Forschungsschwerpunkte
- Hybride Quanten- und Nanosysteme
- Phononische Nanotechnologien
- Nanophotonik und Nanomechanik
Weitere Zugehörigkeit an der Universität Münster
Vita
Akademische Ausbildung
- Mitwirkungsberechtigung in Promotionsverfahren (Habilitationsäquivalenz) Universität Augsburg
- Promotion Walter Schottky Institut, TU München
- Diplom Physiker (Allgemeine Physik) TU München
Beruflicher Werdegang
- Professor, Physikalisches Institut, Universität Münster
- Professor, Lehrstuhl für Experimentalphysik 1, Institut für Physik, Universität Augsburg
- Nachwuchsgruppenleiter (Emmy Noether Programm), Lehrstuhl für Experimentalphysik 1, Institut für Physik, Universität Augsburg
- Akademischer Rat auf Zeit, Lehrstuhl für Experimentalphysik 1, Institut für Physik, Universität Augsburg
- Vertretungsprofessur, Fakultät für Physik, Ludwig-Maximilians-Universität München
- Postdoctoral Fellow (Feodor Lynen Stipendiat, Alexander von Humboldt Stiftung), Materials Department, University of California Santa Barbara (UCSB)
- Wissenschaftlicher Mitarbeiter, Walter Schottky Institut, TU München
Preise
- Feodor Lynen-Forschungsstipendium für Postdoktoranden – Alexander von Humboldt-Stiftung
Mitgliedschaften und Aktivitäten in Gremien
- Studiendekan Fachbereich 11 (Physik) (Studiendekan)
- Münster Nanofabrication Facility (MNF) (Vorstand, Mitglied)
- Journal of Physics D: Applied Physics (IOP Publishing) (Editorial Board, Member)
- Universität Augsburg (Vorsitz Prüfungsausschuss Bachelor Physik, Vorsitz)
-
Lehre
- Workshop OPON 2025 [118271]
(zusammen mit Prof. Dr. Tilmann Kuhn)[ - | IG1 HS 2 | Prof. Dr. Tilmann Kuhn]
[ - | IG1 85 | Prof. Dr. Tilmann Kuhn]
[ - | IG1 86 | Prof. Dr. Tilmann Kuhn]
[ - | IG1 HS 2 | Prof. Dr. Tilmann Kuhn]
[ - | IG1 85 | Prof. Dr. Tilmann Kuhn]
[ - | IG1 86 | Prof. Dr. Tilmann Kuhn]
[ - | IG1 HS 2 | Prof. Dr. Tilmann Kuhn]
[ - | IG1 85 | Prof. Dr. Tilmann Kuhn]
[ - | IG1 86 | Prof. Dr. Tilmann Kuhn] - Kolloquium: Allgemeines Physikalisches Kolloquium [118000]
(zusammen mit Prof. Dr. Anna Kulesza)
[ - | | wöchentlich | Do. | IG1 HS 2 | Prof. Dr. Anna Kulesza] - Praktische Übung: Experimentelle Übungen im Forschungsbereich Physik von Festkörper-Nanosystemen [118029]
(zusammen mit Prof. Dr. Rudolf Bratschitsch, Dr. Emeline Nysten, Dr. Steffen Michaelis de Vasconcellos, Prof. Dr. Ursula Wurstbauer, Dr. Maciej Bazarnik, Dr. Matthias Weiß, Prof. Dr. Markus Donath, Prof. Dr. Anika Schlenhoff)
[wöchentlich | Prof. Dr. Rudolf Bratschitsch] - Praktische Übung: Praktikum zur Festkörperspektroskopie [118032]
(zusammen mit Prof. Dr. Rudolf Bratschitsch, Dr. Emeline Nysten, Dr. Steffen Michaelis de Vasconcellos, Prof. Dr. Ursula Wurstbauer, Dr. Maciej Bazarnik, Dr. Matthias Weiß, Prof. Dr. Markus Donath, Prof. Dr. Anika Schlenhoff)
[wöchentlich | Prof. Dr. Rudolf Bratschitsch] - Anleitung zum wissenschaftlichen Arbeiten: Forschung an hybriden Nanosystemen [118001]
- Übung: Übungen zur Vorlesung "Physik der kondensierten Materie" [118027]
(zusammen mit Prof. Dr. Markus Donath, Dr. Matthias Weiß)
[ - | | wöchentlich | Mi. | IG1 87 | Prof. Dr. Markus Donath]
[ - | | wöchentlich | Do. | IG1 87 | Prof. Dr. Markus Donath] - Seminar: Quantentechnologien: Grundlagen und Anwendungen [118205]
(zusammen mit Prof. Dr. Carsten Schuck, Dr. Robert Schmidt, Dr. Matthias Weiß)
[ - | | wöchentlich | Di. | IG1 87 | Dr. Robert Schmidt] - Seminar: Integriertes Seminar zu aktuellen Problemen der Physik von Festkörper-Nanosystemen [118272]
(zusammen mit Prof. Dr. Rudolf Bratschitsch, Jun.-Prof. Iris Niehues, Daniel Groll, Prof. Dr. Nikos Doltsinis, Dr. Jim Bachmann, Prof. Dr. Tilmann Kuhn, Dr. Maciej Bazarnik, Prof. Dr. Markus Donath, Prof. Dr. Anika Schlenhoff, Dr. Steffen Michaelis de Vasconcellos, Dr. Daniel Wigger, Prof. Dr. Michael Rohlfing, Prof. Dr. Ursula Wurstbauer, Priv.-Doz. Thorsten Deilmann)
