project Number: INST 211/914-1
    • PHOENICS – Photonic enabled Petascale in-memory computing with Femtojoule energy consumption ()
      EU-Project Hosted at University the of Münster: EC H2020 - Research and innovation actions | Project Number: 101017237
    • CRC 1459 - C02: Opto-electronic neuromorphic architectures ()
      Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Collaborative Research Centre | Project Number: SFB 1459/1, C02
    • CRC 1459 - C04: Adaptive magnonic networks for nanoscale reservoir computing ()
      Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Collaborative Research Centre | Project Number: SFB 1459/1, C04
    • CRC 1459 - C06: Mixed-mode in-memory computing using adaptive phase-change materials ()
      Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Collaborative Research Centre | Project Number: SFB 1459/1, C06
    • CRC 1459 - Z01: Administration and management of the CRC ()
      Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Collaborative Research Centre | Project Number: SFB 1459/1, Z01
    • MNF Day – MNF-Day 2024 ()
      Scientific Event: DFG - Core Facilities
    • QSAMIS – Verbundprojekt: Quanten-Schlüsselaustausch mit Gigabit-Datenraten über ein mehrkanaliges vollintegriertes System - Teilvorhaben: Vollintegrierte Sendeeinheit ()
      Participation in Federally Funded Joint Project: Federal Ministry of Research, Technology and Space | Project Number: 16KIS1536
    • IMMQUIRE – lntegrated Mechanics for Modular Quantum Reconfigurable Circuits ()
      EU-Project Hosted at University the of Münster: EC H2020 - Marie Skłodowska-Curie Actions - Individual Fellowship | Project Number: 896401
    • MNF Day – MNF-Day 2023 ()
      Scientific Event: DFG - Core Facilities, Pixel Photonics GmbH
    • SINPHOSS – KMU-innovativ Verbundprojekt: Single Photon Random Sampling Scope - Teilprojekt: Hochgenaue Quantendetektoren ()
      Participation in Federally Funded Joint Project: Federal Ministry of Research, Technology and Space | Project Number: 13N15323
    • PHEMTRONICS – Active Optical Phase-Change Plasmonic Transdimensional Systems Enabling Femtojoule and Femtosecond Extreme Broadband Adaptive Reconfigurable Devices ()
      EU-Project Hosted outside the University of Münster: EC H2020 - Research and innovation actions | Project Number: 899598
    • PhoBrain – Photonic Brain-Machine Interfaces ()
      Individual Granted Project: Volkswagen Foundation - Momentum – Funding for Recently Tenured Professors | Project Number: 95 020
    • MiReQu – Verbundprojekt: Mixed Reality Lernumgebungen zur Förderung fachlicher Kompetenzentwicklung in den Quantentechnologien - MiReQu, Teilvorhaben: Implementierung und Untersuchung der Lehr-/Lernumgebung ()
      Participation in Federally Funded Joint Project: Federal Ministry of Research, Technology and Space | Project Number: 16DHB3028
    • Fun-COMP – Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world ()
      EU-Project Hosted outside the University of Münster: EC H2020 - Research and innovation actions | Project Number: 780848
    • EXIST-Forschungstransfer: PixelPhotonics ()
      Participation in Federally Funded Joint Project: BMWE - EXIST Transfer of Research | Project Number: 03EFNNW219
    • PINQS – Photonic integrated quantum transceivers ()
      EU-Project Hosted at University the of Münster: EC H2020 - ERC Consolidator Grant | Project Number: 724707
    • EVO-CELL – KMU-innovativ-21: EVO-CELL - Entwicklung einer multiparametrischen Zellanalysetechnologie für die Erforschung und Entwicklung zellbasierter Therapien ()
      Participation in Federally Funded Joint Project: Federal Ministry of Research, Technology and Space | Project Number: 031B0654B
    • SPP 1839 - Subproject: Light-path engineering in disordered waveguiding systems ()
      Subproject in DFG-Joint Project Hosted outside the University of Münster: DFG - Priority Programme | Project Number: PE 1832/6-2
    • WINS – WINS - Waveguide Integrated nanotube Light Sources ()
      Participation in other joint Project: VolkswagenStiftung | Project Number: 93457
    • ORQUID – Verbundprojekt: Organic Quantum lntegrated Devices - Teilvorhaben: Nanophotonische Quantenschaltkreise ()
      Participation in Federally Funded Joint Project: Federal Ministry of Research, Technology and Space | Project Number: 13N14816
    • QuPAD – Verbundprojekt: QuPAD - Ultraschnelle Quantenschlüssel-Verteilung durch Parallelisierung der Detektionskanäle ()
      Participation in Federally Funded Joint Project: Federal Ministry of Research, Technology and Space | Project Number: 13N14955
    • TRR – Organic emitters embedded in functional nanophotonic circuits ()
      Individual Granted Project: DFG - Individual Grants Programme | Project Number: PE 1832/7-1
    • AvH-Forschungskostenzuschuss für den Gastaufenthalt von Prof. Yegang Lyu ()
      Individual Granted Project: Alexander von Humboldt Foundation | Project Number: 196624-CHN-HFST-P
    • SINGSAW – Single-photon sources based on hybrid surface acoustic wave devices ()
      Internally at the University of Münster Funded Project: Uni Münster-internal funding - Strategic Collaboration Grant
    • Phase-change nanophotonics ()
      Individual Granted Project: Alexander von Humboldt Foundation
    • Notice of granting- CiM ()
      Own Resources Project
    • EXC 1003 FF-2017-10 - Biohybrid neurosynaptic chips interfaced with nanostructured, integrated optics ()
      Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Cluster of Excellence | Project Number: FF-2017-10
    • SPP 1839 - Subproject: Light-path engineering in disordered waveguiding systems ()
      Subproject in DFG-Joint Project Hosted outside the University of Münster: DFG - Priority Programme | Project Number: PE 1832/6-1
    • Funktionalisierte optomechanische Schaltkreise aus Diamant für Infrarotspektroskopie und Gassensorik ()
      Individual Granted Project: DFG - Individual Grants Programme | Project Number: PE 1832/5-1
    • PhotInd – Metrology for the photonics industry - optical fibres, waveguides and applications ()
      Participation in other joint Project: EURAMET - European Metrology Programme for Innovation and Research | Project Number: 14IND13
    • Integrated Quantum Photonics and Opto-mechanics ()
      Individual Granted Project: DFG Emmy Noether Programme | Project Number: PE 1832/1-1
  • Publications

    • , , , et al. . “General Design Flow for Waveguide Bragg Gratings.Nanophotonics, 14 (3): 297304. doi: 10.1515/nanoph-2024-0498.
