Publications
- 10.1029/2022AV000792. . ‘Earth mantle's isotopic record of progressive chemical depletion.’ AGU Advances 4, e2022AV000792: e2022AV000792. doi:
- . . ‘Origin of 182W Anomalies in Ocean Island Basalts.’ Geochemistry, Geophysics, Geosystems 24: 1–12. doi: https://doi.org/10.1029/2022GC010688.
- 10.1016/j.icarus.2022.115259. . ‘The young resurfacing events at Ceres' Occator crater: Seismic shaking or deposition of cryovolcanic material?’ Icarus 389. doi:
- 10.1016/j.pss.2023.105687. . ‘A comparative analysis of global lunar crater catalogs using OpenCraterTool – An open source tool to determine and compare crater size-frequency measurements.’ Planetary and Space Science 231: 105687. doi:
- 10.1016/j.pss.2022.105623. . ‘Possible sites for a Chinese International Lunar Research Station in the Lunar South Polar Region.’ Planetary and Space Science 227. doi:
- 10.1029/2022JE007533. . ‘Timing and Origin of Compressional Tectonism in Mare Tranquillitatis.’ Journal of Geophysical Research: Planets 128, No. 2. doi:
- . . ‘Geological mapping and chronology of lunar landing sites: Apollo 14.’ Icarus 406. doi: 10.1016/j.icarus.2023.115732.
- 10.1016/j.icarus.2022.115267. . ‘Rheological properties and ages of lava flows on Alba Mons, Mars.’ Icarus 389. doi:
- 10.1016/j.icarus.2022.115344. . ‘Simulation of surface regolith gardening and impact associated melt layer production under ns-pulsed laser ablation.’ Icarus 391. doi:
- . . ‘A mid-infrared study of synthetic glass and crystal mixtures analog to the geochemical terranes on mercury.’ Icarus 396: 115498. doi: 10.1016/j.icarus.2023.115498.
- . . ‘Mid-Infrared Spectroscopy of Feldspars From the Bühl Basalt (Northern Hesse, Germany) Formed Under Reducing Conditions as Terrestrial Analogue of Mercury for MERTIS.’ Earth and Space Science 10, No. 6: e2023EA002903. doi: https://doi.org/10.1029/2023EA002903.
- 10.1029/2022GC010606. . ‘Chemical Geodynamics Insights from a Machine Learning Approach.’ Geochemistry, Geophysics, Geosystems 23, e2022GC01060. doi:
- . . ‘Titanium isotope systematics of refractory inclusions: Echoes of molecular cloud heterogeneity.’ Geochimica et Cosmochimica Acta 324: 44–65. doi: 10.1016/j.gca.2022.03.001.
- . . ‘The submarine Azores Plateau: Evidence for a waning mantle plume?’ Marine Geology 451: 106858. doi: https://doi.org/10.1016/j.margeo.2022.106858.
- . . ‘Cr stable isotope fractionation by evaporation from silicate melts.’ Chemical Geology 610: 121096. doi: 10.1016/j.chemgeo.2022.121096.
- . . ‘Origin of the analytical 183W effect and its implications for tungsten isotope analyses.’ Journal of Analytical Atomic Spectrometry 37: 2005–2021. doi: 10.1039/D2JA00102K.
- 10.1111/maps.13821. . ‘Asteroid 2008 TC3, not a polymict ureilitic but a polymict C1 chondrite parent body? Survey of 249 Almahata Sitta fragments.’ Meteoritics and Planetary Science 2022, No. 57: 1339–1364. doi:
- . . ‘Tellurium isotope fractionation during evaporation from silicate melts.’ Geochimica et Cosmochimica Acta 339: 35–45. doi: 10.1016/j.gca.2022.10.032.
- 10.1111/maps.13889. . ‘The first main group ureilite with primary plagioclase: A missing link in the differentiation of the ureilite parent body.’ Meteoritics and Planetary Science 2022, No. 57: 1589–1616. doi:
- 10.1016/j.gca.2022.08.026. . ‘Mineralogy, petrology, and oxygen isotopic compositions of aluminum-rich chondrules from unequilibrated ordinary and the Dar al Gani 083 (CO3.1) chondrite.’ Geochimica et Cosmochimica Acta 336: 448–468. doi:
- . . ‘Disk transport rates from Ti isotopic signatures of refractory inclusions.’ Meteoritics and Planetary Science 57: 2158–2169. doi: 10.1111/maps.13923.
- . . ‘The chondrite breccia of Antonin (L4-5)—A new meteorite fall from Poland with a heterogeneous distribution of metal.’ Meteoritics and Planetary Science 57: 2127–2142. doi: 10.1111/maps.13905.
- . . ‘Asteroid 2008 TC3, not a polymict ureilitic but a polymict C1 chondrite parent body? Survey of 249 Almahata Sitta fragments.’ Meteoritics and Planetary Science 57: 1339–1364. doi: 10.1111/maps.13821.
- . . ‘Catastrophic rupture of lunar rocks: Implications for lunar rock size–frequency distributions.’ Icarus 387: 115200. doi: 10.1016/j.icarus.2022.115200.
- 10.1029/2022JE007306. . ‘Experimentally Induced Thermal Fatigue on Lunar and Eucrite Meteorites—Influence of the Mineralogy on Rock Breakdown.’ Journal of Geophysical Research: Planets 127, No. 10: e2022JE007306. doi:
- . . ‘Sulfides and hollows formed on Mercury’s surface by reactions with reducing S-rich gases.’ Earth and Planetary Science Letters 593: 117647. doi: 10.1016/j.epsl.2022.117647.
- 10.1038/s41467-022-28570-8. . ‘Brine residues and organics in the Urvara basin on Ceres.’ Nature Communications 13, No. 1: 927. doi:
- . . ‘Effects of Lunar Near-Surface Geology on Moonquakes Ground Motion Amplification.’ Journal of Geophysical Research: Planets 127, No. 9. doi: 10.1029/2022JE007396.
- 10.1038/s41561-021-00820-2. . ‘No 182W evidence for early Moon formation.’ Nature Geoscience 14. doi:
- . . ‘In Situ Geochronology for the Next Decade: Mission Designs for the Moon, Mars, and Vesta.’ The Planetary Science Journal 2: 145. doi: 10.3847/psj/abedbf.
- . . ‘Constraining the presence of amphibole and mica in metasomatized mantle sources through halogen partitioning experiments.’ Lithos 380-381: 105859. doi: 10.1016/j.lithos.2020.105859.
- . . ‘Silicate melt inclusions in the new millennium: A review of recommended practices for preparation, analysis, and data presentation.’ Chemical Geology 570: 120145. doi: 10.1016/j.chemgeo.2021.120145.
- . . ‘The Loongana (CL) group of carbonaceous chondrites.’ Geochimica et Cosmochimica Acta 304: 1–31. doi: 10.1016/j.gca.2021.04.007.
- . . ‘The old, unique C1 chondrite Flensburg - insight into the first processes of aqueous alteration, brecciation, and the diversity of water-bearing parent bodies and lithologies.’ Geochimica et Cosmochimica Acta 293: 142–186.
- . . ‘Tellurium isotope cosmochemistry: Implications for volatile fractionation in chondrite parent bodies and origin of the late veneer.’ Geochimica et Cosmochimica Acta 309: 313–328. doi: 10.1016/j.gca.2021.06.038.
- . . ‘Common feedstocks of late accretion for the terrestrial planets.’ Nature Astronomy 5: 1286–1296. doi: 10.1038/s41550-021-01475-0.
- . . ‘The old, unique C1 chondrite Flensburg–insight into the first processes of aqueous alteration, brecciation, and the diversity of water-bearing parent bodies and lithologies.’ Geochimica et Cosmochimica Acta 293: 142–186. doi: 10.1016/j.gca.2020.10.014.
- 10.1016/j.gca.2021.05.028. . ‘Graphite in ureilites, enstatite chondrites, and unique clasts in ordinary chondrites – Insights from the carbon-isotope composition.’ Geochim. Cosmochim. Acta. 307: 86–104. doi:
- 10.1111/MAPS.13486. . ‘Classification of CM chondrite breccias – implications for the evaluation of samples from the OSIRIS-REx and Hayabusa 2 missions.’ Meteoritics & Planetary Science 56: 127–147. doi:
- 10.1016/j.gca.2020.10.007. . ‘Mass-independent and mass-dependent Cr isotopic composition of the Rumuruti (R) chondrites: Implications for their origin and planet formation.’ Geochim. Cosmochim. Acta. 293: 598–609. doi:
- 10.1111/maps.13620. . ‘The polymict carbonaceous breccia Aguas Zarcas: A potential analogue to samples being returned by the OSIRIS-REx and Hayabusa2 missions.’ Meteoritics & Planetary Science 56: 277–310. doi:
- . . ‘How do secondary iron enrichments form within basaltic eucrites? An experimental approach.’ Meteoritics & Planetary Science 56, No. 5: 911–928. doi: 10.1111/maps.13651.
- . . ‘Experimental investigation of Ru isotope fractionation between metal, silicate and sulfide melts.’ Chemical Geology 580: 120384. doi: 10.1016/j.chemgeo.2021.120384.
- . . ‘Rb–Sr geochronology of metamorphic rocks from the Central Indonesian Accretionary Collision Complex: Additional age constraints for the Meratus and Luk Ulo complexes (South Kalimantan and Central Java).’ Lithos 388-389. doi: 10.1016/j.lithos.2021.105971.
- . . ‘Studying the global spatial randomness of impact craters on Mercury, Venus, and the Moon with geodesic neighborhood relationships.’ Journal of Geophysical Research 126: e2020JE006693. doi: 10.1029/2020JE006693.
- . . ‘China's Chang'e-5 landing site: Geology, stratigraphy, and provenance of materials.’ Earth and Planetary Science Letters 561: 116855. doi: 10.1016/j.epsl.2021.116855.
- . . ‘Young lunar mare basalts in the Chang'e-5 sample return region, northern Oceanus Procellarum.’ Earth and Planetary Science Letters 555: 116702. doi: 10.1016/j.epsl.2020.116702.
- . . ‘Science-rich sites for in situ resource utilization characterization and end-to-end demonstration missions.’ The Planetary Science Journal 2: 84. doi: 10.3847/PSJ/abedbb.
- . . ‘The Inner Solar System Chronology (ISOCHRON) lunar sample return mission concept: Revealing two billion years of history.’ The Planetary Science Journal 2: 79. doi: 10.3847/PSJ/abe419.
- . . ‘A Next Generation Lunar Orbiter Mission.’ Bulletin of the AAS 53, No. 4. doi: 10.3847/25c2cfeb.8f28f012.
- . . ‘NanoSWARM: NanoSatellites for Space Weathering, Surface Water, Solar Wind, and Remnant Magnetism.’ Bulletin of the AAS 53, No. 4. doi: 10.3847/25c2cfeb.314447c9.
- 10.1016/j.asr.2021.09.008. . ‘Prominent volcanic source of volatiles in the south polar region of the Moon.’ Advances in Space Research 68, No. 11: 4691–4701. doi:
- . . ‘Mid-infrared reflectance spectroscopy of synthetic glass analogs for mercury surface studies.’ Icarus 361: 114363. doi: 10.1016/j.icarus.2021.114363.
- . . ‘A shock recovery experiment and its implications for Mercury's surface: The effect of high pressure on porous olivine powder as a regolith analog.’ ıcarus 357: 114162. doi: 10.1016/j.icarus.2020.114162.
- . . ‘The effect of excimer laser irradiation on mid-IR spectra of mineral mixtures for remote sensing.’ Earth and Planetary Science Letters 569: 117072. doi: 10.1016/j.epsl.2021.117072.
- . . ‘Mid-Infrared Spectroscopy of Anorthosite Samples From Near Manicouagan Crater, Canada, as Analogue for Remote Sensing of Mercury and Other Terrestrial Solar System Objects.’ Journal of Geophysical Research (Planets) 126, No. 8: e06832. doi: 10.1029/2021JE006832.
- 10.1098/rsta.2019.0562. . ‘The lunar surface as a recorder of astrophysical processes: Astronomical events recorded by the Moon.’ Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, No. 2188. doi:
- . . ‘Physico-chemical investigation of endodontic sealers exposed to simulated intracanal heat application: Hydraulic calcium silicate-based sealers.’ Materials 14, No. 4: 1–11. doi: 10.3390/ma14040728.
- . . ‘Synthetic topography from the decameter to the centimeter scale on Mars for scientific and rover operations of the ESA-Roscosmos ExoMars mission.’ Planetary and Space Science 205.
- . . ‘High Priority Returned Lunar Samples.’ Bulletin of the AAS 53. doi: 10.3847/25c2cfeb.32d89d24.
- . . ‘Mid-infrared spectroscopy of crystalline plagioclase feldspar samples with various Al,Si order and implications for remote sensing of Mercury and other terrestrial Solar System objects.’ Earth and Planetary Science Letters 554: 116697. doi: 10.1016/j.epsl.2020.116697.
- . . ‘Origin of volatile element depletion among carbonaceous chondrites.’ Earth and Planetary Science Letters 549: 116508. doi: 10.1016/j.epsl.2020.116508.
- . . ‘Recent cryovolcanic activity at Occator crater on Ceres.’ Nature Astronomy 4, No. 8: 794–801. doi: 10.1038/s41550-020-1146-8DO-10.1038/s41550-020-1146-8.
- . . ‘The varied sources of faculae-forming brines in Ceres’ Occator crater emplaced via hydrothermal brine effusion.’ Nature Communications 11, No. 1: 3680. doi: 10.1038/s41467-020-15973-8DO-10.1038/s41467-020-15973-8.
- . . ‘Geological mapping and chronology of lunar landing sites: Apollo 12.’ Icarus 2020: 113991. doi: 10.1016/j.icarus.2020.113991.
- 10.1126/science.aay5055. . ‘On impact and volcanism across the Cretaceous-Paleogene boundary.’ Science 2020: 266–272. doi:
- . . ‘In situ fragmentation of lunar blocks and implications for impacts and solar-induced thermal stresses.’ Icarus 336.
- . . ‘Erratum: An improved electron microprobe method for the analysis of halogens in natural silicate glasses (Microscopy and Microanalysis (2020) 26:5 (857-866)).’ Microscopy and Microanalysis 26, No. 5: 1076. doi: 10.1017/S1431927620024551.
- 10.1016/j.chemgeo.2020.119869. . ‘A comparison of sulfur isotope measurements of geologic materials by inductively coupled plasma and gas source mass spectrometry.’ Chem. Geol. 558: 119869. doi:
- . . ‘An Improved Electron Microprobe Method for the Analysis of Halogens in Natural Silicate Glasses.’ Microscopy and Microanalysis 26: 1–10. doi: 10.1017/S1431927620013495.
- . ‘Isotopic evolution of the inner Solar System inferred from molybdenum isotopes in meteorites. .’ The Astrophysical Journal Letters 898: L2.
- . ‘Early evolution of the solar accretion disk inferred from Cr-Ti-O isotopes in individual chondrules.’ Earth and Planetary Science Letters 551: 116585.
- 10.1126/science.aaz8482. . ‘Astronomical context of Solar System formation from molybdenum isotopes in meteorite inclusions.’ Science 370: 837–840. doi:
- . . ‘Hf-W chronology of a macrochondrule from the L5/6 chondrite Northwest Africa 8192.’ Meteoritics and Planetary Science 55, No. 10: 2241–2255. doi: 10.1111/maps.13571.
- 10.1016/j.gca.2020.05.012. . ‘Oxygen-isotope heterogeneity in the Northwest Africa 3358 (H3.1) refractory inclusions - Fluid-assisted isotopic exchange on the H-chondrite parent body.’ Meteoritics and Planetary Science 282: 98–112. doi:
- 10.1016/j.gca.2020.03.002. . ‘Warkite, Ca2Sc6Al6O20, a new mineral in carbonaceous chondrites and a key-stone phase in ultra-refractory inclusions from the solar nebula.’ Geochim. Cosmochim. Acta 277: 52–86. doi:
- 10.1111/maps.13430. . ‘Insights into the formation of silica-rich achondrites from impact melts in Rumuruti-type chondrites.’ Meteoritics & Planetary Science 55: 130–148. doi:
- 10.1016/j.gca.2019.12.017. . ‘Hydrogen isotopic composition of CI- and CM-like clasts from meteorite breccias – Sampling unknown sources of carbonaceous chondrite material.’ Geochim. Cosmochim. Acta 272: 177–197. doi:
- . ‘A short-lived 26Al induced hydrothermal alteration event in the outer solar system: Constraints from Mn/Cr ages of carbonates.’ Earth Planetary Science Letters 547: 116440.
- 10.1038/s41598-020-77190-z. . ‘A primordial 15N-depleted organic component detected within the carbonaceous chondrite Maribo.’ Scientific Reports 10: 20251. doi:
- 10.1111/maps.13568. . ‘Mid-infrerad reflectance spectroscopy of aubrite components.’ Meteoritics & Planetary Science 55: 2080–2096. doi:
- 10.1016/j.epsl.2020.116506. . ‘Petrological evidence for the existence and disruption of a 500 km-sized differentiated planetesimal of enstatite-chondritic parentage.’ Earth Planetary Science Letters 548: 116506. doi:
- . . ‘The brecciated texture of polymict eucrites: Petrographic investigations of unequilibrated meteorites from the Antarctic Yamato collection .’ Meteoritics and Planetary Science 55: 558–574. doi: 10.1111/maps.13453.
- . ‘Dy, Er, and Yb isotope compositions of meteorites and their components: Constraints on presolar carriers of the rare earth elements.’ Earth and Planetary Science Letters 529. [accepted / in press (not yet published)]
- . . ‘Impact melt facies in the Moon's Crisium basin: Identifying, characterizing, and future radiometric dating.’ Journal of Geophysical Research 125: e2019JE006024. doi: 10.1029/2019JE006024.
- . . ‘Degradation of small simple and large complex lunar craters: Not a simple scale dependence.’ Journal of Geophysical Research 125: e2019JE006273. doi: 10.1029/2019JE006273.
- . . ‘Re-examination of the population, stratigraphy, and sequence of mercurian basins: Implications for Mercury´s early impact history and comparison with the Moon.’ Journal of Geophysical Research 125: e2019JE006212. doi: 10.1029/2019JE006212.
- . . ‘Troctolite 76535: A sample of the Moon’s South Pole-Aitken basin?’ Icarus 338: 113430. doi: 10.1016/j.icarus.2019.113430.
- . . ‘Mid-infrared spectroscopy of alkali feldspar samples for space application.’ Mineralogy and Petrology 114: 453–463. doi: 10.1007/s00710-020-00709-9.
- . . ‘Studying the Composition and Mineralogy of the Hermean Surface with the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo Mission: An Update.’ Space Science Reviews 216, No. 6: 110. doi: 10.1007/s11214-020-00732-4.
- . . ‘Density of hydrous carbonate melts under pressure, compressibility of volatiles and implications for carbonate melt mobility in the upper mantle.’ Earth and Planetary Science Letters 533. doi: 10.1016/j.epsl.2019.116043.
- . . ‘Mid-infrared reflectance spectroscopy of carbonaceous chondrites and Calcium–Aluminum-rich inclusions.’ Planetary and Space Science 193: 105078. doi: 10.1016/j.pss.2020.105078.
- . . ‘Geological mapping and chronology of lunar landing sites: Apollo 11.’ Icarus 333: 528–547. doi: 10.1016/j.icarus.2019.06.020.