[ - | | wöchentlich | Mi. | IG1 718 | Prof. Dr. Rudolf Bratschitsch] - Seminar: Seminar zur Struktur der Materie: Festkörper-Nanosysteme [118009]
(zusammen mit Prof. Dr. Rudolf Bratschitsch, Dr. Emeline Nysten, Priv.-Doz. Harry Mönig, Prof. Dr. Carsten Schuck, Prof. Dr. Ursula Wurstbauer, Dr. Matthias Weiß, Dr. Maciej Bazarnik, Prof. Dr. Markus Donath, Prof. Dr. Anika Schlenhoff, Prof. Dr. Heinrich Arlinghaus)
[ - | | wöchentlich | Di. | IG1 HS 3 | Prof. Dr. Rudolf Bratschitsch] - Seminar: Forschungsseminar: Current Topics on Hybrid Nanosystems [118002]
[ - | | wöchentlich | Di. | Prof. Dr. Hubert Krenner] - Vorlesung: 2D Materials [118056]
(zusammen mit Prof. Dr. Ursula Wurstbauer)
[ - | | wöchentlich | Di. | IG1 87 | Prof. Dr. Ursula Wurstbauer] - Vorlesung: Scientific writing and presenting in physics [118011]
(zusammen mit Dr. Daniel Wigger)
[ - | | wöchentlich | Do. | IG1 HS 3 | Dr. Daniel Wigger] - Vorlesung: Physik der kondensierten Materie [118026]
(zusammen mit Prof. Dr. Markus Donath)
[ - | | wöchentlich | Mi. | IG1 HS 2 | Prof. Dr. Markus Donath]
[ - | | wöchentlich | Fr. | IG1 HS 2 | Prof. Dr. Markus Donath] - Vorlesung: Nanoacoustics and Nanophononics: sensing and manipulation at the nanoscale [118003]
(zusammen mit Dr. Emeline Nysten, Dr. Matthias Weiß)
[ - | | wöchentlich | Mi. | IG1 87 | Prof. Dr. Hubert Krenner]
- Kolloquium: Allgemeines Physikalisches Kolloquium [116019]
(zusammen mit Prof. Dr. Anika Schlenhoff)
[ - | | wöchentlich | Do. | IG1 HS 2 | Prof. Dr. Anika Schlenhoff] - Praktische Übung: Experimentelle Übungen im Forschungsbereich Physik von Festkörper-Nanosystemen [116002]
(zusammen mit Prof. Dr. Rudolf Bratschitsch, Dr. Emeline Nysten, Dr. Steffen Michaelis de Vasconcellos, Prof. Dr. Ursula Wurstbauer, Dr. Matthias Weiß, Dr. Maciej Bazarnik, Prof. Dr. Markus Donath, Prof. Dr. Anika Schlenhoff)
[wöchentlich | Prof. Dr. Rudolf Bratschitsch] - Praktische Übung: Praktikum zur Festkörperspektroskopie [116006]
(zusammen mit Prof. Dr. Rudolf Bratschitsch, Dr. Emeline Nysten, Dr. Steffen Michaelis de Vasconcellos, Prof. Dr. Ursula Wurstbauer, Dr. Matthias Weiß, Dr. Maciej Bazarnik, Prof. Dr. Markus Donath, Prof. Dr. Anika Schlenhoff)
[wöchentlich | Prof. Dr. Rudolf Bratschitsch] - Anleitung zum wissenschaftlichen Arbeiten: Forschung an hybriden Nanosystemen [116021]
- Seminar: Quantentechnologien: Grundlagen und Anwendungen [116138]
(zusammen mit Prof. Dr. Carsten Schuck, Dr. Robert Schmidt, Dr. Matthias Weiß)
[ - | | wöchentlich | Di. | IG1 87 | Prof. Dr. Hubert Krenner] - Seminar: Forschungsseminar: Current Topics on Hybrid Nanosystems [116022]
[ - | | wöchentlich | Di. | Prof. Dr. Hubert Krenner] - Seminar: Integriertes Seminar zu aktuellen Problemen der Physik von Festkörper-Nanosystemen [116232]
(zusammen mit Daniel Groll, Dr. Emeline Nysten, Prof. Dr. Nikos Doltsinis, Dr. Jim Bachmann, Prof. Dr. Tilmann Kuhn, Dr. Maciej Bazarnik, Prof. Dr. Markus Donath, Prof. Dr. Anika Schlenhoff, Priv.-Doz. Saeed Amirjalayer, Dr. Steffen Michaelis de Vasconcellos, Dr. Daniel Wigger, Prof. Dr. Michael Rohlfing, Prof. Dr. Ursula Wurstbauer, Priv.-Doz. Thorsten Deilmann, Prof. Dr. Rudolf Bratschitsch, Jun.-Prof. Iris Niehues)
[ - | | wöchentlich | Mi. | IG1 718 | Daniel Groll] - Vorlesung: Emergente Halbleiterbauelemente [116023]
(zusammen mit Dr. Matthias Weiß)
[ - | | wöchentlich | Fr. | IG1 87 | Dr. Matthias Weiß] - Vorlesung: Materialien für Quanten-Nanotechnologien und Nanoanalytische Methoden [116117]
(zusammen mit Prof. Dr. Ursula Wurstbauer)
[ - | | wöchentlich | Di. | IG1 HS 2 | Prof. Dr. Ursula Wurstbauer]