    • , , , , , and . . “Kinetic Inductance and Jitter Dependence of the Intrinsic Photon Number Resolution in Superconducting Nanowire Single-Photon Detectors.” Preprint. arXiv doi: 10.48550/arXiv.2410.23162.
    • , , , et al. . “Analyzing the Effective Use of Augmented Reality Glasses in University Physics Laboratory Courses for the Example Topic of Optical Polarization.Journal of Science Education and Technology, 33: 668685. doi: 10.1007/s10956-024-10112-0.
    • . . “Scalable Non-Volatile Tuning of Photonic Computational Memories by Automated Silicon Ion Implantation.Advanced Functional Materials, 36 (8): 111. doi: 10.1002/adma.202310596.
    • , , , et al. . “High-quality factor Ta2O5-on-insulator resonators with ultimate thermal stability.Optics Letters, 48 (21): 57835786. doi: 10.1364/OL.499726.
    • , , , et al. . “Photonic integrated quantum communication receivers with superconducting nanowire detectors.” contributed to the EQTC 2023, Hannover
    • , , , et al. . “Scaling waveguide-integrated superconducting nanowire single-photon detector solutions to large numbers of independent optical channels.Review of Scientific Instruments, 94 (1): 013103. doi: 10.1063/5.0114903.
    • , , , et al. . “Ultrafast quantum key distribution using fully parallelized quantum channels.Optics Express, 31 (2): 26752688. doi: 10.1364/OE.469053.
    • , , , et al. . “Coherent dimension reduction with integrated photonic circuits exploiting tailored disorder.Journal of the Optical Society of America B, 40 (3): B35B40.
    • , , , et al. . “Seeing the unseen – enhancing and evaluating undergraduate polarization experiments with interactive Mixed-Reality technology.European Journal of Physics, 44 (6): 065701. doi: 10.1088/1361-6404/acf0a7.
    • , , , , , and . . “Waveguide-Integrated Superconducting Nanowire Arrays for Single Photon Detection with Number-Resolution.” in CLEO 2023, edited by Optica Publishing Group. Washington, DC: Optica. doi: 10.1364/CLEO_FS.2023.FM2E.3.
    • , , , et al. . “Teaching Quantum Optics and Quantum Cryptography with Augmented Reality Enhanced Experiments.” in Q 23 Optomechanics I & Optovibronics , edited by DPG. Bad Honnef: Deutsche Physikalische Gesellschaft.
    • , , , et al. in Kürze. “High bandwidth photon detection enabled by a massively parallelized system.” contributed to the SPIE 2023, San Francisco doi: 10.1117/12.2608713.
    • , , , et al. . “Event-driven adaptive optical neural network.Science advances, 9 (42): eadi9127. doi: 10.1126/sciadv.adi9127.
    • , , , , , and . . “Activation Functions in Non-Negative Neural Networks.” contributed to the Machine Learning and the Physical Sciences Workshop, NeurIPS, New Orleans
    • . . “Monadic Pavlovian associative learning in a backpropagation-free photonic network.Optica, 9 (7) doi: 10.1364/OPTICA.455864.
    • . . “Cryo-compatible opto-mechanical low-voltage phase-modulator integrated with superconducting single-photon detectors.Optics Express, 30 (17): 3006630074. doi: 10.1364/OE.462163.
    • , , , , , and . . “Spontaneous parametric downconversion in linearly uncoupled resonators.Optics Letters, 47 (7): 17661769. doi: 10.1364/OL.453324.
    • , , , et al. . “Broadband photonic tensor core with integrated ultra-low crosstalk wavelength multiplexers.Nanophotonics, 1 doi: 10.1515/nanoph-2021-0752.
    • , , , et al. . “Single photon emission from individual nanophotonic-integrated colloidal quantum dots.ACS Photonics, 9 (2): 551558. doi: 10.1021/acsphotonics.1c01493.
    • , , , et al. . “Roadmap on Neuromorphic Computing and Engineering.Neuromorphic Computing and Engineering, 2022 (2) 022501.
    • , , , , , and . . “Special topic on non-classical light emitters and single-photon detectors.Applied Physics Letters, 120 (1): 14. doi: 10.1063/5.0078886.
    • , , , and . . “High-Index Organic Polymeric Carbon Nitride-Based Photonic Devices for Telecommunication Wavelengths.ACS Photonics, 1 doi: 10.1021/acsphotonics.2c00105.