- . ‘Combined mass-dependent and nucleosynthetic isotope variations in refractory inclusions and their mineral separates to determine their original Fe isotope compositions.’ Geochimica et Cosmochimica Acta 263: 215–234.
- 10.1038/s41561-019-0446-z. . ‘Ubiquitous ultra-depleted domains in Earth’s mantle .’ Nature Geoscience 12: 851–855. doi:
- . . ‘Extreme intensity of fluid-rock interaction during extensive intraplate volcanism.’ Geochimica Cosmochimica Acta 2019. doi: 10.1016/j.gca.2019.04.017.
- 10.1016/j.gca.2018.04.031. . ‘The origin of the unique achondrite Northwest Africa 6704: Constraints from petrology, chemistry and Re–Os, O and Ti isotope systematics.’ Geochimica et Cosmochimica Acta 245: 597–627. doi:
- 10.1016/j.gca.2018.11.012. . ‘Siderophile Element Constraints on the Thermal History of the H Chondrite Parent body.’ Geochimica et Cosmochimica Acta 245: 556–576. doi:
- 10.1016/j.icarus.2019.01.010. . ‘Seasonal Formation Rates of Martian Slope Streaks.’ Icarus 323: 76–86. doi:
- . . ‘Process-related isotope variability in oceanic basalts revealed by high-precision Sr isotope ratios in olivine-hosted melt inclusions.’ Chemical Geology 524: 1–10. doi: 10.1016/j.chemgeo.2019.04.031.
- . . ‘Titanium isotopic evidence for a shared genetic heritage of refractory inclusions from different carbonaceous chondrites.’ Geochimica et Cosmochimica Acta 254: 40–53. doi: 10.1016/j.gca.2019.03.011.
- . . ‘(2019): The Renchen L5-6 chondrite breccia: The first confirmed meteorite fall from Baden-Württemberg (Germany).’ Chemie der Erde / Geochemistry 79: 125525.
- 10.1038/s41550-019-0779-y. . ‘Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth.’ Nature Astronomy 3: 736–741. doi:
- . ‘Distinct evolution of the carbonaceous and non-carbonaceous reservoirs: Insights from Ru, Mo, and W isotopes.’ Earth and Planetary Science Letters 521: 103–112.
- . ‘Elemental and isotopic variability in solar system materials by mixing and processing of primordial disk reservoirs.’ Geochimica et Cosmochimica Acta 261: 145–170.
- 10.1016/j.epsl.2019.115841. . ‘Lack of late-accreted material as the origin of 182W excesses in the Archean mantle: Evidence from the Pilbara Craton, Western Australia.’ Earth Planet. Sci. Lett. 528. doi:
- . . ‘Hf-W chronology of ordinary chondrites.’ Geochimica et Cosmochimica Acta 258: 290–309. doi: 10.1016/j.gca.2019.05.040.
- 10.1016/j.epsl.2019.115841. . ‘Lack of late-accreted material as the origin of 182W excesses in the Archean mantle: Evidence from the Pilbara Craton, Western Australia.’ Earth and Planetary Science Letters 528. doi:
- 10.1111/maps.13261. . ‘Highly siderophile element and 187Re–187Os isotopic systematics of ungrouped achondrite Northwest Africa 7325: Evidence for complex planetary processes.’ Meteoritics and Planetary Science 54: 1042–1050. doi:
- 10.1111/maps.13407. . ‘Accretion of differentiated achondritic and aqueously-altered chondritic materials in the Early Solar System - significance of an igneous fragment in the CM chondrite NWA 12651.’ Meteoritics & Planetary Science 54: 2985–2995. doi:
- 10.1111/maps.13212. . ‘Northwest Africa 11024 – a heated and dehydrated unique carbonaceous (CM) chondrite.’ Meteoritics & Planetary Science 54: 328–356. doi:
- 10.1016/j.chemer.2019.06.002. . ‘A light, chondritic xenolith in the Murchison (CM) chondrite – formation by fluid-assisted percolation during metasomatism?’ Geochemistry - Chemie der Erde 79: #125518. doi:
- 10.1111/maps.13212. . ‘Northwest Africa 11024 –a heated and dehydrated unique carbonaceous (CM) chondrite.’ Meteoritics & Planetary Science 54. doi:
- 10.1016/j.chemer.2019.06.002. . ‘A light, chondritic xenolith in the Murchison (CM) chondrite – formation by fluid-assisted percolation during metasomatism?’ Geochemistry - Chemie der Erde 79. doi:
- 10.1111/maps.13208. . ‘Shock stage distribution of 2280 ordinary chondrites – Can bulk chondrites with a shock stage S6 exist as individual rocks?’ Meteoritics & Planetary Science 54: 2189–2202. doi:
- 10.1016/j.chemer.2019.07.007. . ‘The Renchen L5-6 chondrite breccia – the first confirmed meteorite fall from Baden-Württemberg (Germany).’ Geochemistry – Chemie der Erde 79: 125525. doi:
- 10.1016/j.chemer.2019.08.004. . ‘Modal abundances of coarse-grained (>5 µm) components within CI-chondrites and their individual clasts – mixing of various lithologies on the CI parent body(ies).’ Geochemistry – Chemie der Erde 79: 125532. doi:
- 10.1111/maps.13344. . ‘Ejby - a new H5/6 ordinary chondrite fall in Copenhagen, Denmark.’ Meteoritics & Planetary Science 54: 1853–1869. doi:
- 10.1016/j.chemer.2019.07.001. . ‘Mineralogy, petrography, and oxygen isotopic compositions of ultrarefractory inclusions from carbonaceous chondrites.’ Geochemistry-Chemie der Erde 79: #125519. doi:
- . . ‘Sulfur isotope study of sulfides in CI, CM, C2ung chondrites and volatile-rich clasts–Evidence for different generations and reservoirs of sulfide formation.’ Geochimica et Cosmochimica Acta 261: 210–223.
- 10.1111/maps.13208. . ‘Shock stage distribution of 2280 ordinary chondrites – can bulk chondrites with a shock stage S6 exist as individual rocks?’ Meteoritics & Planetary Science 54. doi:
- 10.1016/j.gca.2018.12.009. . ‘Zinc isotopic variations in ureilites.’ Geochim. Cosmochim. Acta 246: 450–460. doi:
- 10.1016/j.gca.2018.11.015. . ‘Chemical, microstructural and chronological record of phosphates in the Ksar Ghilane 002 enriched shergottite.’ Geochim. Cosmochim. Acta 245: 385–405. doi:
- . . ‘Best practices for the use of meteorite names in publications.’ Meteoritics & Planetary Science 54, No. 7: 1397–1400. doi: 10.1111/maps.13291.
- . . ‘The presolar grain inventory of fine-grained chondrule rims in the Mighei-type (CM) chondrites.’ Meteoritics & Planetary Science 54. doi: 10.1111/maps.13412.
- . . ‘Various size-sorting processes for millimeter-sized particles in the Sun´s protoplanetary disk? Evidence from chondrules in ordinary chondrites.’ The Astrophysical Journal 887, No. 2. doi: 10.3847/1538-4357/ab58d0.
- . . ‘Addendum to “Stöffler, D., Hamann, C., and Metzler, K., Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system. Meteoritics & Planetary Science 53, 5–49, 2018”.’ Meteoritics & Planetary Science 54, No. 4: 946–949. doi: 10.1111/maps.13246.
- . . ‘The Meteoritical Bulletin, No. 106.’ Meteoritics & Planetary Science 54, No. 2: 469–471. doi: 10.1111/maps.13215.
- . ‘Molybdenum isotope compositions of uranium ore concentrates by double spike MC-ICP-MS.’ Applied Geochemistry 103: 97–105.
- . . ‘Siderophile element constraints on the thermal history of the H chondrite parent body.’ Geochimica et Cosmochimica Acta 245: 556–576. doi: 10.1016/j.gca.2018.11.012.
- . . ‘Mid-infrared spectroscopy of planetary analogs: A database for planetary remote sensing.’ Icarus 324: 86–103. doi: 10.1016/j.icarus.2019.02.010.
- 10.1051/0004-6361/201834851. . ‘Dust of comet 67P/Churyumov-Gerasimenko collected by Rosetta/MIDAS: classification and extension to the nanometre scale.’ Astronomy and Astrophysics 1. doi:
- . . ‘Timings of early crustal activity in southern highlands of Mars: Periods of crustal stretching and shortening.’ Timings of early crustal activity in southern highlands of Mars: Periods of crustal stretching and shortening null. doi: 10.1016/j.gsf.2018.05.016. [online first]
- 10.1016/j.pss.2018.04.015. . ‘The Multi-Temporal Database of Planetary Image Data (MUTED): A Web-Based Tool for Studying Dynamic Mars.’ Planetary Space and Science 159: 56–65. doi:
- . . ‘Reflectance spectra of synthetic Fe-free ortho-and clinoenstatites in the UV/VIS/IR and implications for remote sensing detection of Fe-free pyroxenes on planetary surfaces.’ Planetary and Space Science 159. doi: 10.1016/j.pss.2018.04.006.
- 10.1016/j.gca.2017.10.014. . ‘Hf-W chronology of CR chondrites: Implications for the timescales of chondrule formation and the distribution of 26Al in the solar nebula.’ Geochimica et Cosmochimica Acta 222: 284–304. doi:
- . . ‘How old are lunar lobate scarps? 1. Seismic resetting of crater size-frequency distributions.’ Icarus 306: 225–242. doi: 10.1016/j.icarus.2018.01.019.
- . . ‘Ti isotopic evidence for a non-CAI refractory component in the inner Solar System .’ Earth and Planetary Science Letters 498: 257–265. doi: 10.1016/j.epsl.2018.06.040.
- 10.1016/j.gca.2017.11.033. . ‘Ruthenium isotope fractionation in protoplanetary cores.’ Geochimica et Cosmochimica Acta 223: 75–89. doi:
- . . ‘A Distinct Nucleosynthetic Heritage for Early Solar System Solids Recorded by Ni Isotope Signatures.’ Astrophysical Journal 862: 26–43. doi: 10.3847/1538-4357/aacb7e.
- . . ‘Nature of late accretion to Earth inferred from mass-dependent isotope compositions in meteorites and mantle peridotites.’ Earth and Planetary Science Letters 494: 50–59. doi: 10.1016/j.epsl.2018.04.058.
- 10.1016/j.chemgeo.2018.03.024. . ‘No 182W excess in the Ontong Java Plateau source.’ Chemical Geology 485: 24–31. doi:
- 10.1016/j.epsl.2018.03.010. . ‘Uranium isotope ratios of Muonionalusta troilite and complications for the absolute age of the IVA iron meteorite core.’ Earth and Planetary Science Letters 490: 1–10. doi:
- . . ‘Multistage Core Formation in Planetesimals Revealed by Numerical Modeling and Hf-W Chronometry of Iron Meteorites.’ Journal of Geophysical Research: Planets 123: 2017JE005411. doi: 10.1002/2017JE005411.
- 10.1016/j.gca.2017.09.009. . ‘Pd-Ag chronometry of IVA iron meteorites and the crystallization and cooling of a protoplanetary core.’ Geochimica et Cosmochimica Acta 220, No. null: 82–95. doi:
- . . ‘Isotopic coherence of refractory inclusions from CV and CK meteorites: Evidence from multiple isotope systems.’ Geochimica et Cosmochimica Acta 228: 62–80. doi: 10.1016/j.gca.2018.02.006.
- 10.1111/maps.13025. . ‘Chemical variations of sulfides and metal in enstatite chondrites-Introduction of a new classification scheme.’ Meteoritics and Planetary Science 53, No. null: 394–415. doi:
- 10.1016/j.gca.2018.07.020. . ‘Brecciation among 2280 ordinary chondrites – constraints on the evolution of their parent bodies.’ Geochim. Cosmochim. Acta 238: 516–541. doi:
- 10.1111/maps.13175. . ‘Mineralogy of volatile-rich clasts in brecciated meteorites.’ Meteoritics & Planetary Science 53: 2519–2540. doi:
- . ‘Temperature constraints by Raman spectroscopy of organic matter in volatile-rich clasts and carbonaceous chondrites.’ Geochim. Cosmochim. Acta 241: 38–55.
- . . ‘From 2D to 3D chondrule size data: Some empirical ground truths.’ Meteoritics & Planetary Science 53, No. 7: 1489–1499. doi: 10.1111/maps.13091.
- 10.1111/maps.12912. . ‘Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system.’ Meteoritics & Planetary Science 53: 5–49. doi:
- . . ‘Composition, petrology, and chondrule‐matrix complementarity of the recently discovered Jbilet Winselwan CM2 chondrite.’ Meteoritics & Planetary Science 53, No. 12: 2470–2491. doi: 10.1111/maps.13139.
- . . ‘Er, Yb, and Hf isotopic compositions of refractory inclusions: Anintegrated isotopic fingerprint of the Solar System’s earliest reservoir.’ Earth and Planetary Science Letters 495: 12–23. doi: 10.1016/j.epsl.2018.05.007.
- . . ‘Lunar farside volcanism in and around the South Pole-Aitken basin.’ Icarus 299: 538–562. doi: 10.1016/j.icarus.2017.07.023.
- . . ‘Dating very young planetary surfaces from crater statistics: A review of issues and challenges.’ Meteoritics and Planetary Science 53: 554–582. doi: 10.1111/maps.12924.
- . . ‘Crater density differences: Exploring regional resurfacing, secondary crater populations, and crater saturation equilibrium on the Moon.’ Planetary and Space Science 162: 41–51. doi: 10.1016/j.pss.2017.05.006.
- . . ‘A new tool to account for crater obliteration effects in crater size-frequency distribution measurements.’ Earth and Space Science 5. doi: 10.1002/2018ea000383.
- . . ‘ The age of lunar mare basalts south of the Aristarchus Plateau and effects of secondary craters formed by the Aristarchus event.’ Icarus 309: 45–60. doi: 10.1016/j.icarus.2018.02.030.
- . . ‘Ancient bombardment of the inner Solar System - Reinvestigation of the "fingerprints" of different impactor populations on the lunar surface.’ Journal of Geophysical Research: Planets 123: 748–762. doi: 10.1002/2017JE005451.
- . . ‘Geologic history of the northern portion of the South Pole-Aitken basin on the Moon.’ Journal of Geophysical Research: Planets 123: 2585–2612. doi: 10.1029/2018JE005590.
- . . ‘The Multi-Temporal Database of Planetary Image Data (MUTED): A web-based tool for studying dynamic Mars.’ Planetary and Space Science 159: 56–65.
- . . ‘Periglacial complexes and the deductive evidence of "wet"-flows at the Hale impact-crater, Mars.’ Geological Society London, Special Publications 467. doi: 10.1144/SP467.7. [online first]
- . . ‘Debris flows and water tracks in northern Victoria Land, continental East Antarctica: a new terrestrial analogue site for gullies and recurrent slope lineae on Mars.’ Geological Society London, Special Publications 467. doi: 10.1144/SP467.12. [online first]
- 10.1016/j.icarus.2017.07.023. . ‘Lunar farside volcanism in and around the South Pole–Aitken basin.’ Icarus 299, No. null: 538–562. doi:
- 10.1016/j.icarus.2018.01.022. [online first] . ‘Bright carbonate surfaces on Ceres as remnants of salt-rich water fountains.’ Icarus null, No. null. doi:
- 10.1016/j.icarus.2017.10.038. . ‘Ceres’ Ezinu quadrangle: a heavily cratered region with evidence for localized subsurface water ice and the context of Occator crater.’ Icarus 316: 46–62. doi:
- . ‘The Chelyabinsk meteorite: New insights from a comprehensive electron microscopy and Raman spectroscopy study with evidence for graphite in olivine of ordinary chondrites.’ Meteoritics & Planetary Science 53: 416–432.
- . ‘Raman spectra of hydrous minerals investigated under various environmental conditions in preparation for planetary space missions.’ Journal of Raman Spectroscopy 49: 1830–1839.
- . . ‘"Isocrater" impacts: Conditions and mantle dynamical responses for different impactor types.’ Icarus 306: 94–115. doi: 10.1016/j.icarus.2018.02.005.
- 10.1016/j.icarus.2017.10.038. . ‘Ceres' Ezinu quadrangle: A heavily cratered region with evidence for localized subsurface water ice and the context of Occator crater.’ Icarus 316: 46–62. doi:
- . . ‘The Ac-5 (Fejokoo) quadrangle of Ceres: Geologic map and geomorphological evidence for ground ice mediated surface processes.’ Icarus 316: 63–83. doi: 10.1016/j.icarus.2017.09.035.
- . . ‘Geology of Ceres’ North Pole quadrangle with Dawn FC imaging data.’ Icarus 316: 14–27. doi: 10.1016/j.icarus.2017.09.036.
- 10.1111/maps.13008. . ‘Geologic constraints on the origin of red organic-rich material on Ceres.’ Meteoritics and Planetary Science 53, No. 9: 1983–1998. doi:
- 10.1016/j.icarus.2017.06.015. . ‘Geologic mapping of the Ac-2 Coniraya quadrangle of Ceres from NASA's Dawn mission: Implications for a heterogeneously composed crust.’ Icarus 316: 28–45. doi:
- . . ‘Impact-induced changes in source depth and volume of magmatism on Mercury and their observational signatures.’ Nature Communications 8: 1945. doi: 10.1038/s41467-017-01692-0.
- 10.1111/maps.12834. . ‘In search of the Earth-forming reservoir: Mineralogical, chemical, and isotopic characterizations of the ungrouped achondrite NWA 5363/NWA 5400 and selected chondrites.’ Meteoritics and Planetary Science 52, No. 5: 826. doi:
- . ‘A low abundance of 135Cs in the early Solar System from barium isotopic signatures of volatile-depleted meteorites.’ The Astrophysical Journal Letters 837.
- 10.1002/jrs.5083. . ‘Laser alteration on iron sulfides under various environmental conditions.’ Journal of Raman Spectroscopy 2017. doi:
- . . ‘Length-displacement scaling of thrust faults on the Moon and the formation of uphill-facing scarps.’ Icarus 292: 111–124. doi: 10.1016/j.icarus.2016.12.034.
- 10.1073/pnas.1704461114. . ‘Age of Jupiter inferred from the distinct genetics and formation times of meteorites.’ Proceedings of the National Academy of Sciences of the United States of America (PNAS) 114, No. 26: 6712–6716. doi:
- 10.3847/2041-8213/aa72a2. . ‘Mixing and Transport of Dust in the Early Solar Nebula as Inferred from Titanium Isotope Variations among Chondrules.’ Astrophysical Journal Letters 841, No. 1. doi:
- . . ‘Investigation of newly discovered lobate scarps: Implications for the tectonic and thermal evolution of the Moon.’ Icarus 298: 78–88. doi: 10.1016/j.icarus.2017.08.017.
- . . ‘The cosmic molybdenum-neodymium isotope correlation and the building material of the Earth.’ Geochemical Perspectives Letters 3: 170–178. doi: 10.7185/geochemlet.1720.