- Kolloquium: Allgemeines Physikalisches Kolloquium [114016]
(zusammen mit Prof. Dr. Anika Schlenhoff) - Praktische Übung: Praktikum zur Festkörperspektroskopie [114012]
(zusammen mit Prof. Dr. Rudolf Bratschitsch, Dr. Emeline Nysten, Dr. Steffen Michaelis de Vasconcellos, Prof. Dr. Ursula Wurstbauer, Dr. Maciej Bazarnik, Dr. Matthias Weiß, Prof. Dr. Markus Donath, Prof. Dr. Anika Schlenhoff) - Praktische Übung: Experimentelle Übungen im Forschungsbereich Physik von Festkörper-Nanosystemen [114009]
(zusammen mit Prof. Dr. Rudolf Bratschitsch, Dr. Emeline Nysten, Dr. Steffen Michaelis de Vasconcellos, Prof. Dr. Ursula Wurstbauer, Dr. Maciej Bazarnik, Dr. Matthias Weiß, Prof. Dr. Markus Donath, Prof. Dr. Anika Schlenhoff) - Anleitung zum wissenschaftlichen Arbeiten: Forschung an hybriden Nanosystemen [114017]
- Übung: Übungen zur Vorlesung "Physik der kondensierten Materie" [114007]
(zusammen mit Prof. Dr. Markus Donath) - Seminar: Forschungsseminar: Current Topics on Hybrid Nanosystems [114018]
- Seminar: Seminar zur Struktur der Materie: Festkörper-Nanosysteme [114847]
(zusammen mit Prof. Dr. Rudolf Bratschitsch, Dr. Emeline Nysten, Priv.-Doz. Harry Mönig, Prof. Dr. Carsten Schuck, Dr. Maciej Bazarnik, Dr. Matthias Weiß, Prof. Dr. Ursula Wurstbauer, Prof. Dr. Markus Donath, Prof. Dr. Anika Schlenhoff, Prof. Dr. Heinrich Arlinghaus) - Seminar: Quantentechnologien: Grundlagen und Anwendungen [114845]
(zusammen mit Dr. Alejandro Sánchez Postigo, Prof. Dr. Carsten Schuck, Dr. Robert Schmidt, Dr. Matthias Weiß) - Seminar: Integriertes Seminar zu aktuellen Problemen der Physik von Festkörper-Nanosystemen [114291]
(zusammen mit Prof. Dr. Rudolf Bratschitsch, Prof. Dr. Nikos Doltsinis, Prof. Dr. Tilmann Kuhn, Prof. Dr. Ursula Wurstbauer, Dr. Maciej Bazarnik, Priv.-Doz. Thorsten Deilmann, Prof. Dr. Markus Donath, Prof. Dr. Anika Schlenhoff, Priv.-Doz. Saeed Amirjalayer, Dr. Steffen Michaelis de Vasconcellos, Prof. Dr. Michael Rohlfing) - Ringvorlesung: Topical Lecture Series: Solid-state nanosystems [114024]
(zusammen mit Prof. Dr. Rudolf Bratschitsch, Dr. Emeline Nysten, Dr. Steffen Michaelis de Vasconcellos, Priv.-Doz. Harry Mönig, Dr. Matthias Weiß, Prof. Dr. Ursula Wurstbauer, Prof. Dr. Markus Donath, Prof. Dr. Anika Schlenhoff) - Vorlesung: 2D Materials [114004]
(zusammen mit Prof. Dr. Ursula Wurstbauer) - Vorlesung: Nanoacoustics and Nanophononics: sensing and manipulation at the nanoscale [114023]
(zusammen mit Dr. Emeline Nysten, Dr. Matthias Weiß)
- Kolloquium: Allgemeines Physikalisches Kolloquium [112224]
- Anleitung zum wissenschaftlichen Arbeiten: Forschung an hybriden Nanosystemen [112012]
- Seminar: Quantentechnologien: Grundlagen und Anwendungen [112023]
(zusammen mit Dr. Alejandro Sánchez Postigo, Prof. Dr. Carsten Schuck, Dr. Robert Schmidt, Dr. Matthias Weiß) - Seminar: Forschungsseminar: Current Topics on Hybrid Nanosystems [112013]
- Seminar: Integriertes Seminar zu aktuellen Problemen der Physik von Festkörper-Nanosystemen [112225]
(zusammen mit Prof. Dr. Rudolf Bratschitsch, Prof. Dr. Nikos Doltsinis, Prof. Dr. Tilmann Kuhn, Prof. Dr. Michael Rohlfing, Prof. Dr. Ursula Wurstbauer, Dr. Maciej Bazarnik, Prof. Dr. Markus Donath, Prof. Dr. Anika Schlenhoff, Dr. Steffen Michaelis de Vasconcellos, Priv.-Doz. Saeed Amirjalayer) - Vorlesung: Emergente Halbleiterbauelemente [112017]
- Anleitung zum wissenschaftlichen Arbeiten: Forschung an hybriden Nanosystemen [110134]
- Übung: Übungen zu Physik III [110625]
(zusammen mit Prof. Dr. Stefan Linz) - Seminar: Quantentechnologien: Grundlagen und Anwendungen [110021]
(zusammen mit Dr. Alejandro Sánchez Postigo, Prof. Dr. Carsten Schuck, Dr. Robert Schmidt, Dr. Matthias Weiß) - Seminar: Integriertes Seminar zu aktuellen Problemen der Physik von Festkörper-Nanosystemen [110272]