    • , , , et al. . “Antimony as a Programmable Element in Integrated Nanophotonics.Nano Letters, 1 doi: 10.1021/acs.nanolett.1c04286.
    • , , , et al. . “Artificial biphasic synapses based on non-volatile phase-change photonic memory cells.Advanced Science News, 1: 17. doi: 10.1002/pssr.202100487.
    • , , , et al. . “Electronically Reconfigurable Photonic Switches Incorporating Plasmonic Structures and Phase Change Materials.Advanced Science, 1 (2200383): 18. doi: 10.1002/advs.202200383.
    • , , , et al. . “Propagation of Spin Waves in Intersecting Yttrium Iron Garnet Nanowaveguides.Physical Review Applied, 18 (5) doi: 10.1103/PhysRevApplied.18.054081.
    • , , , et al. . “Exploration wichtiger ästhetischer Qualitäten der Wissenschaftsillustration am Beispiel von MR- AR- und Web3DApplikationen zur Präsentation von Experimenten in der Quantenphysik.” contribution to the DPG-Frühjahrstagung, virtuell
    • , , , et al. . “On-chip integration of superconducting nanowire single-photon detectors and reconfigurable optical circuits in lithium-niobate-on-insulator waveguides.” in Quantum Technologies 2022, edited by E Diamanti, S Ducci, N Treps and S Whitlock. Bellingham, WA: SPIE. doi: 10.1117/12.2621288.
    • , , , et al. . “Ultra-fast single-photon counting with waveguide-integrated detectors for quantum technologies.” in Advanced Photon Counting Techniques XVI, edited by MA Itzler, JC Bienfang and KA McIntosh. Bellingham, WA: SPIE. doi: 10.1117/12.2620329.
    • , , , et al. . “SPIE Proceedings 12009-66: Multi-channel waveguide-integrated superconducting nanowire single-photon detector system for ultrafast quantum key distribution.” in Proceedings of SPIE - The International Society for Optical Engineering, edited by M. Razeghi, G.A. Khodaparast and M.S. Vitiello. Bellingham, WA: SPIE. doi: 10.1117/12.2609887.
    • , , , et al. . “Colloidal quantum dots as integrated single photon sources.” in Q 53 Nano-Optics II, edited by DPG. Bad Honnef: Deutsche Physikalische Gesellschaft.
    • , , , et al. . “High-yield placement of colloidal quantum dot single-photon sources on nanophotonic chips.” contributed to the DPG Springmeeting 2022, Erlangen
    • , , , et al. . “Die Rolle räumlicher Kontiguität beim Lernen am Experiment.” in DD 3 Neue / digitale Medien – Konzeption, edited by DPG. Bad Honnef: Deutsche Physikalische Gesellschaft.
    • , , , et al. . “Technische Entwicklung eines Augmented-Reality-Experiments zu polarisationsverschränkten Photonenpaaren.” in DD 17 Neue / digitale Medien – AR, edited by DPG. Bad Honnef: Deutsche Physikalische Gesellschaft.
    • , , , et al. . “Exploration wichtiger ästhetischer Qualitäten der Wissenschaftsillustration am Beispiel von MR- AR- und Web3D-Applikationen zur Präsentation von Experimenten in der Quantenphysik.” contributed to the DPG Springmeeting 2022, Heidelberg
    • , , , et al. . “Monolithic integration of single-photon detectors with low-loss reconfigurable LNOI optical circuits.” in Conference on Lasers and Electro-Optics, edited by CLEO. Washington, DC: Optica. doi: 10.1364/CLEO_QELS.2022.FF4J.3.
    • , , , and . . “Integrated Slot Waveguide-Based Phase Shifter.” in Light-Matter Interactions Towards the Nanoscale, {NATO} Science for Peace and Security Series B: Physics and Biophysics, edited by M Cesaria, Lesina A Calà and J Collins. Heidelberg: Springer. doi: 10.1007/978-94-024-2138-5_18.
    • , , , et al. . “Hybrid Quantum Photonics Based on Artificial Atoms Placed Inside One Hole of a Photonic Crystal Cavity.ACS Photonics, 1 doi: 10.1021/acsphotonics.1c00530.
    • , , , et al. . “System-Level Simulation for Integrated Phase-Change Photonics.Journal of Lightwave Technology, 1: 111. doi: 10.1109/JLT.2021.3099914.
    • , , , , and . . “The rise of intelligent matter.Nature, 594: 345355. doi: 10.1038/s41586-021-03453-y.
    • , , , , and . . “Plasmonics: Enabling functionalities with novel materials.Journal of Applied Physics, 129 (220401): 14. doi: 10.1063/5.0056296.
    • , , , et al. . “Single organic molecules for photonic quantum technologies.Nature Materials, 20 (6) doi: 10.1038/s41563-021-00987-4.
    • , , and . . “Chalcogenide phase-change devices for neuromorphic photonic computing.Journal of Applied Physics, 129 (151103): 18. doi: 10.1063/5.0042549.
    • , , , et al. . “A plasmonically enhanced route to faster and more energy-efficient phase-change integrated photonic memory and computing devices.Journal of Applied Physics, 129 (110902): 111. doi: 10.1063/5.0042962.
    • , , , , and . . “Detector-integrated on-chip QKD receiver for GHz clock rates.npj Quantum Information, 7: 40. doi: 10.1038/s41534-021-00373-7.
    • , , , and . . “Optoelectromechanical phase shifter with low insertion loss and a 13π tuning range.Optics Express, 29 (4): 55255537. doi: 10.1364/OE.413202.