- 10.1111/maps.12883. . ‘The Stubenberg meteorite—An LL6 chondrite fragmental breccia recovered soon after precise prediction of the strewn field.’ Meteoritics and Planetary Science 52, No. 8: 1683–1703. doi:
- 10.1016/j.epsl.2017.07.021. . ‘Tungsten isotopes and the origin of the Moon.’ Earth and Planetary Science Letters 475, No. null: 15–24. doi:
- 10.1016/j.epsl.2017.06.047. . ‘The early differentiation of Mars inferred from Hf–W chronometry.’ Earth and Planetary Science Letters 474, No. null: 345–354. doi:
- . . ‘Reconciliation of the excess 176Hf conundrum in meteorites: Recent disturbances of the Lu-Hf and Sm-Nd isotope systematics.’ Geochimica et Cosmochimica Acta 212: 303–323. doi: 10.1016/j.gca.2017.05.043.
- 10.1016/j.chemgeo.2016.12.024. . ‘Tungsten stable isotope compositions of terrestrial samples and meteorites determined by double spike MC-ICPMS.’ Chemical Geology 450, No. null: 135–144. doi:
- . . ‘Ruthenium isotopic evidence for an inner Solar System origin of the late veneer.’ Nature 541: 525–527. doi: 10.1038/nature21045.
- 10.1016/j.gca.2017.08.037. . ‘The Northwest Africa 8159 martian meteorite: Expanding the martian sample suite to the early Amazonian.’ Geochimica et Cosmochimica Acta 218, No. null: 1–26. doi:
- 10.1146/annurev-earth-063016-020037. . ‘Tungsten Isotopes in Planets.’ Annual Review of Earth and Planetary Sciences 45: 389–417. doi:
- 10.1016/j.ijms.2017.01.002. . ‘High-precision analysis of 182W/184W and 183W/184W by negative thermal ionization mass spectrometry: Per-integration oxide corrections using measured 18O/16O.’ International Journal of Mass Spectrometry null, No. null. doi:
- 10.1111/maps.12833. . ‘The Allende multicompound chondrule (ACC)-Chondrule formation in a local super-dense region of the early solar system.’ Meteoritics and Planetary Science 52, No. null: 906–924. doi:
- 10.1016/j.chemer.2016.10.004. . ‘The Braunschweig meteorite - a recent L6 chondrite fall in Germany.’ Chemie der Erde / Geochemistry 77, No. null: 207–224. doi:
- 10.1016/j.icarus.2016.11.030. . ‘Chelyabinsk – a rock with many different (stony) faces: An infrared study.’ Icarus 284, No. null: 431–442. doi:
- 10.1111/maps.12936. . ‘Cosmic-ray exposure ages of six chondritic Almahata Sitta fragments.’ Meteoritics & Planetary Science 52: 2353–2374. doi:
- . ‘Trace element inventory of meteoritic Ca-phosphates.’ American Mineralogist 102: 1856–1880.
- . ‘Complementary element relationships between chondrules and matrix in Rumuruti chondrites.’ Earth Planetary Science Letters 480: 87–96.
- 10.1016/j.gca.2017.06.035. . ‘Cosmogenic He and Ne in chondrules from clastic matrix and a lithic clast of Murchison: No pre-irradiation by the early sun.’ Geochimica et Cosmochimica Acta 213: 618–634. doi:
- 10.1111/maps.12923. . ‘Protracted storage of CR chondrules in a region of the disk transparent to galactic cosmic rays.’ Meteoritics & Planetary Science 52: 2166–2177. doi:
- 10.1111/maps.12868. . ‘Neon produced by solar cosmic rays in ordinary chondrites.’ Meteoritics & Planetary Science 52: 1155–1172. doi:
- . ‘Highly siderophile element and 182W evidence for a partial late veneer in the source of 3.8 Ga rocks from Isua, Greenland.’ Earth and Planetary Science Letters 458: 394–404.
- 10.1111/maps.12991. . ‘Chemical composition and iron oxidation state of amorphous matrix silicates in the carbonaceous chondrite Acfer 04.’ Meteoritics and Planetary Science 2017, No. 1-14. doi:
- . ‘A renewed search for short-lived 126Sn in the early Solar System: Hydride generation MC-ICPMS for high sensitivity Te isotopic analysis.’ Geochimica et Cosmochimica Acta 201.
- 10.1016/j.epsl.2017.02.044. . ‘Characterizing cosmochemical materials with genetic affinities to the Earth: Genetic and chronological diversity within the IAB iron meteorite complex.’ Earth and Planetary Science Letters 467, No. null: 157–166. doi:
- 10.1002/2016GC006646. . ‘Post-rift magmatic evolution of the eastern North American “passive-aggressive” margin.’ Geochemistry, Geophysics, Geosystems 18, No. 1: 3–22. doi:
- . . ‘Origin of discrepancies between crater size-frequency distributions of coeval lunar geologic units via target property contrasts.’ Icarus 298: 49–63. doi: 10.1016/j.icarus.2016.11.040.
- . . ‘Evidence for self-secondary cratering of Copernican-age continuous ejecta deposits on the Moon.’ Icarus 298: 64–77. doi: 10.1016/j.icarus.2017.01.030.
- . . ‘Topography of the Deuteronilus contact on Mars: Evidence for an ancient water/mud ocean and long-wavelength topographic readjustments.’ Planetary and Space Science 144: 49–70. doi: 10.1016/j.pss.2017.05.012.
- . . ‘Debris flow recurrence periods and multi-temporal observations of colluvial fan evolution in Central Spitsbergen (Svalbard).’ Geomorphology 296: 132–141. doi: 10.1016/j.geomorph.2017.08.049.
- . . ‘Periglacial complexes and the deductive evidence of "wet"-flows at the Hale impact-crater, Mars Martian Gullies and their Earth Analogues.’ Geological Society of London Special Publication 2017. [accepted / in press (not yet published)]
- . . ‘Grid-based mapping: a method for rapidly determining the spatial distributions of small features over very large areas.’ Planetary and Space Science 2017: 49–61.
- . . ‘In situ sampling of relative dust devil particle loads and their vertical grain size distributions.’ Astrobiology 2016.
- 10.1016/j.icarus.2017.08.015. [online first] . ‘The geology of the Kerwan quadrangle of dwarf planet Ceres: Investigating Ceres' oldest, largest impact basin.’ Icarus null, No. null. doi:
- 10.1016/j.icarus.2017.10.014. [online first] . ‘The formation and evolution of bright spots on Ceres.’ Icarus null, No. null. doi:
- 10.1016/j.icarus.2017.06.013. . ‘Lunar mare TiO2 abundances estimated from UV/Vis reflectance.’ Icarus 296, No. null: 216–238. doi:
- 10.1111/maps.12860. . ‘Investigating the shock histories of lunar meteorites Miller Range 090034, 090070, and 090075 using petrography, geochemistry, and micro-FTIR spectroscopy.’ Meteoritics and Planetary Science 52, No. 6: 1103–1124. doi:
- 10.1038/ngeo2936. . ‘Geomorphological evidence for ground ice on dwarf planet Ceres.’ Nature Geoscience 10, No. 5: 338–343. doi:
- 10.1016/j.icarus.2017.09.036. [online first] . ‘Geology of Ceres' North Pole quadrangle with Dawn FC imaging data.’ Icarus null, No. null. doi:
- 10.1016/j.pss.2017.08.004. [online first] . ‘Geological characterization of the three high-priority landing sites for the Luna-Glob mission.’ Planetary and Space Science null, No. null. doi:
- 10.1016/j.pss.2017.05.004. . ‘Shifted Excitation Raman Difference Spectroscopy applied to extraterrestrial particles returned from the asteroid Itokawa.’ Planetary and Space Science 144: 106–111. doi:
- 10.1016/j.pss.2017.02.001. . ‘Laser-induced alteration of Raman spectra for micron-sized solid particles.’ Planetary and Space Science 2017, No. 138: 25–32. doi:
- . . ‘IR Spectroscopy of Synthetic Glasses with Mercury Surface Composition: Analogs for Remote Sensing.’ Icarus 296: 123–138.
- . . ‘Radioactive heat production of six geologically important nuclides.’ Geochemistry, Geophysics, Geosystems 18, No. 9: 3530–3541. doi: 10.1002/2017GC006997.
- . . ‘The habitability of a stagnant-lid Earth.’ Astronomy and Astrophysics 605: A71. doi: 10.1051/0004-6361/201730728.
- . . ‘On the relative importance of thermal and chemical buoyancy in regular and impact-induced melting in a Mars-like planet.’ Journal of Geophysical Research 122, No. 7: 1554–1579. doi: 10.1002/2016JE005221.
- . . ‘Globally smooth approximations for shock pressure decay in impacts.’ Icarus 289: 22–33. doi: 10.1016/j.icarus.2017.02.008.
- . . ‘The 176Lu-176Hf systematics of ALM-A: A sample of the recent Almahata Sitta meteorite fall.’ Geochemical Perspectives Letters 3: 45–54. doi: 10.7185/geochemlet.1705.
- . . ‘The effects of magmatic processes and crustal recycling on the molybdenum stable isotopic composition of Mid-Ocean Ridge Basalts.’ Earth and Planetary Science Letters 453: 171–181.
- . . ‘The astrobiology primer v2.0.’ Astrobiology 16, No. 8: 653. doi: 10.1089/ast.2015.1460.
- . ‘Ruthenium stable isotope measurements by double spike MC-ICPMS.’ Journal of Analytical Atomic Spectrometry 31: 1515–1526.
- 10.1007/s10008-016-3242-3. . ‘Investigation of the cation valency and conductivity of antimony-substituted ceria.’ Journal of Solid State Electrochemistry 20: 2295–2304. doi:
- . . ‘Accretion timescale and impact history of Mars deduced from the isotopic systematics of martian meteorites.’ Geochimica et Cosmochimica Acta 175: 167. doi: 10.1016/j.gca.2015.12.002.
- 10.1038/nature19091. . ‘Aggregate dust particles at comet 67P/Churyumov–Gerasimenko.’ Nature 537 (7618). doi:
- 10.1016/j.epsl.2016.09.020. . ‘Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites.’ Earth and Planetary Science Letters 454: 293–303. doi:
- 10.1073/pnas.1524980113. . ‘Tungsten isotopic constraints on the age and origin of chondrules.’ Proceedings of the National Academy of Sciences of the United States of America (PNAS) 113: 2886–2891. doi:
- 10.1038/nature18956. . ‘A nucleosynthetic origin for the Earth's anomalous 142 Nd composition.’ Nature 537, No. 7620: 394–398. doi:
- 10.1016/j.epsl.2016.07.056. . ‘The effects of magmatic processes and crustal recycling on the molybdenum stable isotopic composition of Mid-Ocean Ridge Basalts.’ Earth and Planetary Science Letters 453, No. null: 171–181. doi:
- 10.1016/j.gca.2016.01.014. . ‘Genetic relationship between Na-rich chondrules and Ca,Al-rich inclusions? - Formation of Na-rich chondrules by melting of refractory and volatile precursors in the solar nebula.’ Geochimica et Cosmochimica Acta 177, No. null: 182–204. doi:
- 10.1016/j.gca.2015.12.004. . ‘Evidence from Tm anomalies for non-CI refractory lithophile element proportions in terrestrial planets and achondrites.’ Geochimica et Cosmochimica Acta 176, No. null: 1–17. doi:
- 10.1016/j.epsl.2016.07.025. . ‘Prolonged magmatism on 4 Vesta inferred from Hf–W analyses of eucrite zircon.’ Earth and Planetary Science Letters 452, No. null: 216–226. doi:
- 10.1016/j.gca.2016.08.042. . ‘Partial melting of a C-rich asteroid: Lithophile trace elements in ureilites.’ Geochimica et Cosmochimica Acta 194, No. null: 163–178. doi:
- 10.1111/maps.12586. . ‘Cosmochemical and spectroscopic properties of Northwest Africa 7325-A consortium study.’ Meteoritics and Planetary Science 51, No. 1: 3–30. doi:
- . . ‘Cosmic-ray exposure ages of chondrules.’ Meteoritics & Planetary Sciences 51: 1256–1267. doi: 10.1111/maps.12658.
- 10.1111/maps.12592. . ‘Chemistry and oxygen isotopic composition of cluster chondrite clasts and their components in LL3 chondrites.’ Meteoritics & Planetary Sciences 51, No. 2: 276–302. doi:
- 10.1016/j.gca.2016.05.019. . ‘Siderophile element systematics of IAB complex iron meteorites: New insights into the formation of an enigmatic group.’ Geochimica et Cosmochimica Acta 188, No. null: 261–283. doi:
- 10.1016/j.ijms.2016.02.003. . ‘Refinement of high precision Ru isotope analysis using negative thermal ionization mass spectrometry.’ International Journal of Mass Spectrometry 403, No. null: 15–26. doi:
- 10.1016/j.ijms.2016.06.005. . ‘High-precision molybdenum isotope analysis by negative thermal ionization mass spectrometry.’ International Journal of Mass Spectrometry 407, No. null: 51–61. doi:
- 10.1002/2016GC006301. . ‘Contrasting sediment melt and fluid signatures for magma components in the Aeolian Arc: Implications for numerical modeling of subduction systems.’ Geochemistry, Geophysics, Geosystems 17, No. 6: 2034–2053. doi:
- . . ‘An exceptional grouping of lunar highland smooth plains: Geography, morphology, and possible origins.’ Icarus 273: 121–134. doi: 10.1016/j.icarus.2015.06.028.
- 10.1016/j.icarus.2016.03.015. . ‘Crater size-frequency distribution measurements and age of the Compton-Belkovich volcanic complex.’ Icarus 273: 214–223. doi:
- . . ‘Geomorphologic mapping of the lunar crater Tycho and its impact melt deposits.’ Icarus 273: 164–181. doi: 10.1016/j.icarus.2016.02.018.
- . . ‘The Lassell Massif - A silicic lunar volcano.’ Icarus 273: 248–261. doi: 10.1016/j.icarus.2015.12.036.
- . . ‘The Multi-Temporal Database of Planetary Image Data (MUTED): A Database to Support the Identification of Surface Changes and Short-Lived Surface Processes.’ Planetary and Space Science (PSS) 125: 43–61. doi: 10.1016/j.pss.2016.03.002.
- . . ‘The honeycomb terrain on the Hellas basin floor, Mars: A case for salt or ice diapirism.’ Journal of Geophysical Research 121. doi: 10.1002/2016JE005007.
- . . ‘Dust Devil Track Survey at Elysium Planitia, Mars: Implications for the InSight landing sites.’ Icarus 266: 315–330.
- . . ‘Photogeologic mapping and the geologic history of the Hellas basin floor, Mars.’ Icarus 264: 407–442. doi: 10.1016/j.icarus.2015.09.031.
- . . ‘Editorial: Topical Volume on Dust Devils.’ Space Science Reviews 203: 1–4. doi: 10.1007/s11214-016-0314-8.
- . . ‘Dust Devil Tracks.’ Space Science Reviews 203: 143–181. doi: 10.1007/s11214-016-0308-6.
- . . ‘Dust Devil Sediment Transport: From Lab to Field to Global Impact.’ Space Science Reviews 203: 377–426. doi: 10.1007/s11214-016-0261-4.
- . ‘The High Resolution Stereo Camera (HRSC) of Mars Express and its Approach to Science Analysis and Mapping for Mars and its Satellites.’ Planetary and Space Science 126: 93–138.
- . . ‘Orbital Observations of Dust Lofted by Daytime Convective Turbulence.’ Space Science Reviews 203: 89–142. doi: 10.1007/s11214-016-0243-6.
- . . ‘History and Applications of Dust Devil Studies.’ Space Science Reviews 203: 5–37. doi: 10.1007/s11214-016-0239-2.
- . . ‘The High Resolution Stereo Camera (HRSC) of Mars Express and its Approach to Science Analysis and Mapping for Mars and its Satellites.’ Planetary and Space Science 126: 93–138. doi: 10.1016/j.pss.2016.02.014.
- 10.1016/j.icarus.2016.06.013. . ‘Mid-infrared bi-directional reflectance spectroscopy of impact melt glasses and tektites.’ Icarus 278: 162–179. doi:
- . . ‘Mid-infrared spectroscopy of impactites from the Nördlinger Ries impact crater.’ Icarus 264: 352–368. doi: 10.1016/j.icarus.2015.10.003.
- 10.1038/ncomms12257. . ‘The missing large impact craters on Ceres.’ Nature Communications 7, No. null. doi:
- 10.1016/j.icarus.2015.12.036. . ‘The Lassell massif-A silicic lunar volcano.’ Icarus 273, No. null: 248–261. doi:
- 10.1126/science.aaf4332. . ‘The geomorphology of Ceres.’ Science 353, No. 6303. doi:
- 10.1016/j.icarus.2015.10.003. . ‘Mid-infrared spectroscopy of impactites from the Nördlinger Ries impact crater.’ Icarus 264, No. null: 352–368. doi:
- 10.1016/j.icarus.2016.06.013. . ‘Mid-infrared bi-directional reflectance spectroscopy of impact melt glasses and tektites.’ Icarus 278, No. null: 162–179. doi:
- 10.1126/science.aaf4219. . ‘Dawn arrives at Ceres: Exploration of a small, volatile-rich world.’ Science 353, No. 6303: 1008–1010. doi:
- 10.1002/2016GL070370. . ‘Cryogenic flow features on Ceres: Implications for crater-related cryovolcanism.’ Geophysical Research Letters 43, No. 23: 11,994–12,003. doi:
- 10.1016/j.pss.2016.08.004. . ‘A geologically supervised spectral analysis of 121 globally distributed impact craters as a tool for identifying vertical and horizontal heterogeneities in the composition of the shallow crust of Mercury.’ Planetary and Space Science 132, No. null: 32–56. doi:
- . . ‘Composition and structure of the shallow subsurface of Ceres revealed by crater morphology.’ Nature Geoscience 9, No. 7: 538+. doi: 10.1038/NGEO2743.
- 10.1126/science.aaf4286. . ‘Cryovolcanism on Ceres.’ Science 353, No. 6303. doi:
- 10.1126/science.aaf4759. . ‘Cratering on ceres: Implications for its crust and evolution.’ Science 353, No. 6303. doi:
- . . ‘Earth observation data based rapid flood-extent modelling for tsunami-devastated coastal areas.’ International Journal of Applied Earth Observation and Geoinformation 46. doi: 10.1016/j.jag.2015.11.005.
- 10.1016/j.gca.2015.08.019. . ‘Comparing the nature of the western and eastern Azores mantle.’ Geochim. Cosmochim. Acta. 172: 76–92. doi:
- . . ‘pH Control in Fog and Rain in East Asia: Temporal Advection of Clean Air Masses to Mt. Bamboo, Taiwan.’ Atmosphere 6: 1785–1800.
- . ‘Lower crustal assimilation in oceanic arcs: insights from an osmium isotopic study of the Lesser Antilles.’ Geochimica et Cosmochimica Acta 150: 330–344.
- . . ‘Magmatic Evidence for Carbonate Metasomatism in the Lithospheric Mantle underneath the Ohře (Eger) Rift.’ Journal of Petrology 60. doi: 10.1093/petrology/egv052.
- 10.1111/maps.12567. . ‘Uranium isotopic composition and absolute ages of Allende chondrules.’ Meteoritics & Planetary Science 50, No. 12: 1995–2002. doi:
- 10.1016/j.epsl.2015.08.034. . ‘Planetesimal differentiation revealed by the Hf-W systematics of ureilites.’ Earth and Planetary Science Letters 430: 316–325. doi:
- 10.1016/j.gca.2015.07.032. . ‘Ru isotope heterogeneity in the solar protoplanetary disk.’ Geochimica et Cosmochimica Acta 168: 151–171. doi:
- . . ‘Intrinsic W nucleosynthetic isotope variations in carbonaceous chondrites: Implications for W nucleosynthesis and nebular vs. parent body processing of presolar materials.’ Geochimica et Cosmochimica Acta 165: 361–375. doi: 10.1016/j.gca.2015.06.012.