(zusammen mit Prof. Dr. Rudolf Bratschitsch, Priv.-Doz. Saeed Amirjalayer, Prof. Dr. Nikos Doltsinis, Dr. Steffen Michaelis de Vasconcellos, Prof. Dr. Tilmann Kuhn, Prof. Dr. Michael Rohlfing, Prof. Dr. Ursula Wurstbauer, Prof. Dr. Markus Donath) - Seminar: Forschungsseminar: Current Topics on Hybrid Nanosystems [110135]
- Vorlesung: Physik III: Wellen und Quanten [110624]
(zusammen mit Prof. Dr. Stefan Linz)
- Workshop OPON 2025 [118271]
Projekte
- INPhO – Integrierte nicht-lineare phononische Schaltkreise mit optomechanischer Schnittstelle ( – )
Gefördertes Einzelprojekt: DFG - Sachbeihilfe/Einzelförderung | Förderkennzeichen: KR 3790/11-1 - Programmierbare integrierte magneto-phononische Schaltkreise ( – )
Gefördertes Einzelprojekt: DFG - Sachbeihilfe/Einzelförderung | Förderkennzeichen: KR 3790/10-1 - QUASAR – Quantenakustik mit künstlichen Halbleiteratomen ( – )
Gefördertes Einzelprojekt: DFG - Sachbeihilfe/Einzelförderung | Förderkennzeichen: KR 3790/8-1 - MilliKelvin - Mikrowellen - Photonik-Messsystem ( – )
Gefördertes Einzelprojekt: DFG - Großgeräteinitiativen | Förderkennzeichen: INST 211/ 1044
- INPhO – Integrierte nicht-lineare phononische Schaltkreise mit optomechanischer Schnittstelle ( – )
Publikationen (Auswahl)
Auswahl
- ‘On-chip generation and dynamic piezo-optomechanical rotation of single photons.’ Nature Communications 13: 6998. doi: 10.1038/s41467-022-34372-9. .
- ‘Optomechanical wave mixing by a single quantum dot.’ Optica 8, Nr. 3: 291–300. doi: 10.1364/OPTICA.412201. .
- . . ‘Ultrafast electron cycloids driven by the transverse spin of a surface acoustic wave.’ Science advances 7, Nr. 31: eabf7414. doi: 10.1126/sciadv.abf7414.
- . . ‘Quantum Dot Optomechanics in Suspended Nanophononic Strings.’ Advanced Quantum Technologies 3, Nr. 2: 1900102. doi: 10.1002/qute.201900102.
- . . ‘Real-Time Electron and Hole Transport Dynamics in Halide Perovskite Nanowires.’ Nano Letters 19, Nr. 12: 8701–8707. doi: 10.1021/acs.nanolett.9b03396.
- . . ‘The 2019 surface acoustic waves roadmap.’ Journal of Physics D: Applied Physics 52, Nr. 35: 353001. doi: 10.1088/1361-6463/ab1b04.
- . . ‘Surface acoustic wave regulated single photon emission from a coupled quantum dot–nanocavity system.’ Applied Physics Letters 109, Nr. 3: 033105. doi: 10.1063/1.4959079.
- . . ‘Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3.’ Nature Communications 6, Nr. 1: 8593. doi: 10.1038/ncomms9593.
- . . ‘Fourier synthesis of radiofrequency nanomechanical pulses with different shapes.’ Nature Nanotechnology 10, Nr. 6: 512–516. doi: 10.1038/nnano.2015.72.
- . . ‘Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons.’ Nature Photonics 5, Nr. 10: 605–609. doi: 10.1038/nphoton.2011.208.
Gesamtliste
- . . ‘Heterogeneous integration of superconducting thin films and epitaxial semiconductor heterostructures with Lithium Niobate.’ Journal of Physics D: Applied Physics 56: 365105. doi: 10.1088/1361-6463/acd7f9.
- ‘On-chip generation and dynamic piezo-optomechanical rotation of single photons.’ Nature Communications 13: 6998. doi: 10.1038/s41467-022-34372-9. .
- . . ‘Handy nanoquakes.’ Nature Materials 21: 499–501. doi: 10.1038/s41563-022-01236-y.
- ‘Photon scattering from a quantum acoustically modulated two-level system.’ AVS Quantum Science 4: 011403. doi: 10.1116/5.0077024. .
- . . ‘Quantum Control of Optically Active Artificial Atoms with Surface Acoustic Waves.’ IEEE Transactions on Quantum Engineering 3: 1–17. doi: 10.1109/TQE.2022.3204928.
- ‘Quantum control of optically driven artificial atoms with surface acoustic waves.’ IEEE Transactions on Quantum Engineering 3: 5100217. doi: 10.1109/TQE.2022.3204928. .