    • , , , et al. . “Photonics for artificial intelligence and neuromorphic computing.Nature Photonics, 15: 102114. doi: 10.1038/s41566-020-00754-y.
    • , , , et al. . “Parallel convolutional processing using an integrated photonic tensor core.Nature, 589: 5258. doi: 10.1038/s41586-020-03070-1.
    • , , and . . “All‑optical phase control in nanophotonic silicon waveguides with epsilon‑near‑zero nanoheaters.Scientific Reports, 11 (9474): 19. doi: 10.1038/s41598-021-88865-6.
    • , , , et al. . “Broadband waveguide-integrated superconducting single-photon detectors with high system detection efficiency.Applied Physics Letters, 118 (15): 154004. doi: 10.1063/5.0046057.
    • , , , et al. . “Coherent charaterisation of a single molecule in a photonic black box.Nature Communications, 12 (706): 18. doi: 10.1038/s41467-021-20915-z.
    • , , , et al. . “Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits.Nature Communications, 12 (1): 68476847. doi: 10.1038/s41467-021-27205-8.
    • , , and . . “Efficient self-imaging grating couplers on a lithium-niobate-on-insulator platform at near-visible and telecom wavelengths.Optics Express, 29 (13): 2020520216. doi: 10.1364/OE.428138.
    • , , , et al. . “Physikalische Modelle erfahrbar machen - Mixed Reality im Praktikum.” in PhyDid B, edited by Johannes Grebe-Ellis and Helmuth Grötzebauch. Berlin.
    • , , , et al. . “Multi-channel quantum communication receiver made from waveguide-integrated superconducting nanowire single-photon detectors.” contribution to the Optical Fiber Communication Conference (OFC) 2021, Washington Washington, DC: Optica. doi: 10.1364/OFC.2021.M3B.5.
    • , , , et al. . “Integration of colloidal quantum dots with nanophotonic circuits.” in Quantum Nanophotonic Materials, Devices, and Systems 2021, edited by SPIE. Bellingham, WA: SPIE. doi: 10.1117/12.2594694.
    • , , , , and . . “Integrated Low Loss MEMS Phase Shifter with Single- Photon Detection.” in Photonics in Switching and Computing 2021 (2021), paper Tu3A.4, edited by Optica Publishing Group. Washington, DC: Optica. doi: 10.1364/PSC.2021.Tu3A.4.
    • , , , et al. . “Waveguide-integrated single-photon detectors with high system detection efficiency and photon number resolution.” in Frontiers in Optics + Laser Science 2021 (2021), paper FM1C.2, edited by Optica Publishing Group. Washington, DC: Optica. doi: 10.1364/FIO.2021.FM1C.2.
    • , , , et al. . “Colloidal quantum dots as single-photon sources for photonic integrated circuits.” in {OSA} Advanced Photonics Congress 2021 (2021), paper IW1A.5, edited by Optica Publishing Group. Washington, DC: Optica. doi: 10.1364/IPRSN.2021.IW1A.5.
    • , , , et al. . “Purcell-enhanced emission from individual SiV− center in nanodiamonds coupled to a Si3N4-based, photonic crystal cavity.Nanophotonics, 20200257 doi: 10.1515/nanoph-2020-0257.
    • , , , and . . “Reconfigurable nanophotonic circuitry enabled by direct-laser-writing.IEEE Journal of Quantum Electronics, 2020: 11. doi: 10.1109/JSTQE.2020.3004278.
    • , , , , and . . “Hybrid integrated quantum photonic circuits.Nature Photonics, 2020 doi: 10.1038/s41566-020-0609-x.
    • , , , et al. . “Broadband Spectrometer with Single-Photon Sensitivity Exploiting Tailored Disorder.Nano Letters, 2020 doi: 10.1021/acs.nanolett.0c00171.
    • , , , et al. . “Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing.Optica, 7 (3): 218225. doi: 10.1364/OPTICA.379228.
    • , , , , and . . “Integrated photonics chip for neural activity investigation.Optogenetics and Optical Manipulation, 11227 doi: 10.1117/12.2546183.
    • , , , et al. . “Superconducting-Nanowire Single-Photon Spectrometer Exploiting Cascaded Photonic Crystal Cavities.Physical Review Applied, 13 (014061): 113. doi: 10.1103/PhysRevApplied.13.014061.
    • , , , et al. . “Waveguide-Integrated Broadband Spectrometer Based on Tailored Disorder.Advanced Optical Materials, 1 (1901602): 18. doi: 10.1002/adom.201901602.
    • , , , et al. . “Waveguide Integrated Superconducting Single-Photon Detector Array for Ultra-Fast Quantum Optics Experiments.” contribution to the DPG Spring Meeting 2020, Hannover
    • , and . . “Phase wechsel dich.Physik Journal, 7: 3641.
    • , , , et al. . “Performance characteristics of phase-change integrated silicon nitride photonic devices in the O and C telecommunications bands.Optical Materials Express, 10 (8): 17781791. doi: 10.1364/OME.10.001778.
    • , , , et al. . “Integrating two-photon nonlinear spectroscopy of rubidium atoms with silicon photonics.Optics Express, 28 (13): 1959319607. doi: 10.1364/OE.389644.
    • , , , et al. . “MiReQu – Mixed Reality Lernumgebungen zur Förderung fachlicher Kompetenzentwicklung in den Quantentechnologien.” in PhyDid B, edited by Johannes Grebe-Ellis and Helmuth Grötzebauch. Berlin.