- . . ‘Planetary and meteoritic Mg/Si and δ30Si variations inherited from solar nebula chemistry.’ Earth and Planetary Science Letters 427: 236–248. doi: 10.1016/j.epsl.2015.07.008.
- 10.1016/j.gca.2015.07.027. . ‘Pd-Ag chronometry of iron meteorites: Correction of neutron capture-effects and application to the cooling history of differentiated protoplanets.’ Geochimica et Cosmochimica Acta 169, No. null: 45–62. doi:
- . . ‘Lunar tungsten isotopic evidence for the late veneer.’ Nature 520: 534–537.
- 10.1016/j.gca.2015.02.018. . ‘Hf-W chronology of the eucrite parent body.’ Geochimica et Cosmochimica Acta 156, No. null: 106–121. doi:
- . ‘Reply to comment by Peters et al. (2015) on "Cosmogenic 180W variations in meteorites and re-assessment of a possible 184Os-180W decay system".’ Geochimica et Cosmochimica Acta 169: 240–243.
- 10.1111/maps.12503. . ‘Similarities and differences between the solar wind light noble gas compositions determined on Apollo 15 SWC foils and on NASA Genesis targets.’ Meteoritics and Planetary Science 50, No. 10: 1663–1683. doi:
- 10.1016/j.epsl.2015.03.026. . ‘Early stages of core segregation recorded by Fe isotopes in an asteroidal mantle.’ Earth and Planetary Science Letters 419, No. null: 93–100. doi:
- . ‘Seeing through the Effects of Crustal Assimilation to Assess the Source Composition beneath the Southern Lesser Antilles Arc.’ Journal of Petrology 56: 815–844.
- 10.1016/j.gca.2014.09.008. . ‘The uranium isotopic composition of the Earth and the Solar System.’ Geochimica et Cosmochimica Acta 148, No. null: 145–158. doi:
- 10.1111/maps.12443. . ‘Geochemistry and chronology of the bunburra rockhole ungrouped achondrite.’ Meteoritics and Planetary Science 50, No. 5: 958–975. doi:
- . . ‘Cosmic collisions in the experimental chamber.’ german research 37, No. 1 /2015: 31–35. doi: 10.1002/germ.201590016.
- 10.1111/maps.12432. . ‘Impact glass spherules in the Chicxulub K-Pg event bed at Beloc, Haiti: Alteration patterns.’ Meteoritics & Planetary Science 50, No. 3: 418-432. doi:
- . . ‘Small-scale lunar farside volcanism.’ Icarus 257: 336 – 354. doi: 10.1016/j.icarus.2015.04.040.
- 10.1016/j.pss.2015.05.007. . ‘Landing site selection for Luna-Glob mission in crater Boguslawsky.’ Planetary and Space Science 2015, No. 117: 45–63. doi:
- . . ‘Evidence for large reservoirs of water/mud in Utopia and Acidalia Planitiae on Mars.’ Icarus 248: 383–391. doi: 10.1016/j.icarus.2014.11.013.
- . . ‘Solar panel clearing events, dust devil tracks, and in-situ vortex detections on Mars.’ Icarus 248: 162–164.
- . . ‘Quantifying Geological Processes on Mars - Results of the High Resolution Stereo Camera (HRSC) on Mars Express.’ Planetary and Space Science (PSS) 112: 53–97. doi: 10.1016/j.pss.2014.11.029.
- . . ‘Present-day Seasonal Gully Activity in a South Polar Pit (Sisyphi Cavi) on Mars.’ Icarus 251: 226–243.
- 10.1016/j.icarus.2016.11.040. [online first] . ‘Origin of discrepancies between crater size-frequency distributions of coeval lunar geologic units via target property contrasts.’ Icarus null, No. null. doi:
- 10.1111/maps.12408. . ‘The distribution of megablocks in the Ries crater, Germany: Remote sensing, field investigation, and statistical analyses.’ Meteoritics and Planetary Science 50, No. 1: 141–171. doi:
- 10.1016/j.pss.2015.10.007. . ‘Shallow crustal composition of Mercury as revealed by spectral properties and geological units of two impact craters.’ Planetary and Space Science 119, No. null: 250–263. doi:
- 10.1016/j.icarus.2015.06.034. . ‘Near infrared spectroscopy of HED meteorites: Effects of viewing geometry and compositional variations.’ Icarus 258, No. null: 384–401. doi:
- . . ‘Clues to the origin of metal in Almahata Sitta EL and EH chondrites and implications for primitive E chondrite thermal histories.’ Geochimica et Cosmochimica Acta 140: 744. doi: 10.1016/j.gca.2014.04.041.
- 10.1016/j.gr.2013.05.013. . ‘Miocene post-collisional shoshonites and their crustal xenoliths, Yarlung Zangbo Suture Zone southern Tibet: Geodynamic implications.’ Gondwana Research 25, No. 3: 1271. doi:
- 10.1016/j.gca.2014.02.034. . ‘Geochemical processes between steel projectiles and silica-rich targets in hypervelocity impact experiments.’ Geochimica et Cosmochimica Acta 133: 257–279. doi:
- . . ‘Lithium and boron isotope systematics in lavas from the Azores islands reveal crustal assimilation.’ Chemical Geology 373: 27–36. doi: 10.1016/j.chemgeo.2014.02.024.
- . ‘Nucleosynthetic W isotope anomalies and the Hf-W chronometry of Ca-Al-rich inclusions.’ Earth and Planetary Science Letters 403: 317–327.
- 10.1098/rsta.2013.0244. . ‘Geochemical arguments for an Earth-like Moon-forming impactor.’ Philosophical Transactions of the Royal Society A 372: 20130244. doi:
- 10.1016/j.epsl.2014.01.037. . ‘Evidence for Mo isotope fractionation in the solar nebula and during planetary differentiation.’ Earth and Planetary Science Letters 391, No. null: 201–211. doi:
- 10.1126/science.1251766. . ‘Protracted core formation and rapid accretion of protoplanets.’ Science 344, No. 6188: 1150–1154. doi:
- 10.1016/j.gca.2014.05.013. . ‘Cosmogenic 180W variations in meteorites and re-assessment of a possible 184Os-180W decay system.’ Geochimica et Cosmochimica Acta 140, No. null: 160–176. doi:
- 10.1016/j.gca.2013.12.032. . ‘Highly siderophile elements and 187Re-187Os isotopic systematics of the Allende meteorite: Evidence for primary nebular processes and late-stage alteration.’ Geochimica et Cosmochimica Acta 131, No. null: 402–414. doi:
- . ‘Photophoretic Strength on Chondrules. 2. Experiment. .’ Astrophys. Journal 792: 73.
- . ‘Si-bearing metal and niningerite in Almahata Sitta fine-grained ureilites and insight into the diversity of metal on the ureilite parent body. .’ Meteoritics & Planetary Science 49: 1948–1977.
- . . ‘The Ardón L6 ordinary chondrite: A long-hidden Spanish meteorite fall.’ Meteoritics and Planetary Science 49, No. 8: 1484. doi: 10.1111/maps.12344.
- . . ‘Space weathering of silicate regoliths with various FeO contents: New insights from laser irradiation experiments and theoretical spectral simulations. .’ Icarus 235: 187–206.
- 10.1016/j.chemer.2014.05.002. . ‘Meteoritic zircon - Occurrence and chemical characteristics.’ Chemie der Erde / Geochemistry null, No. null. doi:
- 10.1126/science.1251117. . ‘Identification of the giant impactor Theia in lunar rocks.’ Science 344, No. 6188: 1146–1150. doi:
- 10.2113/gselements.10.1.31. . ‘Asteroid 2008 TC3 and the fall of Almahata sitta, a unique meteorite breccia.’ Elements 10, No. 1: 31–37. doi:
- 10.1016/j.chemer.2014.01.004. . ‘The Almahata Sitta polymict breccia and the late accretion of asteroid 2008 TC3 .’ Chemie der Erde / Geochemistry 74, No. 2: 149–184. doi:
- 10.1111/maps.12370. . ‘Si-bearing metal and niningerite in almahata sitta fine-grained ureilites and insights into the diversity of metal on the ureilite parent body.’ Meteoritics and Planetary Science 49, No. 10: 1948–1977. doi:
- 10.1016/j.gca.2013.12.016. . ‘Evidence for extinct 135Cs from Ba isotopes in Allende CAIs?’ Geochimica et Cosmochimica Acta 133, No. null: 463–478. doi:
- . ‘Neodymium and hafnium boundary contributions to seawater along the West Antarctic continental margin.’ Earth and Planetary Science Letters X. [submitted / under review]
- . . ‘Assimilation of sediments embedded in the oceanic arc crust: myth or reality?’ Earth and Planetary Science Letters 395: 51–60.
- 10.1111/maps.12258. . ‘Insights into the Martian mantle: The age and isotopics of the meteorite fall Tissint.’ Meteoritics and Planetary Science 49, No. 3: 412–418. doi:
- 10.1130/G35407.1. . ‘Volcanoes of the passive margin: The youngest magmatic event in eastern North America.’ Geology 42, No. 6: 483–486. doi:
- . . „Kosmische Kollisionen in der Experimentierkammer.“ Forschung - Magazin der Deutschen Forschungsgemeinschaft 2014, No. 3: 15–19.
- . . ‘Impact controversies: Impact recognition criteria and related issues.’ Meteoritics & Planetary Science 49, No. 5: 723–731. doi: 10.1111/maps.12284.
- . . ‘Evidence for basaltic volcanism on the Moon within the past 100 millions years.’ Nature Geoscience 12 October. doi: 10.1038/ngeo2252.
- . . ‘Dust deflation by dust devils on Mars derived from optical depth measurements using the shadow method in HiRISE images.’ Planetary and Space Science 93-94: 54–64.
- . . ‘Evidence for very recent melt-water and debris flow activity in gullies in a young mid-latitude crater on Mars.’ Icarus 235: 37–54.
- . . ‘Landscape Formation at the Deuteronilus Contact in Southern Isidis Planitia, Mars: Implications for an Isidis Sea?’ Icarus 242: 329–351. doi: 10.1016/j.icarus.2014.08.015.
- . . ‘Mud volcanism and morphology of impact craters in Utopia Planitia on Mars: Evidence for the ancient ocean.’ Icarus 228: 121–140. doi: 10.1016/j.icarus.2013.09.018.
- . . ‘The horizontal motion of dust devils on Mars derived from CRISM and CTX / HiRISE observations.’ Icarus 227: 8–20. doi: 10.1016/j.icarus.2013.08.028.
- . . ‘Water and Martian Habitability: Results of an integrative study of water related processes on Mars in context with an interdisciplinary Helmholtz research alliance "Planetary Evolution and Life".’ Planetary and Space Sciences (PSS) 98: 128–145. doi: 10.1016/j.pss.2014.02.013.
- . . ‘The Miniature Radio Frequency instrument’s (Mini-RF) global observations of Earth’s Moon.’ Icarus 243: 173 – 190. doi: 10.1016/j.icarus.2014.07.018.
- 10.1016/j.pss.2014.06.004. . ‘Estimation of lunar surface temperatures and thermophysical properties: Test of a thermal model in preparation of the MERTIS experiment onboard BepiColombo.’ Planetary and Space Science 101, No. null: 27–36. doi:
- . . ‘Modal mineralogy of the surface of Vesta: evidence for ubiquitous olivine and identification of meteorite analogue.’ Icarus in press. [online first]
- . . ‘Detections and geologic context of local enrichments in olivine on Vesta with VIR/Dawn data.’ Journal of Geophysical Research in press. doi: 10.1002/2014JE004625. [online first]
- 10.1016/j.icarus.2014.03.040. [online first] . ‘Present-day seasonal gully activity in a south polar pit (Sisyphi Cavi) on Mars.’ Icarus null, No. null. doi:
- . ‘Geomorphology and structural geology of Saturnalia Fossae and adjacent structures in the northern hemisphere of Vesta .’ Icarus 2014.
- . . ‘Vesta’s north pole quadrangle Av-1 (Albana): Geologic map and the nature of the south polar basin antipodes .’ Icarus 2014. doi: 10.1016/j.icarus.2014.03.007.
- . . ‘The Cratering Record, Chronology and Surface Ages of (4) Vesta in Comparison to Smaller Asteroids and the Ages of HED Meteorites.’ Planetary and Space Science 2014.
- . . ‘Geologic map of the northern hemisphere of Vesta based on Dawn Framing Camera (FC) images.’ Icarus 2014. doi: 10.1016/j.icarus.2014.01.035.
- 10.1016/j.icarus.2014.03.007. [online first] . ‘Vesta's north pole quadrangle Av-1 (Albana): Geologic map and the nature of the south polar basin antipodes.’ Icarus null, No. null. doi:
- 10.1016/j.icarus.2014.01.033. [online first] . ‘The geology of the Marcia quadrangle of asteroid Vesta: Assessing the effects of large, young craters.’ Icarus null, No. null. doi:
- 10.1016/j.icarus.2014.01.013. [online first] . ‘Geomorphology and structural geology of Saturnalia Fossae and nadjacent structures in the northern hemisphere of Vesta.’ Icarus null, No. null. doi:
- 10.1016/j.icarus.2014.01.035. [online first] . ‘Geologic map of the northern hemisphere of Vesta based on Dawn Framing Camera (FC) images.’ Icarus null, No. null. doi:
- 10.1016/j.icarus.2014.07.018. . ‘The Miniature Radio Frequency instrument's (Mini-RF) global observations of Earth's Moon.’ Icarus 243, No. null: 173–190. doi:
- . ‘Mineralogical and Raman spectroscopy studies of natural olivines exposed to different planetary environments.’ Planetary and Space Science 104 (B): 163–172.
- . . ‘Small fresh impact craters on asteroid 4 Vesta: A compositional and geological fingerprint.’ Journal of Geophysical Research 2014. doi: 10.1002/2013JE004388.
- . . „Dust from collisions: A way to probe the composition of exo-planets?“ Icarus 239: 1–14.
- . . ‘Mid-infrared spectroscopy of components in chondrites: Search for processed materials in young Solar Systems and comets.’ Icarus 2014, No. 231: 338–355. doi: 10.1016/j.icarus.2013.12.018.
- . . ‘Wüstite in the fusion crust of Almahata Sitta sulfide-metal assemblage MS-166: Evidence for oxygen in metallic melts.’ Meteoritics and Planetary Science 48, No. 5: 730–743. doi: 10.1111/maps.12097.
- . . ‘Spectral reflectance properties of HED meteorites+CM2 carbonaceous chondrites: Comparison to HED grain size and compositional variations and implications for the nature of low-albedo features on Asteroid 4 Vesta.’ Icarus 223, No. 2: 850–877. doi: 10.1016/j.icarus.2013.02.003.
- . . ‘Lunar sinuous rilles: Distribution, characteristics, and implications for their origin.’ Planetary and Space Science 79-80, No. 1: 1–38. doi: 10.1016/j.pss.2012.10.019.
- . . ‘Dawn completes its mission at 4 Vesta.’ Meteoritics and Planetary Science 10.1111/maps.12091. doi: 10.1111/maps.12091.
- . . ‘Aqueous alteration in CR chondrites: Meteorite parent body processes as analogue for long-term corrosion processes relevant for nuclear waste disposal.’ Geochimica et Cosmochimica Acta 103: 76–103. doi: 10.1016/j.gca.2012.10.030.
- . . ‘Putative eskers and new insights into glacio-fluvial depositional settings in southern Argyre Planitia, Mars.’ Planetary and Space Science 85: 261–278. doi: 10.1016/j.pss.2013.06.022.
- . . ‘Multi-modal and multi-temporal data fusion: Outcome of the 2012 GRSS data fusion contest. IEEE.’ IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 6, No. 3: 1324–1340. doi: 10.1109/JSTARS.2013.2245860.
- . . ‘Core Formation and Mantle Differentiation on Mars.’ Space Science Reviews 174: 27–48. doi: 10.1007/s11214-012-9935-8.
- . ‘Ejection behavior characteristics of experimental impacts into dry and wet sandstone.’ Meteoritics & Planetary Science 48: 33–49.
- . ‘Deformation and melting of steel projectiles in hypervelocity cratering experiments.’ Meteoritics & Planetary Science 48: 150–164.
- . ‘Chemical modification of projectile residues and target material in a MEMIN cratering experiment.’ Meteoritics & Planetary Science 48: 134–149.
- . ‘Crater morphology in sandstone targets: the MEMIN impact parameter study.’ Meteoritics & Planetary Science 48: 50–70.
- 10.1016/j.epsl.2013.08.003. . ‘Experimental evidence for Mo isotope fractionation between metal and silicate liquids.’ Earth and Planetary Science Letters 379, No. null: 38–48. doi:
- . ‘Isotopic evidence for chondritic Lu/Hf and Sm/Nd of the Moon.’ Earth and Planetary Science Letters 380: 77–87.
- . ‘The abundance and isotopic composition of Cd in iron meteorites.’ Meteoritics and Planetary Science 48: 2597–2607.
- 10.1016/j.epsl.2013.05.029. . ‘Rb-Sr chronology of volatile depletion in differentiated protoplanets: BABI, ADOR and ALL revisited.’ Earth and Planetary Science Letters 374, No. null: 204–214. doi:
- . . ‘Neutron capture on Pt isotopes in iron meteorites and the Hf-W chronology of core formation in planetesimals.’ Earth and Planetary Science Letters 361: 162–172. doi: 10.1016/j.epsl.2012.10.014.
- 10.1088/0004-637X/778/2/101. . ‘Photophoretic strength on chondrules. 1. Modeling.’ Astrophysical Journal 778, No. 101. doi:
- 10.1111/maps.12074. . ‘The Ksar Ghilane 002 shergottite – the 100th registered Martian meteorite fragment.’ Meteoritics & Planetary Science 48: 493–513. doi:
- 10.1111/maps.12076. . ‘Reclassification of Villalbeto de la Peña – occurrence of a winonaite-related fragment in a hydrothermally metamorphosed polymict L-chondritic breccias. .’ Meteoritics & Planetary Science 48, No. 4: 628–640. doi:
- . ‘Re-Os geochronology of black shales from the Neoproterozoic Doushantuo Formation, Yangtze platform, South China.’ Precambrian Research 225: 67–76.
- 10.1088/0004-637X/777/2/169. . ‘Zirconium - Hafnium isotope evidence from meteorites for the decoupled synthesis of light and heavy neutron-rich nuclei.’ Astrophysical Journal 777, No. 2. doi:
- . . ‘Inherited 142Nd anomalies in Eoarchean protoliths.’ Earth and Planetary Science Letters 361, No. 1: 50–57.