- . . ‘High-Dimensional Acousto-optoelectric Correlation Spectroscopy Reveals Coupled Carrier Dynamics in Polytypic Nanowires.’ Physical Review Applied 16, Nr. 3: 034010–034010DO - 10.1103/PhysRevApplied.16.034010. doi: 10.1103/PhysRevApplied.16.034010.
- ‘Optomechanical wave mixing by a single quantum dot.’ Optica 8, Nr. 3: 291–300. doi: 10.1364/OPTICA.412201. .
- . . ‘Sub-nanosecond acousto-electric carrier redistribution dynamics and transport in polytypic GaAs nanowires.’ Nanotechnology 32, Nr. 50: 505209. doi: 10.1088/1361-6528/ac2ac2.
- ‘Resonance-fluorescence spectral dynamics of an acoustically modulated quantum dot.’ Physical Review Research 3: 033197. doi: 10.1103/PhysRevResearch.3.033197. .
- . . ‘Ultrafast electron cycloids driven by the transverse spin of a surface acoustic wave.’ Science advances 7, Nr. 31: eabf7414. doi: 10.1126/sciadv.abf7414.
- . . ‘Integrated quantum dot optomechanics.’ In Photonic and Phononic Properties of Engineered Nanostructures X, edited by , 1128915.: SPIE. doi: 10.1117/12.2544300.
- . . ‘A hybrid (Al)GaAs-LiNbO 3 surface acoustic wave resonator for cavity quantum dot optomechanics.’ Applied Physics Letters 117, Nr. 12: 121106. doi: 10.1063/5.0022542.
- . . ‘Near-infrared saturable and reverse saturable absorption of ion beam synthesized VO2 nanocrystals.’ Optical Materials Express 10, Nr. 7: 1630. doi: 10.1364/OME.396099.
- . . ‘Quantum Dot Optomechanics in Suspended Nanophononic Strings.’ Advanced Quantum Technologies 3, Nr. 2: 1900102. doi: 10.1002/qute.201900102.
- . . ‘Breakdown of Corner States and Carrier Localization by Monolayer Fluctuations in Radial Nanowire Quantum Wells.’ Nano Letters 19, Nr. 5: 3336–3343. doi: 10.1021/acs.nanolett.9b01028.
- . . ‘A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots.’ Applied Physics Letters 115, Nr. 18: 181902. doi: 10.1063/1.5126670.
- . . ‘Real-Time Electron and Hole Transport Dynamics in Halide Perovskite Nanowires.’ Nano Letters 19, Nr. 12: 8701–8707. doi: 10.1021/acs.nanolett.9b03396.
- . . ‘The 2019 surface acoustic waves roadmap.’ Journal of Physics D: Applied Physics 52, Nr. 35: 353001. doi: 10.1088/1361-6463/ab1b04.
- . . ‘Interfacing quantum emitters with propagating surface acoustic waves.’ Journal of Physics D: Applied Physics 51, Nr. 37: 373001. doi: 10.1088/1361-6463/aace3c.
- . . ‘Multiharmonic Frequency-Chirped Transducers for Surface-Acoustic-Wave Optomechanics.’ Physical Review Applied 9, Nr. 1: 014004. doi: 10.1103/PhysRevApplied.9.014004.
- . . ‘Multi-harmonic quantum dot optomechanics in fused LiNbO3 –(Al)GaAs hybrids.’ Journal of Physics D: Applied Physics 50, Nr. 43: 43LT01. doi: 10.1088/1361-6463/aa861a.
- . . ‘Large-area grown MoS2 and its integration in geometrically tunable photonic crystal cavities.’ In Optics InfoBase Conference Papers.
- . . ‘Combined electrical transport and capacitance spectroscopy of a MoS 2 -LiNbO 3 field effect transistor.’ Applied Physics Letters 110, Nr. 2: 023505. doi: 10.1063/1.4973862.
- . . ‘Scalable and Transfer-Free Fabrication of MoS2/SiO2 Hybrid Nanophotonic Cavity Arrays with Quality Factors Exceeding 4000.’ Scientific Reports 7, Nr. 1: 7251. doi: 10.1038/s41598-017-07379-2.
- . . ‘The Native Material Limit of Electron and Hole Mobilities in Semiconductor Nanowires.’ ACS Nano 10, Nr. 5: 4942–4953. doi: 10.1021/acsnano.5b07639.
- . . ‘Thermochromic modulation of surface plasmon polaritons in vanadium dioxide nanocomposites.’ Optics Express 24, Nr. 15: 17321. doi: 10.1364/OE.24.017321.
- . . ‘Surface acoustic wave regulated single photon emission from a coupled quantum dot–nanocavity system.’ Applied Physics Letters 109, Nr. 3: 033105. doi: 10.1063/1.4959079.
- . . ‘Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3.’ Nature Communications 6, Nr. 1: 8593. doi: 10.1038/ncomms9593.
- . . ‘Independent dynamic acousto-mechanical and electrostatic control of individual quantum dots in a LiNbO3-GaAs hybrid.’ Applied Physics Letters 106, Nr. 1: 013107. doi: 10.1063/1.4905477.