    • , , , et al. . “Broadband fiber-to-chip coupling in different wavelength regimes realized by 3D-structures.” in Conference on Lasers and Electro-Optics (2020), paper JTh2B.22, edited by Optica Publishing Group. Washington, DC: Optica. doi: 10.1364/CLEO_AT.2020.JTh2B.22.
    • , , , et al. . “Parallelizing single-photon detection for ultra-fast quantum key distribution.” contributed to the Qcrypt 2020, virtuell
    • , , , , , and . . “Integrated 256 cell photonic phase change memory with 512-bit capacity.Journal of Selected Topics in Quantum Electronics, 1 doi: 10.1109/JSTQE.2019.2956871.
    • , , , et al. . “Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality.Science advances, 5 (11): 17. doi: 10.1126/sciadv.aaw2687.
    • , , , et al. . “Narrow Line Width Quantum Emitters in an Electron-Beam-Shaped Polymer.ACS Photonics, 2019 doi: 10.1021/acsphotonics.9b01145.
    • , and . . “Lichtschnelles Nervennetz.Physik in unserer Zeit, 50 (6): 282288. doi: 10.1002/piuz.201901557.
    • , , , and . . “Python based open source design framework for integrated nanophotonic and superconducting circuitry with 2D-3D-hybrid integration.OSA Continuum, 2 (11): 30913101. doi: 10.1364/OSAC.2.003091.
    • , , , et al. . “Analysis of the detection response of waveguide-integrated superconducting nanowire single-photon detectors at high count rate.Applied Physics Letters, 115 (101104): 14. doi: 10.1063/1.5113652.
    • , , and . . “Integrated phase-change photonic devices and systems.MRS Bulletin, 44 (9): 721727. doi: 10.1557/mrs.2019.203.
    • , , , , and . . “Efficient Coupling of an Ensemble of Nitrogen Vacancy Center to the Mode of a High-Q, Si3N4 Photonic Crystal Cavity.ACS Nano, 2019 doi: 10.1021/acsnano.9b01668.
    • , , , , and . . “All-optical spiking neurosynaptic networks with self-learning capabilities.Nature, 569: 208214. doi: 10.1038/s41586-019-1157-8.
    • , , , , and . . “Self-Holding Optical Actuator Based on a Mixed Ionic–Electronic Conductor Material.ACS Photonics, 6 (5): 11821190. doi: 10.1021/acsphotonics.8b01708.
    • , , , et al. . “In-memory computing on a photonic platform.Science advances, 5 (2): 19. doi: 10.1126/sciadv.aau5759.
    • , , , et al. . “Graphene Field-Effect Transistors Employing Different Thin Oxide Films: A Comparative Study.ACS Omega, 4: 22562260. doi: 10.1021/acsomega.8b02836.
    • , , , et al. . “Tunable Volatility of Ge2Sb2Te5 in Integrated Photonics.Advanced Functional Materials, 2019 (1807571): 17. doi: 10.1002/adfm.201807571.
    • , , , et al. . “QuPAD - Waveguide Integrated Superconducting Nanowire Array for Ultra-Fast Parallelized Single-Photon Detection.” contribution to the Single Photon Workshop SPW-2019, Milano
    • , , , et al. . “QuPAD - high bandwidth photon detection enabled by a massively parallelized system.” contribution to the Single Photon Workshop SPW-2019, Milano
    • , , , and . . “Broadband out-of-plane coupling at visible wavelengths.Optics Letters, 44 (20): 50895092. doi: 10.1364/OL.44.005089.
    • , , , et al. . “Behavioral modeling of integrated phase-change photonic devices for neuromorphic computing applications.APL Materials, 7 (091113): 17. doi: 10.1063/1.5111840.
    • , , , et al. . “Investigation on Metal-Oxide Graphene Field-Effect Transistors with clamped geometries.IEEE Journal of the Electron Devices Society, 2019: 15. doi: 10.1109/JEDS.2019.2939574.
    • , , , et al. . “Plasmonically-enhanced all-optical integrated phase-change memory.Optics Express, 27 (17): 2472424737. doi: 10.1364/OE.27.024724.
    • , , , et al. . “Low-loss fiber-to-chip couplers with ultrawide optical bandwidth.APL Photonics 4, Volume 4, Issue 1 doi: 10.1063/1.5064401.
    • , , , , , and . . “Polycrystalline diamond photonic waveguides realized by femtosecond laser lithography.Optical Material Express, 9 (7) doi: 10.1364/OME.9.003109.
    • , , , , , and . . “Protocol of measuring hot-spot correlation length for SNSPDs with near-unity detection efficiency.IEEE Transactions on Applied Superconductivity, 1: 11. doi: 10.1109/TASC.2019.2906267.
    • , , , , and . . “Self-Holding Optical Actuator Based on a Mixed Ionic–Electronic Conductor Material.ACS Photonics, 2019, 6, 5, 1182–1190 doi: 10.1021/acsphotonics.8b01708.
    • , , , et al. . “Reconfigurable Nanophotonic Cavities with Nonvolatile Response.ACS Photonics, 2018 doi: 10.1021/acsphotonics.8b01127.
    • , and . . “Diamond as a Platform for Integrated Quantum Photonics.Advanced Quantum Technologies, 2018 doi: 10.1002/qute.201800061.
    • , , and . . “Waveguide-integrated superconducting nanowire single-photon detectors.Nanophotonics, 7 (11): 17251758. doi: 10.1515/nanoph-2018-0059.
    • , , , et al. . “Experimental evidence for hotspot and phase-slip mechanisms of voltage switching in ultrathin YBa2Cu3O7–x nanowires.Physical Review B, 98: 054505. doi: 10.1103/PhysRevB.98.054505.