- 10.1016/j.chemgeo.2013.08.010. . ‘Uranium isotope fractionation suggests oxidative uranium mobilization at 2.50Ga.’ Chemical Geology 362, No. null: 105–114. doi:
- 10.1016/j.crte.2013.01.004. . ‘Nuclear field shift in natural environments.’ Comptes Rendus Géoscience 345, No. 3: 150–159. doi:
- 10.1073/pnas.1307759110. . ‘Evidence for supernova injection into the solar nebula and the decoupling of r-process nucleosynthesis.’ Proceedings of the National Academy of Sciences of the United States of America (PNAS) 110, No. 43: 17241–17246. doi:
- 10.1111/maps.12035. . ‘The MEMIN research unit: Experimental impact cratering.’ Meteoritics and Planetary Science 48, No. 1: 1–2. doi:
- 10.1111/maps.12044. . ‘Hypervelocity impacts on dry and wet sandstone: Observations of ejecta dynamics and crater growth.’ Meteoritics and Planetary Science 48, No. 1: 23–32. doi:
- . ‘Testing the ureilite projectile hypothesis for the El’gygytgyn impact: Determination of siderophile element abundances and Os isotope ratios in ICDP drill core samples and melt rocks.’ Meteoritics & Planetary Science 48: 1296–1324.
- . ‘Petrology of impactites from El’gygytgyn crater: Breccias in ICDP-drill core 1C, glassy impact melt rocks and spherules.’ Meteoritics & Planetary Science 48: 1199–1235.
- . ‘Formation of cycloidal dust devil tracks by redeposition of coarse sands in southern Peru: Implications for Mars.’ Earth and Planetary Science Letters 383: 7–15.
- . . ‘Asynchronous formation of Hesperian and Amazonian-aged deltas on Mars and implications for climate.’ Journal of Geophysical Research 118: 1529–1544. doi: 10.1002/jgre.20107.
- . . ‘Olivine in an unexpected location on Vesta’s surface.’ Nature 504. doi: 10.1038/nature12665.
- 10.1016/j.icarus.2013.04.022. . ‘The 2.5-5.1μm reflectance spectra of HED meteorites and their constituent minerals: Implications for Dawn.’ Icarus 225, No. 1: 581–601. doi:
- 10.1038/nature12665. . ‘Olivine in an unexpected location on Vesta's surface.’ Nature 504, No. 7478: 122–125. doi:
- 10.1117/12.2024375. . ‘The Developing of MERTIS as an advanced process – From the study up to the flight model.’ Proceedings of SPIE 8867. doi:
- . . ‘Oxygen isotopes in the Azores islands: Crustal assimilation recorded in olivine.’ Geology 41, No. 4: 491–494. doi: 10.1130/G33911.1.
- . . ‘Thermal evolution and sintering of chondritic planetesimals.’ Astronomy and Astrophysics 537. doi: 10.1051/0004-6361/201117177.
- . . ‘Chronology of the angrite parent body and implications for core formation in protoplanets.’ Geochimica et Cosmochimica Acta 84: 186–203. doi: 10.1016/j.gca.2012.01.032.
- . . ‘Macrochondrules in chondritesFormation by melting of mega-sized dust aggregates and/or by rapid collisions at high temperatures?’ Meteoritics and Planetary Science 47, No. 12: 2237–2250. doi: 10.1111/j.1945-5100.2012.01403.x.
- . . ‘Early Solar System hydrothermal activity in chondritic asteroids on 1-10-year timescales.’ Proceedings of the National Academy of Sciences of the United States of America (PNAS) 109, No. 45: 18306–18311. doi: 10.1073/pnas.1207475109.
- . . ‘Maribo-A new CM fall from Denmark.’ Meteoritics and Planetary Science 47, No. 1: 30–50. doi: 10.1111/j.1945-5100.2011.01311.x.
- . . ‘Ultrarapid chondrite formation by hot chondrule accretion? Evidence from unequilibrated ordinary chondrites.’ Meteoritics and Planetary Science 47, No. 12: 2193–2217. doi: 10.1111/maps.12009.
- . . ‘Hf-W chronometry of core formation in planetesimals inferred from weakly irradiated iron meteorites.’ Geochimica et Cosmochimica Acta 99: 287–304. doi: 10.1016/j.gca.2012.09.015.
- . . ‘Dating terrestrial impact structures.’ Elements 8, No. 1: 49–53.
- . . ‘Gullies and their relationships to the dust-ice mantle in the northwestern Argyre Basin, Mars.’ Icarus 219, No. 1: 129–141.
- 10.1016/j.icarus.2012.03.014. . ‘Rheologies and ages of lava flows on Elysium Mons, Mars.’ Icarus 219, No. 1: 443–457. doi:
- . . ‘Vesta's shape and morphology.’ Science 336, No. 6082: 687–690. doi: 10.1126/science.1219122.
- . . ‘The present-day flux of large meteoroids on the lunar surface - A synthesis of models and observational techniques.’ Planetary and Space Science 74, No. 1: 179–193. doi: 10.1016/j.pss.2012.10.005.
- . . ‘Phase reddening on near-Earth asteroids: Implications for mineralogical analysis, space weathering and taxonomic classification.’ Icarus 220, No. 1: 36–50. doi: 10.1016/j.icarus.2012.04.008.
- . . ‘Geology, geochemistry, and geophysics of the Moon: Status of current understanding.’ Planetary and Space Science 74, No. 1: 15–41. doi: 10.1016/j.pss.2012.08.019.
- . . ‘Dark material on Vesta from the infall of carbonaceous volatile-rich material.’ Nature 491, No. 7422: 83–86. doi: 10.1038/nature11561.
- . . ‘Spitzer evidence for a late-heavy bombardment and the formation of ureilites in η corvi at 1 Gyr.’ Astrophysical Journal 747, No. 2. doi: 10.1088/0004-637X/747/2/93.
- . . ‘A self-consistent model of the circumstellar debris created by a giant hypervelocity impact in the HD 172555 system.’ Astrophysical Journal 761, No. 1. doi: 10.1088/0004-637X/761/1/45.
- . . ‘Mid-infrared spectra of differentiated meteorites (achondrites): Comparison with astronomical observations of dust in protoplanetary and debris disks.’ Icarus 219, No. 1: 48–56. doi: 10.1016/j.icarus.2012.02.018.
- . . ‘Chondrules born in plasma? Simulation of gas-grain interaction using plasma arcs with applications to chondrule and cosmic spherule formation.’ Meteoritics and Planetary Science 2012. doi: 10.1111/maps.12043.
- . . ‘Origin of isotopic heterogeneity in the solar nebula by thermal processing and mixing of nebular dust.’ Earth and Planetary Science Letters 357: 298–307. doi: 10.1016/j.epsl.2012.09.048.
- . . ‘Thermal history modelling of the H chondrite parent body.’ Astronomy & Astrophysics 545: –. doi: 10.1051/0004-6361/201219100.
- . . ‘Laihunite in planetary materials: An FTIR and TEM study of oxidized synthetic and meteoritic Fe-rich olivine.’ Journal of Mineralogical and Petrological Sciences 107, No. 4: 157–166. doi: 10.2465/jmps.120409.
- . . ‘Nucleosynthetic tungsten isotope anomalies in acid leachates of the Murchison chondrite: Implications for hafnium-tungsten chronometry.’ Astrophysical Journal Letters 753: L6.
- . . ‘SARIM PLUS-sample return of comet 67P/CG and of interstellar matter.’ Experimental Astronomy 33, No. 2-3: 723–751. doi: 10.1007/s10686-011-9285-7.
- 10.1029/2011JE003935. . ‘How old are young lunar craters?’ Journal of Geophysical Research 117. doi:
- . . ‘Surface age of the ice-dust mantle deposit in Malea Planum, Mars.’ Planetary and Space Science 60: 199–206.
- . ‘Hf–W chronometry of core formation in planetesimals inferred from weakly irradiated iron meteorites.’ Geochimica et Cosmochimica Acta 99: 287–304.
- . . ‘Refractory element fractionation in the Allende meteorite: Implications for solar nebula condensation and the chondritic composition of planetary bodies.’ Geochimica et Cosmochimica Acta 85: 114–141.
- . . ‘Detection of Mercury in the 411-year-old Beard Hairs of the Astronomer Tycho Brahe by Elemental Analysis in Electron Microscopy.’ Ultrastructural Pathology 36: 312–319. doi: 10.3109/01913123.2012.685686.
- . ‘Investigation of surface properties of lunar soils. .’ Z. geol. Wissenschaften 40, No. 1: 43–55.
- 10.1111/j.1945-5100.2012.01403.x. . ‘Macrochondrules in chondrites-Formation by melting of mega-sized dust aggregates and/or by rapid collisions at high temperatures?’ Meteoritics and Planetary Science 47, No. 12: 2237–2250. doi:
- . . ‘Osmium isotope and highly siderophile element constraints on ages and nature of meteoritic components in ancient lunar impact rocks.’ Geochimica et Cosmochimica Acta 77: 135–156.
- . . ‘Sr-Nd isotope and geochemical characterization of the Paleoproterozoic Västervik formation (Baltic Shield, SE Sweden): a southerly exposure of Svecofennian metasilicilastic sediments.’ International Journal of Earth Sciences 101: 39–55.
- . . ‘The Indus-Yarlung Zangbo ophiolites from Nanga-Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys.’ Gondwana Research 22: 377–397.
- 10.1073/pnas.1114043109. . ‘Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System.’ Proceedings of the National Academy of Sciences of the United States of America (PNAS) 109, No. 24: 9299–9303. doi:
- . . ‘Tsunami backwash deposits with vertebrate remains and Chicxulub ejecta from the Cretaceous-Palogene boundary in the La Popa basin, NE Mexico.’ Sedimentology 59, No. 737-765. doi: 10.1111/j.1365-3091.2011.01274.x.
- . . ‘Major geological cycles substantiated by U-Pb ages and εHfi of detrital zircon grains from the Lower Rhine Basin.’ Chemical Geology 294-295: 63–74. doi: 10.1016/j.chemgeo.2011.11.007.
- . ‘Shock experiments in range of 10-45 GPa with small multidomain magnetite in porous targets.’ Meteoritics & Planetary Science 47: 1671–1680.
- . . ‘Shock metamorphism of minerals.’ Elements 8, No. 1: 31–36. doi: 10.2113/gselements.8.1.31.
- . . ‘Geology of the King crater region: New insights into impact melt dynamics on the Moon.’ Journal of Geophysical Research 117: E00H29. doi: 10.1029/2011JE003990.
- . . ‘Confirmation of sublunarean voids and thin layering in mare deposits.’ Planetary and Space Science 69, No. 1: 18–27. doi: 10.1016/j.pss.2012.05.008.
- . . ‘Major episodes of geologic history of Isidis Planitia on Mars.’ Icarus 218: 24–46. doi: 10.1016/j.icarus.2011.11.029.
- . . ‘Periglacial mass-wasting landforms on Mars suggestive of transient liquid water in the recent past: Insights from solifluction lobes on Svalbard.’ Icarus 218: 489–505.
- . . ‘Compositional investigation of the proposed chloride-bearing materials on Mars using near-infrared orbital data from OMEGA/MEx.’ Journal of Geophysical Research 117, No. E00J13. doi: 10.1029/2012JE004108.
- . . ‘Valleys, Paleolakes and Possible Shorelines at the Libya Montes / Isidis Boundary: Implications for the Hydrologic Evolution of Mars.’ Icarus 2012, No. 219: 393–413. doi: 10.1016/j.icarus.2012.03.012.
- 10.1016/j.icarus.2012.03.012. . ‘Valleys, paleolakes and possible shorelines at the Libya Montes/Isidis boundary: Implications for the hydrologic evolution of Mars.’ Icarus 219, No. 1: 393–413. doi:
- 10.1029/2011JE004000. . ‘Origin of lunar sinuous rilles: Modeling effects of gravity, surface slope, and lava composition on erosion rates during the formation of Rima Prinz.’ Journal of Geophysical Research 117, No. 3. doi:
- . . ‘ Origin of lunar sinuous rilles: Modeling effects of gravity, surface slope, and lava composition on erosion rates during the formation of Rima Prinz.’ Journal of Geophysical Research 117.
- . ‘MERTIS - The Thermal Infrared Imaging Spectrometer Onboard of the Mercury Planetary Orbiter.’ Proceedings of ICSO 162.
- . ‘Optimizing the Detection of Carotene in Cyanobacteria in a Martian Regolith Analogue with a Raman Laser Spectrometer on ExoMars.’ Planetary and Space Science 60: 356–362.
- . . ‘Compositional investigation of the proposed chloride-bearing materials on Mars using near-infrared orbital data from OMEGA/MEx.’ Journal of Geophysical Research 117. doi: 10.1029/2012JE004108.
- . . ‘Geochemical evidence for melting of carbonated peridotite on Santa Maria Island, Azores.’ Contributions to Mineralogy and Petrology 165, No. 5: 823–841. doi: 10.1007/s00410-012-0837-2.
- . . ‘Geophysical characterisation of a blind I-type pluton emplaced within the Bundarra Suite S-type granites of the New England Batholith.’ Australian Journal of Earth Sciences 59, No. 3: 435–446. doi: 10.1080/08120099.2012.645070.
- . . ‘The Petrology and Geochemistry of Lavas from the Western Azores Islands of Flores and Corvo.’ Journal of Petrology 53, No. 8: 1673–1708. doi: 10.1093/petrology/egs029.
- . . ‘The Rumuruti chondrite group.’ Chemie der Erde / Geochemistry 71, No. 2: 101–133. doi: 10.1016/j.chemer.2011.02.005.
- . . ‘Cosmic ray exposure ages of Rumuruti chondrites from North Africa.’ Chemie der Erde / Geochemistry 71, No. 2: 135. doi: 10.1016/j.chemer.2011.02.008.
- . . ‘Jesenice-A new meteorite fall from Slovenia.’ Meteoritics and Planetary Science . doi: 10.1111/j.1945-5100.2011.01191.x.
- . . ‘Lithium in tektites and impact glasses: Implications for sources, histories and large impacts.’ Geochimica et Cosmochimica Acta 75, No. 8: 2137–2158.
- . . ‘Non-mare silicic volcanism on the lunar farside at Compton-Belkovich.’ Nature Geoscience 4, No. 8: 566–571. doi: 10.1038/ngeo1212.
- . . ‘The use of natural and archeological analogues for understanding the long-term behavior of nuclear glasses | L'utilisation des analogues naturels et archéologiques pour la compréhension de l'évolution à long terme des verres nucléaires.’ Comptes Rendus Géoscience 343, No. 2-3: 237–245. doi: 10.1016/j.crte.2010.12.004.
- . . ‘Molybdenum isotope anomalies in meteorites: Constraints on solar nebula evolution and origin of the Earth.’ Earth and Planetary Science Letters 312: 390–400. doi: 10.1016/j.epsl.2011.10.010.
- . . ‘Thermal history of Northwest Africa 5073-A coarse-grained Stannern-trend eucrite containing cm-sized pyroxenes and large zircon grains.’ Meteoritics and Planetary Science 46, No. 11: 1754–1773. doi: 10.1111/j.1945-5100.2011.01265.x.
- . . ‘Earth's patchy late veneer.’ Nature 477, No. 7363: 168–169. doi: 10.1038/477168a.
- . . ‘The L3-6 chondritic regolith breccia Northwest Africa (NWA) 869: (II) Noble gases and cosmogenic radionuclides.’ Meteoritics and Planetary Science 46, No. 7: 970–988. doi: 10.1111/j.1945-5100.2011.01204.x.
- . . ‘The L3-6 chondritic regolith breccia Northwest Africa (NWA) 869: (I) Petrology, chemistry, oxygen isotopes, and Ar-Ar age determinations.’ Meteoritics and Planetary Science 46, No. 5: 652–680. doi: 10.1111/j.1945-5100.2011.01181.x.
- . . ‘Chronometry of Meteorites and the Formation of the Earth and Moon.’ Elements 7: 41–46. doi: 10.2113/gselements.7.1.41.
- . . ‘Timing and characteristics of the latest mare eruption on the Moon.’ Earth and Planetary Science Letters 302, No. 3-4: 255–266. doi: 10.1016/j.epsl.2010.12.028.
- . . ‘Jiddat al Harasis 422: A ureilite with an extremely high degree of shock melting.’ Meteoritics and Planetary Science 46, No. 1: 134–148.
- . . ‘Rhodium, gold and other highly siderophile elements in orogenic peridotites and peridotite xenoliths.’ Chemical Geology 280, No. 3-4: 365–383. doi: 10.1016/j.chemgeo.2010.11.024.
- . . ‘The ORGANIC experiment on EXPOSE-R on the ISS: Flight sample preparation and ground control spectroscopy.’ Advances in Space Research 48, No. 12: 1980–1996. doi: 10.1016/j.asr.2011.07.017.
- . . ‘The Surface Composition and Temperature of Asteroid 21 Lutetia As Observed by Rosetta/VIRTIS.’ Science 334, No. 6055: 492–494. doi: 10.1126/science.1204062.
- . . ‘Jesenice – a new meteorite fall from Slovenia.’ Meteoritics and Planetary Science 46, No. 6: 793–804. doi: 10.1111/j.1945-5100.2011.01191.x.
- 10.1111/j.1945-5100.2011.01265.x. . ‘Thermal history of Northwest Africa 5073--A coarse-grained Stannern-trend eucrite containing cm-sized pyroxenes and large zircon grains.’ Meteoritics and Planetary Science 46, No. 11: 1754–1773. doi:
- 10.1016/j.lithos.2011.02.019. . ‘Petrology and geochemistry of the Xiugugabu ophiolitic massif, western Yarlung Zangbo suture zone, Tibet.’ Lithos 125, No. null: 347–367. doi:
- 10.1021/es103061v. . ‘Uranium isotope fractionation during adsorption to Mn-oxyhydroxides.’ Environmental Science and Technology 45, No. 4: 1370–1375. doi:
- 10.1073/pnas.1106039108. . ‘Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction.’ Proceedings of the National Academy of Sciences of the United States of America (PNAS) 108, No. 43: 17631–17634. doi:
- 10.1016/j.gca.2011.06.033. . ‘New constraints on early Solar System chronology from Al-Mg and U-Pb isotope systematics in the unique basaltic achondrite Northwest Africa 2976.’ Geochimica et Cosmochimica Acta 75, No. 18: 5310–5323. doi:
- . . ‘Impact cratering in sandstone: the MEMIN pilot study on the effect of pore water.’ Meteoritics and Planetary Science 46, No. 6: 890–902. doi: 10.1111/j.1945-5100.2011.01200.x.
- . . ‘Experimental investigation of shock metamorphic effects in a metapelitic granulite: The importance of shock impedance contrast between components.’ Meteoritics and Planetary Science 46: 1565–1586.
- 10.1127/0935-1221/2011/0023-2088. . ‘The genesis of deep-mantle xenocrystic zircon and baddeleyite megacrysts: trace element patterns (Mbuji-Mayi kimberlite). .’ European Journal of Mineralogy 23: 241–255. doi:
- 10.1130/G31599. . ‘The Chicxulub ejecta deposit at Demerara Rise (W Atlantic): Dissecting the geochemical anomaly using laser ablation mass spectrometry.’ Geology 39: 279–282. doi:
- . „Meteoriteneinschläge im Labor - das MEMIN-Projekt.“ GMIT 46: 6–15.
- . . ‘Major geological cycles substantiated by U-Pb ages and initial epsilon Hf of deetrital zircon grains from the Lower Rhine Basin.’ Chemical Geology 294–295: 63–74. doi: 10.1016/j.chemgeo.2011.11.007.
- . . ‘Shock experiments on anhydrite and new constraints on the impact-induced SOx release at the K-Pg boundary.’ Meteoritics and Planetary Science 46: 1619–1629. doi: 10.1111/j.1945-5100.2011.01249.x.