- . . ‘Fourier synthesis of radiofrequency nanomechanical pulses with different shapes.’ Nature Nanotechnology 10, Nr. 6: 512–516. doi: 10.1038/nnano.2015.72.
- . . ‘Dynamic acousto-optic control of a strongly coupled photonic molecule.’ Nature Communications 6, Nr. 1: 8540. doi: 10.1038/ncomms9540.
- . . ‘Ultrafast Photodetection in the Quantum Wells of Single AlGaAs/GaAs-Based Nanowires.’ Nano Letters 15, Nr. 10: 6869–6874. doi: 10.1021/acs.nanolett.5b02766.
- . . ‘Alloy Fluctuations Act as Quantum Dot-like Emitters in GaAs-AlGaAs Core–Shell Nanowires.’ ACS Nano 9, Nr. 8: 8335–8343. doi: 10.1021/acsnano.5b04070.
- . . ‘Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite.’ Applied Physics Letters 105, Nr. 7: 071107. doi: 10.1063/1.4893570.
- . . ‘Radio Frequency Electromechanical Control over a Surface Plasmon Polariton Coupler.’ ACS Photonics 1, Nr. 2: 91–95. doi: 10.1021/ph400022u.
- . . ‘Radio frequency occupancy state control of a single nanowire quantum dot.’ Journal of Physics D: Applied Physics 47, Nr. 39: 394011. doi: 10.1088/0022-3727/47/39/394011.
- . . ‘Optical preparation of stable supercooled VO2 nanocrystals: A route towards reconfigurable photonic devices for telecom wavelengths.’ In Optics InfoBase Conference Papers.
- . . ‘Time-resolved coherent X-ray diffraction imaging of surface acoustic waves.’ Journal of Applied Crystallography 47, Nr. 5: 1596–1605. doi: 10.1107/S1600576714016896.
- . . ‘Active plasmonics with surface acousticwaves: Dynamic electro-mechanical control over a surface plasmon polariton launcher.’ In Conference on Lasers and Electro-Optics Europe - Technical Digest.
- . . ‘Dynamic Acoustic Control of Individual Optically Active Quantum Dot-like Emission Centers in Heterostructure Nanowires.’ Nano Letters 14, Nr. 5: 2256–2264. doi: 10.1021/nl4040434.
- . . ‘Collective Lipid Bilayer Dynamics Excited by Surface Acoustic Waves.’ Physical Review Letters 113, Nr. 11: 118102. doi: 10.1103/PhysRevLett.113.118102.
- . . ‘Optical preparation of stable supercooled VO2 nanocrystals: A route towards reconfigurable photonic devices for telecomwavelengths.’ In Conference on Lasers and Electro-Optics Europe - Technical Digest.
- . . ‘Entanglement creation in a quantum-dot–nanocavity system by Fourier-synthesized acoustic pulses.’ Physical Review A 89, Nr. 1: 012327. doi: 10.1103/PhysRevA.89.012327.
- . . ‘Site-Selective Ion Beam Synthesis and Optical Properties of Individual CdSe Nanocrystal Quantum Dots in a SiO 2 Matrix.’ ACS applied materials & interfaces 6, Nr. 3: 1339–1344. doi: 10.1021/am404227x.
- . . ‘Ultrasonically assisted deposition of colloidal crystals.’ Applied Physics Letters 105, Nr. 3: 031113. doi: 10.1063/1.4891171.
- . . ‘Standing surface acoustic waves in LiNbO3 studied by time resolved X-ray diffraction at Petra III.’ AIP Advances 3, Nr. 7: 072127. doi: 10.1063/1.4816801.
- . . ‘Controlling exciton decay dynamics in semiconducting single-walled carbon nanotubes by surface acoustic waves.’ Chemical Physics 413: 39–44. doi: 10.1016/j.chemphys.2012.10.014.
- . . ‘Probing ultrafast carrier tunneling dynamics in individual quantum dots and molecules.’ Annalen der Physik 525, Nr. 1-2: 49–58. doi: 10.1002/andp.201200195.
- . . ‘Surface acoustic wave hybrid devices: High sensitivity conductivity probes and low-jitter single photon sources.’ Contributed to the Sensors + Test, Nürnberg, Deutschland. doi: 10.5162/sensor2013/A5.3.
- . . ‘Quantification of energy losses in organic solar cells from temperature-dependent device characteristics.’ Physical Review B 88, Nr. 23: 235307–. doi: 10.1103/PhysRevB.88.235307.
- . . ‘Acousto-mechanical tuning of photonic crystal nanocavity modes.’ In 2013 IEEE International Ultrasonics Symposium (IUS), 725–728.: Wiley-IEEE Press. doi: 10.1109/ULTSYM.2013.0187.
- . . ‘Time domain investigation of radio frequency acousto-mechanical tuning of photonic crystal nanocavity modes.’ In Optics InfoBase Conference Papers. doi: 10.1109/CLEOE-IQEC.2013.6801882.
- . . ‘Surface acoustic wave-driven carrier dynamics as a contact-less probe for mobilities of photogenerated carriers in undoped nanowires.’ In Optics InfoBase Conference Papers. doi: 10.1109/CLEOE-IQEC.2013.6800948.
- . . ‘Acoustically regulated carrier injection into a single optically active quantum dot.’ Physical Review B 88, Nr. 8: 085307. doi: 10.1103/PhysRevB.88.085307.