    • , , , et al. . “Layout influence on microwave performance of graphene field effect transistors.Electronics Letters, 54 (16): 984986. doi: 10.1049/el.2018.5113.
    • , , , , , and . . “Device‐Level Photonic Memories and Logic Applications Using Phase‐Change Materials.Advanced Materials, 2018 doi: 10.1002/adma.201802435.
    • , , , et al. . “Carbon nanotubes as emerging quantum-light sources.Nature Materials, 2018
    • , , , et al. . “Coupling Thermal Atomic Vapor to Slot Waveguides.Physical Review X, 2018 (8): 021032. doi: 10.1103/PhysRevX.8.021032.
    • , , , et al. . “Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics.Optical Materials Express, 8 (9): 24552470. doi: 10.1364/OME.8.002455.
    • , , , , and . . “Design study of random spectrometers for applications at optical frequencies.Optic Letters, 43 (13): 31803183.
    • , , , et al. . “Superconducting nanowire single-photon detector implemented in a 2D photonic crystal cavity.Optica, 5 (5): 658665.
    • , , , , and . . “Towards amorphous superconducting single-photon detectors integrated with nanophotonic waveguides.” in Vol.2/2018 of Verhandlungen der Deutschen Physikalischen Gesellschaft
    • , , , , and . . “Towards Integrated High-Tc Superconducting Nanowire Hot Electron Bolometers.” in Vol.2/2018 of Verhandlungen der Deutschen Physikalischen Gesellschaft
    • , , , et al. . “Fast and reliable storage using a 5  bit, nonvolatile photonic memory cell.Optica, 6 (1): 16. doi: 10.1364/OPTICA.6.000001.
    • , , , et al. . “On-chip waveguide coupling of a layered semiconductor single-photon source.Nanoletters, 17: 54465451. doi: 10.1021/acs.nanolett.7b02092#cor1.
    • , , , et al. . “Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers.Beilstein J. Nanotechnol., 8: 3844.
    • , , , et al. . “Superconducting nanowire single photon detector for coherent detection of weak signals.IEEE Trans. Appl. Supercond, 2017 doi: 10.1109/TASC.2016.2645132.
    • , , , and . . “On-chip photonic synapse.Science advances, 3
    • , , , et al. . “Photostable Molecules on Chip: Integrated Sources of Nonclassical Light.ACS Photonics, 2017
    • , , , and . . “Calculating with light using a chip-scale all-optical abacus.Nature Communications, 8
    • , , , et al. . “On-chip coherent detection with quantum limited sensitivity.Scientific Reports, 7: 4812.
    • , , , et al. . “Hot-spot relaxation time current dependence in niobium nitride waveguide-integrated superconducting nanowire single-photon detectors.Optics Express, 25 (8): 87398750.
    • , , , et al. . “Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits.Optica, 4: 557562.
    • , , , et al. . “Diamond on aluminum nitride as a platform for integrated photonic circuits.Physica Statut Solid A, 213
    • , , , , and . . “Nonvolatile All-Optical 1 × 2 Switch for Chipscale Photonic Networks.Advance Optical Materials, 2016 doi: 10.1002/adom.201600346.
    • , , , et al. . “Cavity-Enhanced and Ultrafast Superconducting Single-Photon Detectors.Nano Letters, 16 doi: 10.1021/acs.nanolett.6b03344.
    • , , , et al. . “Fully integrated quantum photonic circuit with an electrically driven light source.Nature Photonics, 2016 doi: 10.1038/nphoton.2016.178.
    • , , , , , and . . “Coupling thermal atomic vapor to an integrated ring resonator.New Journal of Physics, 18: 103031.
    • , , , and . . “Cascaded Mach-Zehnder interferometer tunable filters.Journal of Optics, 18: 064011.
    • , , , et al. . “Cavity-enhanced light emission from electrically driven carbon nanotubes.Nature Photonics, 70
    • , , , , , and . . “Directional couplers with integrated carbon nanotube incandescent light emitters.Optics Express, 2016: 966.
    • , and . . “Nichtflüchtiger optischer Speicher in photonischen Schaltkreisen.Physik unserer Zeit, 47: 9.
    • , , , , , and . . “Scalable Fabrication of Integrated Nanophotonic Circuits on Arrays of Thin Single Crystal Diamond Membrane Windows.Nano Letters 16, 5: 33413347.
    • , , , and . . “Thermo-optical Effect in Phase-Change Nanophotonics.ACS Photonics, 3: 828835. doi: 10.1021/ascphotonics.6b00032.
    • , , , et al. . “Beaming light from a quantum emitter with a planar optical antenna.Light: Science & Applications, 2017 (6): e16245.
    • , , , et al. . “Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits.Nano Letters, 2016 doi: 10.1021/acs.nanolett.6b03688.
    • , , , and . . “Sub-Poisson-binomial light.Physical Review A, 94: 053844.
    • , , , , and . . “Reconfigurable heat-induced spin wave lenses.Applied Physics Letters, 109: 232407.
    • , , , , and . . “Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires.Appl. Phys. Lett, 106: 151101.
    • , , and . . “Photonic integration meets single-photon detection.Laser Focus World, 51: 4750.
    • , , , , , and . . “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths.Scientific Reports, 5: 10941.
    • , , , , and . . “Atomic vapor spectroscopy in integrated photonic structures.Appl. Phys. Lett., 107: 041101.
    • , , , , , and . . “High efficiency, on-chip single-photon detection for diamond nanophotonic circuits.IEEE Journal of Lightwave Technology, 33: 01.