- . . ‘Experimental impact cratering in sandstone: the effect of pore fluids.’ Proceedings of the 11th Hypervelocity Impact Symposium, No.112, 64-74 112: 64–74.
- . . ‘Paleomagnetism and paleointensity of the 1.1 Ga old diabase sheets from Central Arizona.’ Geophysica 47, No. 1-2: 3–30.
- . . ‘Dust ejection from planetary bodies by temperature gradients: Laboratory experiments.’ Icarus 212: 935–940.
- . ‘Bright dust devil tracks on Earth: Implications for their formation on Mars.’ Icarus 211: 917–920.
- . . ‘The Stratigraphy of the Amenthes Region, Mars: Time limits for the Formation of Fluvial, Volcanic and Tectonic Landforms.’ Icarus 215, No. 1: 128–152. doi: 10.1016/j.icarus.2011.06.041.
- . . ‘Multitemporal observations of identical active dust devils on Mars with the High Resolution Stereo Camera (HRSC) and Mars Orbiter Camera (MOC).’ Icarus 215.
- . . ‘Terrestrial gullies and debris-flow tracks on Svalbard as planetary analogs for Mars.’ Geological Society of America Special Paper 483: 165–175.
- . . ‘Periglacial landscapes on Svalbard: Terrestrial analogs for cold-climate landforms on Mars.’ Geological Society of America Special Paper 483: 177–201.
- . . ‘Landscape evolution in Martian mid-latitude regions: Insights from analogous periglacial landforms in Svalbard.’ Geological Society London, Special Publications 356: 111–131.
- . ‘Ages and stratigraphy of lunar mare basalts: A synthesis.’ Geol. Soc. Am. Special Paper 477, No. 477: 1–51.
- 10.1016/j.apradiso.2011.05.025. . ‘Evaluation of neutron sources for ISAGE-in-situ-NAA for a future lunar mission.’ Applied Radiation and Isotopes 69, No. 11: 1625–1629. doi:
- . ‘Late Devonian OIB alkaline gabbro in the Yarlung Zangpo Suture Zone: remnants of the Paleo-Tethys? Gondwana Research 288, 133-148.’ Gondwana Research 19: 232–243.
- . . ‘Experiments on the photophoretic motion of chondrules and dust aggregates-Indications for the transport of matter in protoplanetary disks.’ Icarus 208, No. 1: 482–491. doi: 10.1016/j.icarus.2010.01.033.
- . . ‘Bulk chemical compositions of Al-rich objects from Rumuruti (R) chondrites: Implications for their origin.’ Chemie der Erde / Geochemistry 70, No. 1: 35–53. doi: 10.1016/j.chemer.2009.10.002.
- . . ‘Almahata Sitta-Fragment MS-CH: Characterization of a new chondrite type.’ Meteoritics and Planetary Science 45, No. 10-11: 1657–1667. doi: 10.1111/j.1945-5100.2010.01107.x.
- . . ‘Asteroid 2008 TC3-Almahata Sitta: A spectacular breccia containing many different ureilitic and chondritic lithologies.’ Meteoritics and Planetary Science 45, No. 10-11: 1638–1656. doi: 10.1111/j.1945-5100.2010.01108.x.
- . . ‘Mineralogy, chemistry, and irradiation record of Neuschwanstein (EL6) chondrite.’ Meteoritics and Planetary Science 45, No. 9: 1488–1501. doi: 10.1111/j.1945-5100.2010.01120.x.
- . . ‘Non-nucleosynthetic heterogeneity in non-radiogenic stable Hf isotopes: Implications for early solar system chronology.’ Earth and Planetary Science Letters 295, No. 1-2: 1–11. doi: 10.1016/j.epsl.2010.02.050.
- . . ‘Mid-infrared spectra of the shocked Murchison CM chondrite: Comparison with astronomical observations of dust in debris disks.’ Icarus 207, No. 1: 45–53. doi: 10.1016/j.icarus.2009.11.018.
- . . ‘New insight into lunar impact melt mobility from the LRO camera.’ Geophysical Research Letters 37. doi: 10.1029/2010GL044666.
- . . ‘A detailed aerosol particle plume analysis.’ Journal of Geophysical Research 115: D21211. doi: 10.1029/2010JD014153.
- . . ‘Evidence of Recent Thrust Faulting on the Moon Revealed by the Lunar Reconnaissance Orbiter Camera.’ Science 329, No. 5994: 936–940. doi: 10.1126/science.1189590.
- . . ‘A nebula setting as the origin for bulk chondrule Fe isotope variations in CV chondrites.’ Earth and Planetary Science Letters 296, No. 3-4: 423–433. doi: 10.1016/j.epsl.2010.05.029.
- . . ‘First in-situ analysis of dust devil tracks on Earth and their comparison with tracks on Mars.’ Geophysical Research Letters 37.
- . . ‘Broad bounds on Earth's accretion and core formation constrained by geochemical models.’ Nature Geoscience 3: 439–443. doi: 10.1038/ngeo872.
- . . ‘Mars geology from three-dimensional mapping by the High Resolution Stereo Camera (HRSC) Experiment on Mars Express An introduction to the special issue of Earth Planetary Science Letters.’ Earth and Planetary Science Letters 294, No. 3-4: 183–184. doi: 10.1016/j.epsl.2010.04.040.
- . . ‘Dike indicators in the Hadriaca Patera-Promethei Terra region, Mars.’ Earth and Planetary Science Letters 294, No. 3-4: 466–478. doi: 10.1016/j.epsl.2009.06.038.
- . . ‘Thermal Evolution and Magnetic Field Generation in Terrestrial Planets and Satellites.’ Space Science Reviews 152, No. 1-4: 449–500. doi: 10.1007/s11214-009-9587-5.
- . . ‘Response - Cretaceous Extinctions.’ Science 328, No. 5981: 975–976. doi: 10.1126/science.328.5981.975.
- . . ‘Distribution and evolution of scalloped terrain in the southern hemisphere, Mars.’ Icarus 206, No. 2: 691–706. doi: 10.1016/j.icarus.2009.09.010.
- . . ‘Tungsten isotopic evolution during late-stage accretion: Constraints on Earth-Moon equilibration.’ Earth and Planetary Science Letters 292: 363–370. doi: 10.1016/j.epsl.2010.02.003.
- . . ‘Ages and stratigraphy of lunar mare basalts in Mare Frigoris and other nearside maria based on crater size-frequency distribution measurements.’ Journal of Geophysical Research 115.
- . . ‘The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary.’ Science 327, No. 5970: 1214–1218. doi: 10.1126/science.1177265.
- . . ‘Geophysical and atmospheric evolution of habitable planets.’ Astrobiology 10, No. 1: 45–68. doi: 10.1089/ast.2009.0368.
- . . ‘The Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo mission.’ Planetary and Space Science 58, No. 1-2: 144–165. doi: 10.1016/j.pss.2008.09.019.
- . . ‘Mercury's surface and composition to be studied by BepiColombo.’ Planetary and Space Science 58, No. 1-2: 21–39. doi: 10.1016/j.pss.2008.09.001.
- . . ‘Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview.’ Space Science Reviews 150, No. 1-4: 81–124. doi: 10.1007/s11214-010-9634-2.
- 10.1111/j.1945-5100.2010.01108.x. . ‘Asteroid 2008 TC3-Almahata Sitta: A spectacular breccia containing many different ureilitic and chondritic lithologies.’ Meteoritics and Planetary Science 45, No. null: 1638–1656. doi:
- . . ‘Rhodium, gold and other highly siderophile element abundances in chondritic meteorites.’ Geochimica et Cosmochimica Acta 74, No. 1: 356–379. doi: 10.1016/j.gca.2009.09.024.
- 10.1016/j.epsl.2010.01.023. . ‘Natural variations in uranium isotope ratios of uranium ore concentrates: Understanding the 238U/235U fractionation mechanism.’ Earth and Planetary Science Letters 291, No. null: 228–233. doi:
- 10.1126/science.1180871. . ‘238U/235U variations in meteorites: Extant 247Cm and implications for Pb-Pb dating.’ Science 327, No. 5964: 449–451. doi:
- . . ‘The Western Libya Montes Valley System on Mars: Evidence for episodic and multi-genetic erosion events during the Martian history.’ Earth and Planetary Science Letters 294, No. 3-4: 272–290.
- . . ‘Distribution and orientation of northern-hemisphere gullies on Mars from the evaluation of HRSC and MOC-NA data.’ Earth and Planetary Science Letters 294, No. 3-4: 357–367.
- . . ‘Evidence for present day gully activity on the Russell crater dune field, Mars.’ Geophysical Research Letters 37, No. 6. doi: 10.1029/2009GL042192.
- . . ‘First in‐situ analysis of dust devil tracks on Earth and their comparison with tracks on Mars.’ Geophysical Research Letters 37, No. 14. doi: 10.1029/2010GL044016.
- . . ‘Thermokarst in Siberian ice‐rich permafrost: Comparison to asymmetric scalloped depressions on Mars.’ Journal of Geophysical Research 115. doi: 10.1029/2010JE003640.
- . . ‘Distribution and evolution of scalloped terrain in the southern hemisphere, Mars.’ Icarus 206, No. 2: 691–706.
- . . ‘Morphologic, stratigraphic and morphometric investigations of valley networks in eastern Libya Montes, Mars: Implications for the Noachian/Hesperian climate change.’ Earth and Planetary Science Letters 294: 291–305. doi: 10.1016/j.epsl.2009.08.008.
- 10.1016/j.epsl.2010.04.040. . ‘Mars geology from three - dimensional mapping by the High Resolution Stereo Camera (HRSC) Experiment on Mars Express. An introduction to the special issue of Earth Planetary Science Letters.’ Earth and Planetary Science Letters 294, No. null: 183–184. doi:
- . . ‘Oxygen- and magnesium-isotope compositions of calcium-aluminum-rich inclusions from Rumuruti (R) chondrites.’ Geochimica et Cosmochimica Acta 73, No. 14: 4264–4287. doi: 10.1016/j.gca.2009.04.006.
- . . ‘Abundant circumstellar silica dust and sio gas created by a giant hypervelocity collision in the 12 myr hd172555 system.’ Astrophysical Journal Letters 701, No. 2: 2019–2032. doi: 10.1088/0004-637X/701/2/2019.
- . . ‘Possible lunar lava tube skylight observed by SELENE cameras.’ Geophysical Research Letters 36. doi: 10.1029/2009GL040635.
- . . ‘Si isotope systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation in the solar nebula and for Si in the Earth's core.’ Earth and Planetary Science Letters 287, No. 1-2: 77–85. doi: 10.1016/j.epsl.2009.07.038.
- . . ‘Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets.’ Geochimica et Cosmochimica Acta 73, No. 17: 5150–5188. doi: 10.1016/j.gca.2008.11.047.
- . . ‘The distribution of short-lived radioisotopes in the early solar system and the chronology of asteroid accretion, differentiation, and secondary mineralization.’ Geochimica et Cosmochimica Acta 73, No. 17: 5115–5136. doi: 10.1016/j.gca.2008.12.031.
- . . ‘Oxygen- and magnesium-isotope compositions of calcium-aluminum-rich inclusions from CR2 carbonaceous chondrites.’ Geochimica et Cosmochimica Acta 73, No. 17: 5018–5050. doi: 10.1016/j.gca.2009.01.042.
- . . ‘Spectral properties of simulated impact glasses produced from martian soil analogue JSC Mars-1.’ Icarus 202, No. 1: 336–353. doi: 10.1016/j.icarus.2009.02.007.
- . . ‘Lander radioscience for obtaining the rotation and orientation of Mars.’ Planetary and Space Science 57, No. 8-9: 1050–1067. doi: 10.1016/j.pss.2008.08.009.
- . . ‘Oxygen- and magnesium-isotope compositions of calcium-aluminum-rich inclusions from Rumuruti (R) chondrites.’ Geochimica et Cosmochimica Acta 73, No. 14: 4264–4287. doi: 10.1016/j.gca.2009.04.006.
- . . ‘ASTEROIDAL GRANITE-LIKE MAGMATISM 4.53 GYR AGO.’ Astrophysical Journal Letters 699, No. 2: L68–L71.
- . . ‘Hf-W thermochronometry: II. Accretion and thermal history of the acapulcoite-lodranite parent body.’ Earth and Planetary Science Letters 284, No. 1-2: 168–178. doi: 10.1016/j.epsl.2009.04.022.
- . . ‘Duration and extent of lunar volcanism: Comparison of 3D convection models to mare basalt ages.’ Planetary and Space Science 57, No. 7: 784–796. doi: 10.1016/j.pss.2009.02.002.
- . . ‘Gray-to-Blue-to-Violet Hydrogen-Rich Diamonds from the Argyle Mine, Australia.’ Gems and Gemology 45, No. 1: 20–37.
- . . ‘Tungsten isotopes in ferroan anorthosites: Implications for the age of the Moon and lifetime of its magma ocean.’ Icarus 199, No. 2: 245–249. doi: 10.1016/j.icarus.2008.11.018.
- . . ‘The Puerto Lapice eucrite.’ Meteoritics and Planetary Science 44, No. 2: 159–174. doi: 10.1111/j.1945-5100.2009.tb00725.x.
- . . ‘Thermal evolution of Mercury: Effects of volcanic heat-piping.’ Geophysical Research Letters , No. 36.
- . . ‘A combined ToF-SIMS and EMP/SEM study of a three-phase sympletictite in the Los Angeles basaltic shergottite.’ Meteoritics and Planetary Science 44, No. 8: 1225–1237. doi: 10.1111/j.1945-5100.2009.tb01219.x.
- . ‘Determination of surface area, porosity, and surface properties of lunar regolith. Characterisation of Porous Solids VIII.’ Royal Society of Chemistry Special Publications 2009, No. 318: 362–369.
- 10.1111/j.1945-5100.2009.tb00725.x. . ‘The puerto lápice eucrite.’ Meteoritics and Planetary Science 44, No. 2: 159–174. doi:
- 10.1016/j.gca.2009.03.039. . ‘Mechanisms for incompatible-element enrichment on the Moon deduced from the lunar basaltic meteorite Northwest Africa 032.’ Geochimica et Cosmochimica Acta 73, No. 13: 3963–3980. doi:
- . . ‘Geochemical characteristics of target rocks and suevitic glasses from the Eyreville B drill core, Chesapeake Bay impact structure.’ Geological Society of America Special Paper 458 : 435–445.
- . . ‘A dual-layer Chicxulub ejecta sequence with shocked carbonates from the Cretaceous–Paleogene (K–Pg) boundary, Demerara Rise, western Atlantic.’ Geochimica Cosmochimica Acta 73: 1180–1204.
- . . ‘Sedimentary deposits in Xanthe Terra: Implications for the ancient climate on Mars.’ Planetary and Space Science 57, No. 8-9: 944–957.
- . . ‘Regional differences in gully occurrence on Mars: A comparison between the Hale and Bond craters.’ Planetary and Space Science 57: 958–974.
- . . ‘Investigation of surface properties of lunar regolith part III.’ Journal of Thermal Analysis and Calorimetry 94, No. 3: 627–631. doi: 10.1007/s10973-008-9352-0.
- . . ‘Ca,Al-rich inclusions in Rumuruti (R) chondrites.’ Meteoritics and Planetary Science 43, No. 9: 1439–1464. doi: 10.1111/j.1945-5100.2008.tb01020.x.
- . . ‘Geochemistry, petrology and ages of the lunar meteorites Kalahari 008 and 009: New constraints on early lunar evolution.’ Geochimica et Cosmochimica Acta 72, No. 19: 4845–4873. doi: 10.1016/j.gca.2008.07.012.
- . . ‘Cadmium stable isotope cosmochemistry.’ Geochimica et Cosmochimica Acta 72, No. 2: 646–667. doi: 10.1016/j.gca.2007.10.024.
- . . ‘Marine impacts and environmental consequences - Drilling of the Mjølnir structure, the Barents Sea.’ Scientific Drilling , No. 6: 55–57.
- . . ‘Mercury radiometer and thermal infrared spectrometer-a novel thermal imaging spectrometer for the exploration of Mercury.’ Journal of Applied Remote Sensing 2.
- . . ‘Circumstellar dust created by terrestrial planet formation in HD 113766.’ Astrophysical Journal Letters 673, No. 2: 1106–1122. doi: 10.1086/523626.
- . . ‘Mid-infrared spectroscopy of refractory inclusions (CAIs) in CV and CO chondrites.’ Meteoritics and Planetary Science 43, No. 7: 1147–1160. doi: 10.1111/j.1945-5100.2008.tb01119.x.
- . . ‘Hf-W mineral isochron for Ca,Al-rich inclusions: Age of the solar system and the timing of core formation in planetesimals.’ Geochimica et Cosmochimica Acta 72, No. 24: 6177–6197. doi: 10.1016/j.gca.2008.10.023.
- . . ‘Early differentiation of the Earth and the Moon.’ Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, No. 1883: 4105–4128. doi: 10.1098/rsta.2008.0125.
- . . ‘Al-26-Mg-26 systematics of chondrules in a primitive CO chondrite.’ Geochimica et Cosmochimica Acta 72, No. 15: 3865–3882. doi: 10.1016/j.gca.2008.05.038.
- . . ‘Northwest Africa 2526: A partial melt residue of enstatite chondrite parentage.’ Meteoritics and Planetary Science 43, No. 7: 1233–1240. doi: 10.1111/j.1945-5100.2008.tb01125.x.
- . . ‘Hf-W thermochronometry: Closure temperature and constraints on the accretion and cooling history of the H chondrite parent body.’ Earth and Planetary Science Letters 270, No. 1-2: 106–118. doi: 10.1016/j.epsl.2008.03.013.
- . . ‘Identification of a new outflow channel on Mars in Syrtis Major Planum using HRSC/MEx data.’ Planetary and Space Science 56, No. 7: 1030–1042. doi: 10.1016/j.pss.2008.01.011.
- . . ‘Laser induced breakdown spectroscopy on soils and rocks: Influence of the sample temperature, moisture and roughness.’ Spectrochimica Acta - Part B: Atomic Spectroscopy 63, No. 10: 1205–1215. doi: 10.1016/j.sab.2008.08.006.
- . . ‘Greenhouse and thermophoretic effects in dust layers: The missing link for lifting of dust on Mars.’ Geophysical Research Letters 35, No. 10. doi: 10.1029/2008GL033799.
- . . ‘A set of laboratory analogue materials for the MERTIS instrument on the ESA BepiColombo mission to Mercury.’ Advances in Space Research 40, No. 2: 272–279. doi: 10.1016/j.asr.2006.11.004.
- . . ‘Cryptomare magmatism 4.35 Gyr ago recorded in lunar meteorite Kalahari 009.’ Nature 450, No. 7171: 849–852. doi: 10.1038/nature06356.
- . . ‘Late accretion and lithification of chondritic parent bodies: Mg isotope studies on fragments from primitive chondrites and chondritic breccias.’ Meteoritics and Planetary Science 42, No. 7-8: 1291–1308. doi: 10.1111/j.1945-5100.2007.tb00575.x.
- . . ‘Intraplate volcanism in New Zealand: The role of fossil plume material and variable lithospheric properties.’ Contributions to Mineralogy and Petrology 153, No. 6: 669–687. doi: 10.1007/s00410-006-0169-1.