- . . ‘High-fidelity optical preparation and coherent Larmor precession of a single hole in an (In,Ga)As quantum dot molecule.’ Physical Review B 85, Nr. 24: 241306. doi: 10.1103/PhysRevB.85.241306.
- . . ‘Surface acoustic wave mediated carrier injection into individual quantum post nano emitters.’ Nanotechnology 23, Nr. 28: 285201. doi: 10.1088/0957-4484/23/28/285201.
- . . ‘Ion beam synthesis of nanothermochromic diffraction gratings with giant switching contrast at telecom wavelengths.’ Applied Physics Letters 100, Nr. 23: 231911. doi: 10.1063/1.4728110.
- . . ‘Probing ultrafast charge and spin dynamics in a quantum dot molecule.’ In Proceedings of SPIE, 826002–826002–9. doi: 10.1117/12.907795.
- . . ‘Surface acoustic wave controlled charge dynamics in a thin InGaAs quantum well.’ JETP Letters 95: 575–580. doi: 10.1134/S0021364012110082.
- . . ‘Electrical Control of Interdot Electron Tunneling in a Double InGaAs Quantum-Dot Nanostructure.’ Physical Review Letters 108, Nr. 19: 197402. doi: 10.1103/PhysRevLett.108.197402.
- . . ‘Erratum: “Ion beam synthesis of nanothermochromic diffraction gratings with giant switching contrast at telecom wavelengths” [Appl. Phys. Lett. 100, 231911 (2012)].’ Applied Physics Letters 101, Nr. 18: 189901. doi: 10.1063/1.4766169.
- . . ‘Surface acoustic wave controlled carrier injection into self-assembled quantum dots and quantum posts.’ Physica Status Solidi (C): Current Topics in Solid State Physics 9, Nr. 2: 407–410. doi: 10.1002/pssc.201100236.
- . . ‘Direct observation of dynamic surface acoustic wave controlled carrier injection into single quantum posts using phase-resolved optical spectroscopy.’ Applied Physics Letters 98, Nr. 2: 23109. doi: 10.1063/1.3541881.
- . . ‘Quantitative excited state spectroscopy of a single InGaAs quantum dot molecule through multi-million-atom electronic structure calculations.’ Nanotechnology 22, Nr. 31: 315709. doi: 10.1088/0957-4484/22/31/315709.
- . . ‘Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons.’ Nature Photonics 5, Nr. 10: 605–609. doi: 10.1038/nphoton.2011.208.
- . . ‘Electrical control of the exciton--biexciton splitting in self-assembled InGaAs quantum dots.’ Nanotechnology 22, Nr. 32: 325202. doi: 10.1088/0957-4484/22/32/325202.
- . . ‘Directional and dynamic modulation of the optical emission of an individual GaAs nanowire using surface acoustic waves.’ Nano Letters 11, Nr. 4: 1512–1517. doi: 10.1021/nl1042775.
- . . ‘Excited state quantum couplings and optical switching of an artificial molecule.’ Physical Review B 84: 081302. doi: 10.1103/PhysRevB.84.081302.
- . . ‘High-frequency tuning of photonic crystal defect cavity modes using surface acoustic waves.’ Contributed to the SPIE Photonics West, San Francisco, USA. doi: 10.1117/12.842710.
- . . ‘Recent progress towards acoustically mediated carrier injection into individual nanostructures for single photon generation.’ Contributed to the SPIE Photonics West, San Francisco, USA. doi: 10.1117/12.842511.
- . . Spins in Optically Active Quantum Dots: Concepts and Methods. Weinheim, Germany: Wiley-VCH Verlag. doi: 10.1002/9783527628988.
- . . ‘Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves.’ Nano Letters 10, Nr. 9: 3399–3407. doi: 10.1021/nl1013053.
- . . ‘Noninvasive probing of persistent conductivity in high quality ZnCdSe/ZnSe quantum wells using surface acoustic waves.’ Journal of Applied Physics 107, Nr. 9: 093717. doi: 10.1063/1.3373415.
- . . ‘Surface acoustic wave mediated coupling of free-space radiation into surface plasmon polaritons on plain metal films.’ Physical Review B 82, Nr. 8: 081416. doi: 10.1103/PhysRevB.82.081416.
- . . ‘Cascaded exciton emission of an individual strain-induced quantum dot.’ Applied Physics Letters 95, Nr. 8: 83122. doi: 10.1063/1.3216807.
- . . ‘Quantum posts with tailored structural, electronic and optical properties for optoelectronic and quantum electronic device applications.’ Solid State Communications 149, Nr. 35-36: 1386–1394. doi: 10.1016/j.ssc.2009.04.037.
- . . ‘A semiconductor exciton memory cell based on a single quantum nanostructure.’ Nano Letters 8, Nr. 6: 1750–1755. doi: 10.1021/nl800911n.
- . . ‘InGaAs quantum posts: Tunable terahertz nanostructures.’ In Optics InfoBase Conference Papers.
- . . ‘Growth and optical properties of self-assembled InGaAs quantum posts.’ Physica E: Low-dimensional Systems and Nanostructures 40, Nr. 6: 1785–1789. doi: 10.1016/j.physe.2007.09.165.