    • , , , et al. . “Integrated all-photonic nonvolatile multi-level memory.Nature Photonics, 9: 725.
    • , , , et al. . “Superconducting single-photon detectors integrated with diamond nanophotonic circuits.Light: Science & Applications, 4: e338.
    • , , , and . . “Diamond as a material for monolithically integrated optical and optomechanical devices.Physica Status Solidi (A): Applications and Materials Science, 212: 2385.
    • , , , , and . . “On-chip photonic memory elements employing phase change materials.Advanced Materials, 26: 1372.
    • , , , , , and . . “High-Q optomechanical circuits made from polished nanocrystalline diamond thin films.Diamond Rel. Mat, 44: 4953.
    • , , , , and . . “Waveguide integrated electroluminescent carbon nanotubes.Advanced Materials, 2014
    • , , , et al. . “Silicon integrated active ferroelectric BaTiO3 thin films and waveguiding devices.Nano Letters, 14: 1419.
    • , , , , and . “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths.Applied Physics Letters, 104 (9) 091108. doi: 10.1063/1.4867529.
    • , , , , and . . “Hybrid 2D–3D optical devices for integrated optics by direct laser writing.Nature Light: Science and Applications, 2014
    • , , , and . . “Design of a silicon integrated electro-optic modulator based on ferroelectric BaTiO3 thin films.IEEE Photon. Tech. Lett., 2014
    • , , , , , and . . “Diamond Nanophotonic Circuits Functionalized by Dip-pen Nanolithography.Advanced Optical Materials, 2014
    • . . “Integrated Optomechanics: materials and concepts.IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61: 1889.
    • , , , et al. . “Diamond electro-optomechanical resonators integrated in nanophotonic circuits.Appl. Phys. Lett. 105, 105: 251101.
    • , , and . . “Array of integrated superconducting single photon detectors with high timing resolution.IEEE Transactions on Applied Superconductivity, 23: 2201007.
    • , , and . . “NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits.Applied Physics Letters, 102: 051101.
    • , and . . “Broadband directional coupling in aluminum nitride nanophotonic circuits.Optics Express, 21: 73047315.
    • , , , , and . . “Diamond-integrated optomechanical circuits.Nature Communications, 4: 1690.
    • , , and . . “Photonic crystal dumbbell resonators in silicon and aluminum nitride integrated optical circuits.Journal of Nanophotonics, 7: 073095.
    • , , , , , and . . “Waferscale nanophotonic circuits made from diamond-on-insulator substrates.Optics Express, 21: 1103111036.
    • , , , , and . . “Grating-assisted coupling to nanophotonic circuits in microcrystalline diamond thin films.Nanotechnology, 4: 300305.
    • , , , and . . “Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors.Appl. Phys. Lett., 102: 191104.
    • , , and . . “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate.Scientific Reports, 3: 1893.
    • , , , et al. . “Absorption engineering of NbN nanowires deposited on silicon nitride nanophotonic circuits.Optics Express, 21: 22683.
    • , and . . “Mode control and mode conversion in nanophotonic aluminum nitride waveguides.Optics Express, 21: 26742.
    • , , , , , and . . “High-quality Si3N4 circuits as a platform for graphene-based nanophotonic devices.Optics Express, 21: 3167831689.
    • , , , and . . “High-Q aluminum nitride photonic crystal nanobeam cavities.Appl. Phys. Lett., 100: 091105.
    • , , and . . “Frequency and phase noise of ultrahigh Q silicon nitride nanomechanical resonators.Physical Review B (Rapid Communication), 85: 161410.
    • , , and . . “High Q micro-ring resonators fabricated from polycrystalline aluminum nitride films for near infrared and visible photonics.Optics Express, 20: 12261.
    • , , , and . . “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators.Applied Physics Letters, 100: 091105.
    • , , and . . “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing.Nano Letters, 12: 3562.
    • , and . . “Photonic non-volatile memory based on phase-change materials.Applied Physics Letters, 101: 171101.
    • , , , , , and . . “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics.New Journal of Physics, 14: 095014.
    • , , , et al. . “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison.Optics Express, 20: 26486.
    • , and . . “A silicon nanowire factorable photon pair source.Optical and Quantum Electronics
    • , , , , and . . “Backaction limits on self-sustained optomechanical oscillations.Phys. Rev. A, 86: 053826.
    • , , , et al. . “High Speed and High Efficiency Travelling Wave Single-Photon Detectors Embedded in Nanophotonic Circuits.Nature Communications, 3: 1325.
    • , , , and . . “Second harmonic generation in aluminum nitride waveguides on silicon substrates.” in Proceedings Conference on Lasers and Electro-Optics 2012, edited by H.X. Tang. New York City: Wiley-IEEE Computer Society Press.
    • , , , and . . “Carrier and thermal dynamics of silicon photonic resonators at cryogenic temperatures.Optics Express, 19: 3290.
    • , , , et al. . “Integrated GaN photonic circuits on silicon (100) for second harmonic generation.Optics Express, 19: 10462.
    • , , , and . . “Tunable optical coupler controlled by optical gradient forces.Optics Express, 19: 015098.
    • , , , , and . . “GHz optomechanical resonators with high mechanical Q factor in air.Optics Express, 19: 22316.
    • , , , , and . . “Dynamic manipulation of mechanical resonators in the high amplitude regime through optical backaction.Nature Nanotechnology, 6: 726.
    • , , and . . “A three-dimensional mesh-refinement algorithm with low boundary reflections for the simulation of metallic structures.International Journal of Numerical modelling, 23: 183.