- . . ‘2-16 μm spectroscopy of micron-sized enstatite (Mg,Fe) 2Si 2O 6 silicates from primitive chondritic meteorites.’ Monthly Notices of the Royal Astronomical Society 376, No. 3: 1367–1374. doi: 10.1111/j.1365-2966.2007.11548.x.
- . . ‘Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals.’ Nature 450, No. 7173: 1206–1209. doi: 10.1038/nature06428.
- . . ‘Proceedings of the workshop on impact craters as indicators for planetary environmental evolution and astrobiology.’ Meteoritics and Planetary Science 42, No. 11: 1859–1860. doi: 10.1111/j.1945-5100.2007.tb00544.x.
- . . ‘How rapidly did Mars accrete? Uncertainties in the Hf-W timing of core formation.’ Icarus 191, No. 2: 497–504. doi: 10.1016/j.icarus.2007.05.002.
- . . ‘Hafnium-tungsten chronometry of angrites and the earliest evolution of planetary objects.’ Earth and Planetary Science Letters 262, No. 1-2: 214–229. doi: 10.1016/j.epsl.2007.07.035.
- . . ‘On the fate of carbonates and anhydrite in impact processes - evidence from the Chicxulub event.’ GFF 129: 155–160. doi: 10.1080/11035890701292155.
- . . ‘The ICDP Lake Bosumtwi impact crater scientific drilling project (Ghana): Core LB-08A litho-log, related ejecta, and shock recovery experiments.’ Meteoritics and Planetary Science 42, No. 4-5: 635–654. doi: 10.1111/j.1945-5100.2007.tb01065.x.
- . . ‘Young lava flows on the eastern flank of Ascraeus Mons: Rheological properties derived from High Resolution Stereo Camera (HRSC) images and Mars Orbiter Laser Altimeter (MOLA) data.’ Journal of Geophysical Research 112, No. E5.
- . . ‘Investigation of surface properties of lunar regolith: Part I.’ Applied Surface Science 253, No. 13: 5709–5714. doi: 10.1016/j.apsusc.2006.12.098.
- . . ‘Hf-Nd-Pb isotope evidence from Permian arc rocks for the long-term presence of the Indian-Pacific mantle boundary in the SW Pacific.’ Earth and Planetary Science Letters 254, No. 3-4: 377–392. doi: 10.1016/j.epsl.2006.11.046.
- . . ‘Laser Induced Breakdown Spectroscopy of soils, rocks and ice at subzero temperatures in simulated Martian conditions.’ Spectrochimica Acta - Part B: Atomic Spectroscopy 62, No. 12: 1546–1556. doi: 10.1016/j.sab.2007.10.006.
- . . ‘Stagnant lid convection in the mid-sized icy satellites of Saturn.’ Icarus , No. 186: 420–435.
- . . ‘Evidence for enhanced hydration on the northern flank of Olympus Mons, Mars.’ Icarus 192, No. 2: 361–377.
- . . ‘Evidence for late Hesperian lacustrine activity in Shalbatana Vallis, Mars.’ Journal of Geophysical Research 112, No. E7. doi: 10.1029/2006JE002858.
- . . ‘The high-resolution stereo camera (HRSC) experiment on Mars Express: Instrument aspects and experiment conduct from interplanetary cruise through the nominal mission.’ Planetary and Space Science 55, No. 7-8: 928–952.
- . . ‘Deposition and degradation of a volatile-rich layer in Utopia Planitia and implications for climate history on Mars.’ Journal of Geophysical Research 112, No. E6. doi: 10.1029/2006JE002869.
- 10.1029/2006JE002717. . ‘Young lava flows on the eastern flank of Ascaraeus Mons: Rheological properties derived from High Resolution Stereo Camera(HRSC) images and Mars Orbiter Laser Altimeter(MOLA) data.’ Journal of Geophysical Research 112, No. 5. doi:
- . . ‘The Crystallization Age of Eucrite Zircon.’ Science 317, No. 5836: 345–347. doi: 10.1126/science.1140264.
- . . ‘Brecciation and chemical heterogeneities of CI chondrites.’ Geochimica et Cosmochimica Acta 70, No. 21: 5371–5394. doi: 10.1016/j.gca.2006.08.007.
- . . ‘Unusual gem pyroxmangite.’ Gems and Gemology 42, No. 4: 266–267.
- . . ‘FT-IR microspectroscopy of extraterrestrial dust grains: Comparison of measurement techniques.’ Planetary and Space Science 54, No. 6: 599–611. doi: 10.1016/j.pss.2006.02.002.
- . . ‘FTIR 2-16 micron spectroscopy of micron-sized olivines from primitive meteorites.’ Meteoritics and Planetary Science 41, No. 5: 773–784. doi: 10.1111/j.1945-5100.2006.tb00991.x.
- . . ‘Establishing the link between the Chesapeake Bay impact structure and the North American tektite strewn field: The Sr-Nd isotopic evidence.’ Meteoritics and Planetary Science 41, No. 5: 689–703. doi: 10.1111/j.1945-5100.2006.tb00985.x.
- . . ‘Aluminum-magnesium and oxygen isotope study of relict Ca-Al-rich inclusions in chondrules.’ Astrophysical Journal 639, No. 2: 1227–1237. doi: 10.1086/498610.
- . . ‘Tungsten isotopic compositions of iron meteorites: Chronological constraints vs. cosmogenic effects.’ Earth and Planetary Science Letters 242, No. 1-2: 1–15. doi: 10.1016/j.epsl.2005.11.048.
- . . ‘A steep fan at Coprates Catena, Valles Marineris, Mars, as seen by HRSC data.’ Geophysical Research Letters 333, No. 7: L07204. doi: 10.1029/2005GL025435.
- . . ‘Geological evolution of the Tyras Vallis paleolacustrine system, Mars.’ Journal of Geophysical Research 111, No. E4. doi: 10.1029/2005JE002561.
- . . ‘Ages of rampart craters in equatorial regions on Mars: Implications for the past and present distribution of ground ice.’ Meteoritics & Planetary Science 41, No. 10: 1437–1452.
- . ‘TEM investigations of a “mysterite” inclusion from the Krymka LL-chondrite.’ Meteoritics Planet. Science 2006, No. 41: 571–580.
- . . ‘First refinement of the sinoite structure of a natural crystal from the Neuschwanstein (EL6) meteorite.’ Zeitschrift für Naturforschung B - A Journal of Chemical Sciences 60, No. 12: 1231–1234.
- . . ‘Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from Hf-182-W-182 in CAIs, metal-rich chondrites, and iron meteorites.’ Geochimica et Cosmochimica Acta 69, No. 24: 5805–5818. doi: 10.1016/j.gca.2005.07.012.
- . . ‘Hf-W chronometry of lunar metals and the age and early differentiation of the Moon.’ Science 310, No. 5754: 1671–1674. doi: 10.1126/science.1118842.
- . . ‘Are there active glaciers on Mars? Reply.’ Nature 438, No. 7069: E10E10.
- . . ‘Diamond dyed rough.’ Gems and Gemology 41, No. 3: 257–258.
- . . ‘Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars.’ Nature 434, No. 7031: 346–351. doi: 10.1038/nature03359.
- . . ‘The W isotope composition of eucrite metals: constraints on the timing and cause of the thermal metamorphism of basaltic eucrites.’ Earth and Planetary Science Letters 231, No. 1-2: 41–52. doi: 10.1016/j.epsl.2004.12.016.
- . . ‘Meteorites from Botswana.’ Meteoritics and Planetary Science 40, No. 9: A177–A184. doi: 10.1111/j.1945-5100.2005.tb00423.x.
- . . ‘Limits on the burial depth of glacial ice deposits on the flanks of Hecates Tholus, Mars.’ Geophysical Research Letters 32, No. 17. doi: 10.1029/2005GL023712.
- 10.1029/2005GL023415. . ‘Interior channels in Martian valleys: Constraints on fluvial erosion by measurements of the Mars Express High Resolution Stereo Camera.’ Geophysical Research Letters 32, No. 16. doi:
- . . ‘Small rampart craters in an equatorial region on Mars: Implications for near-surface water or ice.’ Geophysical Research Letters 32, No. 10. doi: 10.1029/2005GL022758.
- . . ‘Seasonal variations of polygonal thermal contraction crack patterns in a south polar trough, Mars.’ Journal of Geophysical Research 110, No. E8. doi: 10.1029/2004JE002385.
- . ‘Carbonaceous xenoliths in the Krymka LL3.1-chondrite: mysteries and established facts.’ Geochemica Cosmo. Acta 2005, No. 69: 2165–2182.
- . . ‘182Hf-182W isotope systematics of chondrites, eucrites, and martian meteorites: Chronology of core formation and early mantle differentiation in Vesta and Mars.’ Geochimica et Cosmochimica Acta 68, No. 13: 2935–2946. doi: 10.1016/j.gca.2004.01.009.
- . . ‘Space weathering on Mercury.’ Advances in Space Research 33, No. 12: 2152–2155.
- . . ‘Scientific objectives and selection of targets for the SMART-1 Infrared Spectrometer (SIR).’ Planetary and Space Science 52, No. 14: 1261–1285. doi: 10.1016/j.pss.2004.09.002.
- . . ‘The W isotope evolution of the bulk silicate Earth: constraints on the timing and mechanisms of core formation and accretion.’ Earth and Planetary Science Letters 228, No. 1-2: 109–123. doi: 10.1016/j.epsl.2004.09.023.
- . . ‘Crustal evolution along the Early Ordovician proto-Andean margin of Gondwana: Trace element and isotope evidence from the Complejo Igneo Pocitos (northwest Argentina).’ Journal of Geology 112, No. 5: 503–520. doi: 10.1086/422663.
- . . ‘Formation of accretionary dust mantles in the solar nebula: Evidence from preirradiated olivines in CM chondrites.’ Meteoritics and Planetary Science 39, No. 8: 1307–1319. doi: 10.1111/j.1945-5100.2004.tb00948.x.
- . . ‘Microstructure of 24-1928 Ma concordant monazites; implications for geochronology and nuclear waste deposits.’ Geochimica et Cosmochimica Acta 68, No. 11: 2517–2527. doi: 10.1016/j.gca.2003.10.042.
- . . ‘Noble gas studies in CAIs from CV3 chondrites: No evidence for primordial noble gases.’ Meteoritics and Planetary Science 39, No. 5: 767–778. doi: 10.1111/j.1945-5100.2004.tb00118.x.
- . . ‘Devgaon (H3) chondrite: Classification and complex cosmic ray exposure history.’ Meteoritics and Planetary Science 39, No. 3: 387–399. doi: 10.1111/j.1945-5100.2004.tb00100.x.
- . . ‘Noble gases in chondrules and associated metal-sulfide-rich samples: Clues on chondrule formation and the behavior of noble gas carrier phases.’ Meteoritics and Planetary Science 39, No. 1: 117–135. doi: 10.1111/j.1945-5100.2004.tb00053.x.
- . . ‘The Syrtis Major volcanic province, Mars: Synthesis from Mars Global Surveyor data.’ Journal of Geophysical Research 109, No. E1.
- . . ‘Treated-color “golden” South Sea cultured pearls.’ Gems and Gemology 40: 331–332.
- . . ‘Absolute dune ages and implications for the time of formation of gullies in Nirgal Vallis, Mars.’ Journal of Geophysical Research 109, No. E6. doi: 10.1029/2004JE002251.
- . . ‘26Mg excess in hibonites of the Rumuruti chondrite Hughes 030.’ Meteoritics and Planetary Science 38, No. 1: 5–12. doi: 10.1111/j.1945-5100.2003.tb01042.x.
- . . ‘Geochemical variability of the Yucat̀an basement: Constraints from crystalline clasts in Chicxulub impactites.’ Meteoritics and Planetary Science 38, No. 7: 1079–1092. doi: 10.1111/j.1945-5100.2003.tb00299.x.
- . . ‘Transmission electron microscope study of polyphase and discordant monazites: Site-specific specimen preparation using the focused ion beam technique.’ Geology 31, No. 11: 973–976. doi: 10.1130/G19582.1.
- . . ‘Impact-induced frictional melting in ordinary chondrites: A mechanism for deformation, darkening, and vein formation.’ Meteoritics and Planetary Science 38, No. 10: 1521–1531.
- . . ‘Microdistribution of primordial Ne and Ar in fine-grained rims, matrices, and dark inclusions of unequilibrated chondrites - Clues on nebular processes.’ Meteoritics and Planetary Science 38, No. 9: 1399–1418.
- . . ‘Geochemical variability of the Yucatan basement: Constraints from crystalline clasts in Chicxulub impactites.’ Meteoritics and Planetary Science 38, No. 7: 1079–1092. doi: 10.1111/j.1945-5100.2003.tb00299.x.
- . . ‘Evolution of planetary cores and the earth-moon system from Nb/Ta systematics.’ Science 301, No. 5629: 84–87. doi: 10.1126/science.1084662.
- . . ‘Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum.’ Journal of Geophysical Research 108, No. E7.
- . . ‘Homogeneous impact melts produced by a heterogeneous target? Sr-Nd isotopic evidence from the Popigai crater, Russia.’ Geochimica et Cosmochimica Acta 67, No. 4: 733–750. doi: 10.1016/S0016-7037(02)01143-2.
- . . ‘Mg-26 excess in hibonites of the Rumuruti chondrite Hughes 030.’ Meteoritics and Planetary Science 38, No. 1: 5–12. doi: 10.1111/j.1945-5100.2003.tb01042.x.
- . . ‘TEM investigations on the monomict ureilites Jalanash and Hammadah al Hamra 064.’ Meteoritics and Planetary Science 38, No. 1: 145–156. doi: 10.1111/j.1945-5100.2003.tb01051.x.
- . ‘Occurence of terpene anhydride Palasonin and Palasonimide in blister beetle Hycleus lunata (Coleoptera: Meloidae).’ Biochemical Systematics and Ecology , No. 31: 203–205.
- . . ‘Recent debris flows on Mars: Seasonal observations of the Russell Crater dune field.’ Geophysical Research Letters 30, No. 6. doi: 10.1029/2002GL016704.
- . ‘TEM investigations on the monomict ureilites Jalanash and Hammadah al Hamra 064.’ Meteoritics Planet. Science 38: 145–156.
- . . ‘Oceanic impacts - a growing field of fundamental geoscience.’ Deep Sea Research Part II: Topical Studies in Oceanography 49, No. 6: 951–957. doi: 10.1016/S0967-0645(01)00134-5.
- . . ‘The phase diagram of CaCO3 in ralation to shock compressionand decomposition.’ Physics of the Earth and Planetary Interiors 129, No. 1-2: 131–143. doi: 10.1016/S0031-9201(01)00268-0.
- . . ‘Experimental approach to generate shock veins in single crystal olivine by shear melting.’ Meteoritics and Planetary Science 37, No. 11: 1541–1553. doi: 10.1111/j.1945-5100.2002.tb00809.x.
- . . ‘Topography and morphology of the Argyre Basin, Mars: implications for its geologic and hydrologic history.’ Planetary and Space Science 50, No. 10-11: 939–981. doi: 10.1016/S0032-0633(02)00054-5.
- . . ‘Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry.’ Nature 418, No. 6901: 952–955. doi: 10.1038/nature00982.
- . . ‘Lunar mare basalt flow units: Thicknesses determined from crater size-frequency distributions.’ Geophysical Research Letters 29, No. 8: –1248.
- . ‘(R)-(+)-Palasonin, a cantharidin-related plant toxin, also occurs in insect hemolymph and tissues.’ Journal of Chemical Ecology , No. 28: 1315–1327.
- . ‘Itawa Bhopji (L3-5) chondrite regolith breccia: Fall, classification, and cosmogenic records. .’ Meteoritics & Planet. Sci. 37: 549–563.
- . . ‘How strong was impact-induced CO2 degassing in the K/T event? Numerical modeling of laboratory experiments.’ Geological Society of America Special Paper 356: 587–594. [online first]
- . . ‘Fantastic new chondrites, achondrites, and lunar meteorites as the result of recent meteorite search expeditions in hot and cold deserts.’ Earth, Moon, and Planets 85-6: 87–97.
- . . ‘Mineralogy of fine-grained material in the Krymka (LL3.10) chondrite.’ Meteoritics and Planetary Science 36, No. 8: 1067–1085. doi: 10.1111/j.1945-5100.2001.tb01945.x.
- . . ‘Stable isotope composition of impact glasses from the Nördlinger ries impact crater Germany.’ Geochimica et Cosmochimica Acta 65, No. 8: 1325–1336. doi: 10.1016/S0016-7037(00)00600-1.
- . . ‘Fast back-reactions of shock-released CO2 from carbonates: An experimental approach.’ Geochimica et Cosmochimica Acta 65, No. 15: 2615–2632. doi: 10.1016/S0016-7037(01)00617-2.
- . . ‘Meteorite classification and the definition of new chondrite classes as a result of successful meteorite search in hot and cold deserts.’ Planetary and Space Science 49, No. 8: 769–776. doi: 10.1016/S0032-0633(01)00026-5.
- . . ‘Low-temperature phase decomposition in iron-nickel metal of the Portales Valley meteorite.’ Meteoritics and Planetary Science 36, No. 5: 587–595. doi: 10.1111/j.1945-5100.2001.tb01902.x.
- . ‘“Earth-Moon Relationships“, 2000 November 8-10, Padua, Italy (Editorial).’ Meteoritics & Planet. Sci. 36: 5.
- . . ‘A treasury in Sibiria.’ German Research Special 2001: 26–31.
- . ‘Mineralogy of fine-grained material in the Krymka (LL3) chondrite.’ Meteoritics Planet. Science 36: 1067–1085.
- . . ‘92Nb- 92Zr and the early differentiation history of planetary bodies.’ Science 289, No. 5484: 1538–1542. doi: 10.1126/science.289.5484.1538.
- . . ‘Mineralogical characterization of primitive, type-3 lithologies in Rumuruti chondrites.’ Meteoritics and Planetary Science 35, No. 4: 699–706. doi: 10.1111/j.1945-5100.2000.tb01453.x.
- . . ‘Ages of mare basalts on the lunar nearside.’ Journal of Geophysical Research 105, No. E12: 29239–29275. doi: 10.1029/2000JE001244.
- . . ‘Chicxulub impactites: Geochemical clues to the precursor rocks.’ Meteoritics and Planetary Science 35, No. 6: 1229–1238. doi: 10.1111/j.1945-5100.2000.tb01511.x.
- . . ‘Nb-92-Zr-92 and the early differentiation history of planetary bodies.’ Science 289, No. 5484: 1538–1542. doi: 10.1126/science.289.5484.1538.
- . . ‘92Nb-(92)Zr and the Early Differentiation History of Planetary Bodies.’ Science 289, No. 5484: 1538–1542. doi: 10.1126/science.289.5484.1538.
- . . ‘Evidence for crystals from the lower mantle: baddeleyite megacrysts of the Mbuji Mayi kimberlite.’ Earth and Planetary Science Letters 179, No. 2: 219–225. doi: 10.1016/S0012-821X(00)00132-1.
- . . ‘Characteristics and origin of polygonal terrain in southern Utopia Planitia, Mars: Results from Mars Orbiter Laser Altimeter and Mars Orbiter Camera Data.’ Journal of Geophysical Research 105, No. E5: 11999–12022. doi: 10.1029/1999JE001193.
- . . ‘Popigai, Siberia - well preserved giant impact structure, national treasury, and world's geological heritage.’ Episodes 23, No. 1: 3–11.