- . . ‘Growth, structural, and optical properties of self-assembled (In,Ga)As quantum posts on GaAs.’ Nano Letters 7, Nr. 3: 802–806. doi: 10.1021/nl070132r.
- . . ‘Optical properties of quantum dots and quantum posts.’ In Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS. doi: 10.1109/LEOS.2007.4382258.
- . . ‘Nonequilibrium carrier dynamics in self-assembled InGaAs quantum dots.’ Physica Status Solidi (B) - Basic Solid State Physics 243, Nr. 10: 2217–2223. doi: 10.1002/pssb.200668006.
- . . ‘Vertical quantum wire realized with double cleaved-edge overgrowth.’ Applied Physics Letters 89, Nr. 3: 32102. doi: 10.1063/1.2222347.
- . . ‘Direct observation of acoustic phonon mediated relaxation between coupled exciton states in a single quantum dot molecule.’ Physical Review B 74, Nr. 12: 121305. doi: 10.1103/PhysRevB.74.121305.
- . . ‘Nonlinear optical response of a single self-assembled InGaAs quantum dot: A femtojoule pump-probe experiment.’ Applied Physics Letters 88, Nr. 20: 203110. doi: 10.1063/1.2205722.
- . . ‘Optically Probing Spin and Charge Interactions in a Tunable Artificial Molecule.’ Physical Review Letters 97, Nr. 7: 76403. doi: 10.1103/PhysRevLett.97.076403.
- . . ‘Spin-preserving ultrafast carrier capture and relaxation in InGaAs quantum dots.’ Applied Physics Letters 87, Nr. 15: 153113. doi: 10.1063/1.2103399.
- . . ‘Investigation of cavity modes and direct observation of Purcell enhancement in 2D photonic crystal defect microcavities.’ Physica E: Low-dimensional Systems and Nanostructures 26: 351–355. doi: 10.1016/j.physe.2004.08.075.
- . . ‘Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals.’ Physical Review B 71, Nr. 24: 241304. doi: 10.1103/PhysRevB.71.241304.
- . . ‘Direct Observation of Controlled Coupling in an Individual Quantum Dot Molecule.’ Physical Review Letters 94, Nr. 5: 57402. doi: 10.1103/PhysRevLett.94.057402.
- . . ‘Recent advances in exciton-based quantum information processing in quantum dot nanostructures.’ New Journal of Physics 7: 184. doi: 10.1088/1367-2630/7/1/184.
- . . ‘Physics and applications of self-assembled quantum dots.’ Physica Status Solidi (C): Current Topics in Solid State Physics 1, Nr. 8: 2131–2159. doi: 10.1002/pssc.200404764.
- . . ‘Two-color Femtosecond Spectroscopy of Blue-Shifted InAs/AlGaAs Quantum Dots.’ Physica Status Solidi (B) - Basic Solid State Physics 233, Nr. 3: 401–407. doi: 10.1002/1521-3951(200210)233:3401::AID-PSSB401>3.0.CO;2-E.
Wissenschaftliche Vorträge
- Krenner, Hubert (): ‘Quantum Dot Optomechanics’. Arctique PhoQS Summer School (Universität Paderborn, PhoQS Institute), Paderborn, .
- Krenner, Hubert (): ‘Integrated Quantum Dot Optomechanics’. Kolloquium – Sonderforschungsbereich 1224 – Universität Duisburg, Duisburg, .
- Krenner, Hubert (): ‘Integrated Quantum Dot Optomechanics’. META: Metamaterials, Photonic Crystals and Plasmonics, Paris, .
- Krenner, Hubert (): ‘Interfacing quantum dots in coherent elastic waves devices’. 17th International Conference on Phonon Scattering in Condensed Matter, Phonons 2023, Paris, .
- Krenner, Hubert (): ‘Acousto-optoelectronics – driving the motion of carriers in low-dimensional semiconductors’. Institutsseminar Paul-Drude-Institut für Festkörperelektronik (Paul Drude Institut für Festkörperelektronik), Berlin, .
- Krenner, Hubert (): ‘Interfacing single quantum emitters with strain’. Doctoral Training : Optomechanics & Nanophononics (Les Houches School of Physics), Les Houches, .
- Krenner, Hubert (): ‘Quantum Dot Optomechanics’. Quantum Optics Meets Acoustics (Lorentz Center, Universiteit Leiden), Leiden, .
- Krenner, Hubert (): ‘Integrated Quantum Dot Optomechanics’. IEEE International Ultrasoncis Symposium 2022 (IEEE-IUS 2022) (IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society (UFFC)), Venedig, .
- Krenner, Hubert (): ‘Hybrid devices to control light, sound and matter on a chip’. Institutsseminar am Institut für Angewandte Physik, Friedrich-Schiller-Universität Jena, Jena, .
- Bühler, Dominik; Weiß, Matthias; Poveda, Antonio C.; Nysten, Emeline D. S.; Müller, Kai; Finley, Jonathan J.; Santos, Paulo V.; Lima Jr, Mauricio de; Krenner, Hubert J. (): ‘Surface acoustic wave control of a photonic qubit in a quantum dot integrated photonic circuit’. International Conference Optics of Excitons in Confined Systems (OECS17) (TU Dortmund), Dortmund, .
Professor Dr. Hubert Krenner
Professor