    • . . “Finite-difference time-domain methods and material models for the simulation of plasmonic structures.Journal of Computational and Theoretical Nanoscience, 7: 1.
    • , , , and . . “Analysis of short range forces in optomechanical devices with a nanogap.Optics Express, 18: 12615.
    • , , , , and . . “Adiabatic embedment of nanomechanical resonators in photonic microring cavities.Applied Physics Letters, 96: 363101.
    • , , and . . “Time-domain measurement of optical transport in silicon micro-ring resonators.Optics Express, 18: 18438.
    • , , , and . . “High Q optomechanical resonators in silicon nitride nanophotonic circuits.Appl. Phys. Lett., 97: 073112.
    • , , , and . . “High performance nanophotonic circuits based on partially buried horizontal slot waveguides.Optics Express, 18: 20690.
    • , , and . . “Ultrahigh-Frequency Nano-Optomechanical Resonators in Slot Waveguide Ring Cavities.Applied Physics Letters, 97: 073112.
    • . . “Finite-difference time-domain methods and material models for the simulation of plasmonic structures.Journal of Computational and Theoretical Nanoscience, 7: 1.
    • , , and . . “A three-dimensional mesh-refinement algorithm with low boundary reflections for the simulation of metallic structures.International Journal of Numerical modelling, 23: 183.
    • , , and . . “Reactive Cavity Optical Force on Micro-disk Coupled Nanomechanical Beam Waveguides.Physical Review Letters, 103: 223901.
    • , , and . . “A mechanical Kerr effect in deformable photonic media.Applied Physics Letters, 95: 123507.
    • , , , and . . “Modelling of optical forces in 3d nanomechanical waveguides.Optics Express, 17: 16032.
    • , , , and . “Silicon Nitride Membrane Photonics.Journal of Optics A, 11: 114017.
    • , , and . . “Simulation of Optical Resonators using DGTD and FDTD.Journal of Optics A, 11: 114015.
    • , , and . . “Tunable bipolar optical interactions between guided lightwaves.Nature Photonics, 3: 464.
    • , , and . . “Broadband all-photonic transduction of nanocantilevers.Nature Nanotechnology, 4: 377.
    • , , and . . “Optomechanical coupling in photonic crystal supported nanomechanical waveguides.Optics Express, 17: 12424.
    • , , and . . “Theoretical investigation of the transverse optical force between a silicon nanowire and a substrate.Optics Express, 17: 1806.
    • , , and . . “Photothermal actuation in nanomechanical waveguide devices.Journal of Applied Physics, 105: 014508.
    • , and . . “Numerical investigation of Littrow lasing in open resonator photonic crystal waveguides.Europhysics Letters, 82: 54001.
    • , , , , , and . . “Harnessing optical forces in integrated photonic circuits.Nature, 456: 480.
    • , , and . . “Gigahertz photothermal effect in silicon waveguides.Applied Physics Letters, 93: 213106.
    • , , , and . . “An ADI based Fourier Spectral method for the simulation of metallic structures.Journal of Computational and Theoretical Nanoscience, 5: 571.
    • , , , , , and . . “Diamond components with integrated abrasion sensor for tribological applications.Diamond and Related Materials, 16: 991.
    • , , and . . “An FDTD method for the simulation of dispersive metallic structures.Optical and Quantum Electronics, 38: 843.
    • , , and . . “Pseudo-spectral time-domain modeling of real metals.Optical and Quantum Electronics, 39: 877.
    • , , and . . “A finite-difference time-domain method for the simulation of gain materials with carrier diffusion in photonic crystals.Journal of Lightwave Technology, 25: 2306.
    • , , and . . “Numerical investigation of field enhancement on metal nano-particles using a hybrid FDTD-PSTD algorithm.Optics Express, 15: 11433.
    • , , , et al. . “In-plane Littrow lasing of broad photonic crystal waveguides.Applied Physics Letters, 91: 041111.
    • , , and . . “Finite-difference time-domain simulation of dispersive features smaller than the grid-spacing.Int. Journal of Numerical modeling, 20: 916.
    • , , and . . “A general framework for the finite-difference time-domain simulation of real metals.IEEE Transactions on Antennas and Propagation, 55: 916.
    • . . “Pseudo-spectral time-domain simulation of the transmission and the group delay of photonic devices.Optical and Quantum Electronics, 40: 1.
  • Supervised Doctoral Studies

    Dzikonski, DustinLaser-sculpted hydrogel scaffolds for cell inspection (Working title)
    Hanafi, HaissamInvestigation of solid-state photonic structures as well as nonlinear structures for frequency conversion using femtosecond laser beam lithography (working title)
    Einzelphotonenquellen in zweidimensionalen Schichthalbleitern
    Boguslawski, MartinMultispectral, aperiodic, and random photonic lattices
    Ultraschnelle Dynamik und Manipulation von Exzitonen in atomar dünnen Halbleitern
    Kroesen, Sebastian Walter KarlIntegrated photonics in nonlinear media by direct femtosecond laser lithography
  • Scientific Talks

    • Wolff, Martin : “Towards high-Tc superconducting nanowire single-photon detectors”. Quantum Symposium 2018, 1st International Symposium on "Single Photon based Quantum Technologies", Max-Born-Saal, Berlin, Deutschland, .
    • Wolff, Martin : “Towards integrated High-Tc Superconducting single-photon detectors integrated with nanophotonic waveguides”. DPG-Frühjahrstagung 2018, Universität Erlangen, Erlangen, Deutschland, .