- . . ‘Growth and form of planetary seedlings: Results from a microgravity aggregation experiment.’ Physical Review Letters 85, No. 12: 2426–2429.
- . . „Der Popigai-Krater – eine Schatzkammer in Sibirien.“ Forschung 3-4/2000: 36–41.
- . . ‘An interdisciplinary study of weathering effects in ordinary chondrites from the Acfer region, Algeria.’ Meteoritics and Planetary Science 34, No. 5: 787–794. doi: 10.1111/j.1945-5100.1999.tb01391.x.
- . . ‘Heterogeneous distribution of solar and cosmogenic noble gases in CM chondrites and implications for the formation of CM parent bodies.’ Geochimica et Cosmochimica Acta 63, No. 2: 257–273. doi: 10.1016/S0016-7037(98)00278-6.
- 10.1126/science.286.5447.2134. . ‘Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data.’ Science 286: 2134–2137. doi:
- . ‘Structural wavelengths of Ganymede grooved terrain determined from Fourier analysis of Galileo images.’ J. Geophys. Res. 104, No. E10: 24057–24074.
- . . ‘Transmission electron microscope study of compact Type A calcium-aluminum-rich inclusions from CV3 chondrites: Clues to their origin.’ Meteoritics and Planetary Science 33, No. 1: 75–87. doi: 10.1111/j.1945-5100.1998.tb01609.x.
- . . ‘Aqueous alteration of carbonaceous chondrites: Evidence for preaccretionary alteration-A review.’ Meteoritics and Planetary Science 33, No. 5: 1113–1122. doi: 10.1111/j.1945-5100.1998.tb01716.x.
- . . ‘Heating experiments simulating atmospheric entry heating of micrometeorites: Clues to their parent body sources.’ Meteoritics and Planetary Science 33, No. 2: 267–290. doi: 10.1111/j.1945-5100.1998.tb01632.x.
- . . ‘Petrology, chemistry, and isotopic compositions of the lunar highland regolith breccia Dar al Gani 262.’ Meteoritics and Planetary Science 33, No. 6: 1243–1257. doi: 10.1111/j.1945-5100.1998.tb01309.x.
- . . ‘The age of the Kara impact structure, Russia.’ Meteoritics and Planetary Science 33, No. 2: 361–372. doi: 10.1111/j.1945-5100.1998.tb01640.x.
- . . ‘The origin of Alpine plutons along the Periadriatic Lineament.’ Schweizerische Mineralogische und Petrographische Mitteilungen 78, No. 1: 55–66.
- . . ‘Aqueous alteration of carbonaceous chondrites: Evidence for preaccretionary alteration - A review.’ Meteoritics and Planetary Science 33, No. 5: 1113–1122. doi: 10.1111/j.1945-5100.1998.tb01716.x.
- . . ‘New pathfinders to impact structures: The Finnish way. (editorial) .’ Meteoritics & Planetary Science 33: 3.
- . ‘Oceans in the past history of Mars: Tests for their presence using Mars Orbiter Laser Altimeter (MOLA) data.’ Geophys. Res. Lett. 25, No. 4: 4401–4404.
- . . ‘Mineralogy and crystallization history of the Ilafegh 009 EL-chondritic impact melt rock: An ATEM investigation.’ Meteoritics and Planetary Science 32, No. 3: 365–372. doi: 10.1111/j.1945-5100.1997.tb01279.x.
- . . ‘Refractory inclusions in the CR chondrite acfer 059-El djouf 001: Petrology, chemical composition, and relationship to inclusion populations in other types of carbonaceous chondrites.’ Chemie der Erde / Geochemistry 57, No. 1: 1–24.
- . . ‘Rincon: A new L6 chondrite find from Argentina.’ Chemie der Erde / Geochemistry 57, No. 4: 297–309.
- . . ‘Geochemistry and neodymium-strontium isotope signature of tektite-like objects from Siberia (urengoites, South-Ural glass).’ Meteoritics and Planetary Science 32, No. 5: 679–686. doi: 10.1111/j.1945-5100.1997.tb01552.x.
- . . „Scars on Planet Earth - Terrestrial Cratering.“ Geowissenschaften 15: 131–137.
- . . ‘Carbonates in CI chondrites: Clues to parent body evolution.’ Geochimica et Cosmochimica Acta 60, No. 3: 489–507.
- . . ‘Lunar meteorite Queen Alexandra Range 93069: A lunar highland regolith breccia with very low abundances of mafic components.’ Meteoritics and Planetary Science 31, No. 6: 849–855.
- . . ‘Meteorites from Mongolia.’ Meteoritics and Planetary Science 31, No. 1: 152–157.
- . . ‘Mineralogy, chemistry, and oxygen isotopes of refractory inclusions from stratospheric interplanetary dust particles and micrometeorites.’ Meteoritics and Planetary Science 31, No. 6: 739–748.
- . . ‘Pulse-heating of fragments from Orgueil (CI): Simulation of atmospheric entry heating of micrometeorites.’ COSMIC DUST CONNECTION 487: 303–311. doi: 10.1007/978-94-011-5652-3_23.
- . . ‘Impact melt dikes in the Sudbury multi-ring basin (Canada): Implications from uranium-lead geochronology on the Foy Offset Dike.’ Meteoritics and Planetary Science 31, No. 4: 494–501.
- . . ‘Carbonates in CI chondrites: clues to parent body evolution.’ Geochimica et Cosmochimica Acta 60, No. 3: 489–507.
- . . ‘Early aqueous activity on primitive meteorite parent bodies.’ Nature 379, No. 6567: 701–703. doi: 10.1038/379701a0.
- . ‘Asian influence over the western North Pacific during the fall season: Interference from lead 210, soluble ionic species and ozone.’ Journal of Geophysical Research , No. 101: 1779–1792.
- . ‘Chemical characteristics of continental outflow from Asia to the troposphere over the western Pacific Ocean during September-October 1991: Results from PEM-West A.’ Journal of Geophysical Research , No. 101: 1713–1725.
- . . ‘Meteorites from the Sahara: find locations, shock classification, degree of weathering and pairing.’ Meteoritics 30, No. 1: 113–122.
- . . ‘Occurrence and composition of relict minerals in micrometeorites from Greenland and Antarctica-implications for their origins.’ Planetary and Space Science 43, No. 3-4: 435–449. doi: 10.1016/0032-0633(94)00175-Q.
- . . ‘Trace element abundances and magnesium, calcium, and titanium isotopic compositions of grossite-containing inclusions from the carbonaceous chondrite Acfer 182.’ Geochimica et Cosmochimica Acta 59, No. 4: 803–823. doi: 10.1016/0016-7037(94)00366-T.
- . . ‘Formation of opaque minerals in CK chondrites.’ Planetary and Space Science 43, No. 3-4: 485–498. doi: 10.1016/0032-0633(94)00173-O.
- . . ‘The Sudbury Structure (Ontario, Canada): a tectonically deformed multi-ring impact basin.’ Geologische Rundschau 84, No. 4: 697–709. doi: 10.1007/s005310050034.
- . . ‘OCCURRENCE AND COMPOSITION OF RELICT MINERALS IN MICROMETEORITES FROM GREENLAND AND ANTARCTICA - IMPLICATIONS FOR THEIR ORIGINS.’ Planetary and Space Science 43, No. 3-4: 435–449. doi: 10.1016/0032-0633(94)00175-Q.
- . . ‘THERMAL AND IMPACT METAMORPHISM ON THE HED PARENT ASTEROID.’ Planetary and Space Science 43, No. 3-4: 499–525. doi: 10.1016/0032-0633(94)00219-H.
- . . ‘THE COLLISIONAL HISTORY OF THE HED PARENT BODY INFERRED FROM AR-40-AR-39 AGES OF EUCRITES.’ Planetary and Space Science 43, No. 3-4: 527–543. doi: 10.1016/0032-0633(94)00137-G.
- . ‘Acfer 094, a uniquely primitive carbonaceous chondrite from the Sahara. .’ Meteoritics 30: 47–56.
- . ‘Acfer 217 - a new member of the Rumuruti chondrite group (R).’ Meteoritics 29, No. 2: 264–274.
- . . ‘Grossite (CaAl4O7) - a rare phase in terrestrial rocks and meteorites.’ European Journal of Mineralogy 6, No. 4: 591–594.
- . . ‘The occurrence of grossite (CaAl4O7) in chondrites.’ Geochimica et Cosmochimica Acta 58, No. 18: 3855–3877. doi: 10.1016/0016-7037(94)90368-9.
- . . ‘Dating terrestrial impact events.’ Meteoritics 29, No. 3: 301–322.
- . . ‘Shock experiments on pre-heated α- and β-quartz: I. Optical and density data.’ Earth and Planetary Science Letters 125, No. 1-4: 407–420. doi: 10.1016/0012-821X(94)90229-1.
- . . ‘The Sudbury Structure: constraints on its genesis from Lithoprobe results.’ Geophysical Research Letters 21, No. 10: 963–966. doi: 10.1029/94GL00559.
- . . ‘ORIGIN OF DARK CLASTS IN THE ACFER 059/EL DJOUF 001 CR-2 CHONDRITE.’ Meteoritics 29, No. 1: 26–40.
- . . ‘Summertime partitioning and budget of NOy compounds in the troposphere over Alaska and Canada: ABLE-3B.’ Journal of Geophysical Research 99: 1837–1861.
- . . ‘Summertime distribution and relations of reactive nitrogen species and NOy in the troposphere over Canada.’ Journal of Geophysical Research 99: 1863–1885.
- . . ‘Chemical composition of the atmospheric aerosol in the troposphere over the Hudson Bay lowlands and Quebec-Labrador regions of Canada.’ Journal of Geophysical Research 99: 1763–1779.
- . . ‘Enhancement of acidic gases in biomass burning impacted air masses over Canada.’ Journal of Geophysical Research 99: 1721–1738.
- . . ‘Fog chemistry at the New England coast: Influence of air mass history.’ Atmospheric Environment 28: 1181–1188.
- . . ‘Low- to mid-tropospheric profiles and biosphere/troposphere fluxes of acidic gases in the summertime Canadian taiga.’ Journal of Geophysical Research 99: 1687–1698.
- . ‘Mineralogy and chemistry of Rumuruti: The first meteorite fall of the new R chondrite group. .’ Meteoritics 29: 275–286.
- . . ‘Acfer 182 and paired samples, an iron-rich carbonaceous chondrite: Similarities with ALH85085 and relationship to CR chondrites.’ Geochimica et Cosmochimica Acta 57, No. 11: 2631–2648. doi: 10.1016/0016-7037(93)90422-S.
- . ‘Mineralogy, chemistry and noble gas contents of Adzhi-Bogdo - an LL3- 6 chondritic breccia with L-chondrite and granitoidal clasts.’ Meteoritics 28, No. 4: 570–578.
- . . ‘Paired Renazzo-type (CR) carbonaceous chondrites from the Sahara.’ Geochimica et Cosmochimica Acta 57, No. 7: 1587–1603. doi: 10.1016/0016-7037(93)90014-N.
- . . ‘Effect of temperature on shock metamorphism of single-crystal quartz.’ Nature 356, No. 6369: 507–509. doi: 10.1038/356507a0.
- . . ‘On the significance of crater ages: New ages for Dellen (Sweden) and Araguainha (Brazil).’ Tectonophysics 216, No. 1-2: 205–218. doi: 10.1016/0040-1951(92)90167-5.
- . . ‘SHOCK METAMORPHISM AS A FUNDAMENTAL PROCESS IN THE EVOLUTION OF PLANETARY BODIES - INFORMATION FROM METEORITES.’ European Journal of Mineralogy 4, No. 4: 707–755.
- . . ‘ACCRETIONARY DUST MANTLES IN CM CHONDRITES - EVIDENCE FOR SOLAR NEBULA PROCESSES.’ Geochimica et Cosmochimica Acta 56, No. 7: 2873–2897. doi: 10.1016/0016-7037(92)90365-P.
- . . ‘Sulfur dioxide in coastal New England fog.’ Atmospheric Environment 26A: 2063–2075.
- . . ‘Lunar highland meteorites and the composition of the lunar crust.’ Geochimica et Cosmochimica Acta 55, No. 11: 3105–3122. doi: 10.1016/0016-7037(91)90476-L.
- . . ‘COMETARY ANALOG MATERIAL - PREPARATION, COMPOSITION, AND THIN-SECTION PETROGRAPHY.’ Geophysical Research Letters 18, No. 2: 285–288. doi: 10.1029/90GL02520.
- . . ‘Isotope systematics and shock-wave metamorphism: I. U-Pb in zircon, titanite and monazite, shocked experimentally up to 59 GPa.’ Geochimica et Cosmochimica Acta 54, No. 12: 3427–3434. doi: 10.1016/0016-7037(90)90295-V.
- . . ‘Isotope systematics and shock-wave metamorphism: II. U-Pb and Rb-Sr in naturally shocked rocks; the Haughton Impact Structure, Canada.’ Geochimica et Cosmochimica Acta 54, No. 12: 3435–3447. doi: 10.1016/0016-7037(90)90296-W.
- . . ‘'Kosi' comet simulation experiment at DFVLR: Sample preparation and the evolution of the 18O/16O and the D/H ratio in the icy component.’ Advances in Space Research 9, No. 3: 123–125. doi: 10.1016/0273-1177(89)90250-0.
- . . ‘Al-rich chondrules from the Ybbsitz H4-chondrite: evidence for formation by collision and splashing.’ Earth and Planetary Science Letters 93, No. 2: 170–180. doi: 10.1016/0012-821X(89)90066-6.
- . . ‘Comet simulation experiments in the DFVLR space simulators.’ Advances in Space Research 9, No. 3: 113–122. doi: 10.1016/0273-1177(89)90249-4.
- . . ‘Strontium- and neodymium-isotopic characteristics of a heterolithic breccia in the basement of the Sudbury impact structure, Canada.’ Earth and Planetary Science Letters 93, No. 3-4: 359–370. doi: 10.1016/0012-821X(89)90035-6.
- . ‘Behaviour of aluminium species during snowmelt, both downstream and after mixing with nonacidic waters.’ Aqua Fennica , No. 19: 87–94.
- . . ‘Isotope systematics in shocked material from the Haughton impact crater (Canada).’ Naturwissenschaften 75, No. 7: 355–357. doi: 10.1007/BF00368327.
- . . ‘Composition and mineralogy of refractory-metal-rich assemblages from a Ca,Al-rich inclusion in the Allende meteorite.’ Geochimica et Cosmochimica Acta 51, No. 10: 2733–2748. doi: 10.1016/0016-7037(87)90153-0.
- . . ‘Rb-Sr-analyses of Apollo 16 melt rocks and a new age estimate for the Imbrium basin: Lunar basin chronology and the early heavy bombardment of the moon.’ Geochimica et Cosmochimica Acta 51, No. 7: 1951–1964. doi: 10.1016/0016-7037(87)90184-0.
- . ‘Petrography, shock history, chemical composition and noble gas content of the lunar meteorites Y 82192 and Y 82193. .’ Mem. Natl. Inst. Polar Res., Spec. Issue 46: 21–42.
- . . ‘A reassessment appraised: Comment on "Hornblende KAr ages and the climax of Tertiary metamorphism in the Lepontine Alps (south-central Switzerland): an old problem reassessed"-reply to Peter K. Zeitler and Jan R. Wijbrans.’ Earth and Planetary Science Letters 76, No. 3-4: 393–395. doi: 10.1016/0012-821X(86)90090-7.
- . ‘Lunar meteorite Yamato 791197: Petrography, shock history and chemical composition.’ Mem. Natl. Inst. Polar Res., Spec. Issue 41: 17–44.
- . . „Geochemie oligozäner shoshonitischer Ganggesteine aus der Kreuzeckgruppe (Kärnten/ Osttirol).“ Mitt. Ges. Geol. Bergbaustudenten Österr 32: 105–124.
- . . ‘Hornblende KAr ages and the climax of Tertiary metamorphism in the Lepontine Alps (south-central Switzerland): an old problem reassessed.’ Earth and Planetary Science Letters 72, No. 2-3: 175–189. doi: 10.1016/0012-821X(85)90004-4.
- . ‘Al-reiche und intermediäre Chondren in dem H4-Chondriten Ybbsitz. .’ Ann. Naturhist. Mus. Wien 87: 21–31.
- . ‘Perovskite-hibonite-spinel-bearing inclusions and Al rich chondrules and fragments in Enstatite chondrites. .’ Chemie der Erde 44: 97–106.
- . ‘Composition and evolution of the lunar crust in the Descartes highlands, Apollo 16. .’ J. Geophys. Res. 90: C449–C506.
- . . ‘Composition and evolution of the lunar crust in the Descartes highlands, Apollo 16.’ 15th Lunar Planet. Sci. Conf, Journal Geophysical Research Supplement 90: C449–C506.
- . . ‘Al-rich objects in ordinary chondrites: Related origin of carbonaceous and ordinary chondrites and their constituents.’ Geochimica et Cosmochimica Acta 48, No. 4: 693–709. doi: 10.1016/0016-7037(84)90096-6.
- . . ‘Ion microprobe magnesium isotope analysis of plagioclase and hibonite from ordinary chondrites.’ Nature 308, No. 5955: 169–172. doi: 10.1038/308169a0.
- . . ‘EARLY DIFFERENTIATION OF THE MOON - EVIDENCE FROM TRACE-ELEMENTS IN PLAGIOCLASE.’ Journal of Geophysical Research 89: C3–C15. doi: 10.1029/JB089iS01p000C3.
- . . ‘AL-RICH OBJECTS IN ORDINARY CHONDRITES - RELATED ORIGIN OF CARBONACEOUS AND ORDINARY CHONDRITES AND THEIR CONSTITUENTS.’ Geochimica et Cosmochimica Acta 48, No. 4: 693–709. doi: 10.1016/0016-7037(84)90096-6.
- . . ‘Young Alpine dykes south of the Tauern Window (Austria): a K-Ar and Sr isotope study.’ Contributions to Mineralogy and Petrology 85, No. 1: 45–57. doi: 10.1007/BF00380220.
- . ‘Chemical and structural changes induced by thermal annealing of shocked feldspar inclusions in impact melt rocks from Lappajärvi Crater, Finland.’ J. Geophys. Res. 89: B645–B656.
- . . ‘Ca-Al-rich chondrules and inclusions in ordinary chondrites.’ Nature 303, No. 5918: 588–592. doi: 10.1038/303588a0.
- . . ‘LITHIFICATION OF GAS-RICH CHONDRITE REGOLITH BRECCIAS BY GRAIN-BOUNDARY AND LOCALIZED SHOCK MELTING.’ Earth and Planetary Science Letters 66, No. 1-3: 1–10. doi: 10.1016/0012-821X(83)90121-8.
- . . ‘Alkali-basaltic dyke rocks from the western Goldeck mountains, Carinthia, Austria | Alkalibasaltische Ganggesteine aus der westlichen Goldeckgruppe (Kärnten/Österreich).’ TMPM Tschermaks Mineralogische und Petrographische Mitteilungen 27, No. 1: 17–34. doi: 10.1007/BF01081860.
- . . „Serpentinite und Rodingite der Cima Sgiu (NW Aduladecke, Ticino).“ Schweizerische Mineralogische und Petrographische Mitteilungen 59: 319–347.
- . . „Geologie und Petrographie der mittleren Goldeckgruppe (Kärnten/Österreich).“ Jahrbuch Geologische Bundesanstalt Wien 120: 231–294.