Publikationen
- . . Heterogeneous integration of superconducting thin films and epitaxial semiconductor heterostructures with Lithium Niobate arXiv. doi: 10.48550/arXiv.2302.02712. [eingereicht / in Begutachtung]
- . . ‘Handy nanoquakes.’ Nature Materials 21: 499–501. doi: 10.1038/s41563-022-01236-y.
- . . ‘Photon scattering from a quantum acoustically modulated two-level system.’ AVS Quantum Science 4: 011403. doi: 10.1116/5.0077024.
- ‘On-chip generation and dynamic piezo-optomechanical rotation of single photons.’ Nature Communications 13: 6998. doi: 10.1038/s41467-022-34372-9. .
- . . ‘Quantum Control of Optically Active Artificial Atoms with Surface Acoustic Waves.’ IEEE Transactions on Quantum Engineering 3: 1–17. doi: 10.1109/TQE.2022.3204928.
- . . ‘Optomechanical wave mixing by a single quantum dot.’ Optica 8: 291. doi: 10.1364/OPTICA.412201.
- . . ‘Sub-nanosecond acousto-electric carrier redistribution dynamics and transport in polytypic GaAs nanowires.’ Nanotechnology 32, Nr. 50: 505209. doi: 10.1088/1361-6528/ac2ac2.
- . . ‘Resonance-fluorescence spectral dynamics of an acoustically modulated quantum dot.’ Physical Review Research 3, Nr. 3: 033197. doi: 10.1103/PhysRevResearch.3.033197.
- . . ‘High-Dimensional Acousto-optoelectric Correlation Spectroscopy Reveals Coupled Carrier Dynamics in Polytypic Nanowires.’ Physical Review Applied 16, Nr. 3: 034010–034010DO - 10.1103/PhysRevApplied.16.034010. doi: 10.1103/PhysRevApplied.16.034010.
- . . ‘Ultrafast electron cycloids driven by the transverse spin of a surface acoustic wave.’ Science Advances 7, Nr. 31: eabf7414. doi: 10.1126/sciadv.abf7414.
- . . ‘Integrated quantum dot optomechanics.’ In Photonic and Phononic Properties of Engineered Nanostructures X, edited by , 1128915.: SPIE. doi: 10.1117/12.2544300.
- . . ‘A hybrid (Al)GaAs-LiNbO 3 surface acoustic wave resonator for cavity quantum dot optomechanics.’ Applied Physics Letters 117, Nr. 12: 121106. doi: 10.1063/5.0022542.
- . . ‘Near-infrared saturable and reverse saturable absorption of ion beam synthesized VO2 nanocrystals.’ Optical Materials Express 10, Nr. 7: 1630. doi: 10.1364/OME.396099.
- . . ‘Quantum Dot Optomechanics in Suspended Nanophononic Strings.’ Advanced Quantum Technologies 3, Nr. 2: 1900102. doi: 10.1002/qute.201900102.
- . . ‘Breakdown of Corner States and Carrier Localization by Monolayer Fluctuations in Radial Nanowire Quantum Wells.’ Nano Letters 19, Nr. 5: 3336–3343. doi: 10.1021/acs.nanolett.9b01028.
- . . ‘A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots.’ Applied Physics Letters 115, Nr. 18: 181902. doi: 10.1063/1.5126670.
- . . ‘Real-Time Electron and Hole Transport Dynamics in Halide Perovskite Nanowires.’ Nano Letters 19, Nr. 12: 8701–8707. doi: 10.1021/acs.nanolett.9b03396.
- . . ‘The 2019 surface acoustic waves roadmap.’ Journal of Physics D: Applied Physics 52, Nr. 35: 353001. doi: 10.1088/1361-6463/ab1b04.
- . . ‘Interfacing quantum emitters with propagating surface acoustic waves.’ Journal of Physics D: Applied Physics 51, Nr. 37: 373001. doi: 10.1088/1361-6463/aace3c.
- . . ‘Multiharmonic Frequency-Chirped Transducers for Surface-Acoustic-Wave Optomechanics.’ Physical Review Applied 9, Nr. 1: 014004. doi: 10.1103/PhysRevApplied.9.014004.
- . . ‘Multi-harmonic quantum dot optomechanics in fused LiNbO3 –(Al)GaAs hybrids.’ Journal of Physics D: Applied Physics 50, Nr. 43: 43LT01. doi: 10.1088/1361-6463/aa861a.
- . . ‘Large-area grown MoS2 and its integration in geometrically tunable photonic crystal cavities.’ In Optics InfoBase Conference Papers.
- . . ‘Combined electrical transport and capacitance spectroscopy of a MoS 2 -LiNbO 3 field effect transistor.’ Applied Physics Letters 110, Nr. 2: 023505. doi: 10.1063/1.4973862.
- . . ‘Scalable and Transfer-Free Fabrication of MoS2/SiO2 Hybrid Nanophotonic Cavity Arrays with Quality Factors Exceeding 4000.’ Scientific Reports 7, Nr. 1: 7251. doi: 10.1038/s41598-017-07379-2.
- . . ‘The Native Material Limit of Electron and Hole Mobilities in Semiconductor Nanowires.’ ACS Nano 10, Nr. 5: 4942–4953. doi: 10.1021/acsnano.5b07639.
- . . ‘Thermochromic modulation of surface plasmon polaritons in vanadium dioxide nanocomposites.’ Optics Express 24, Nr. 15: 17321. doi: 10.1364/OE.24.017321.
- . . ‘Surface acoustic wave regulated single photon emission from a coupled quantum dot–nanocavity system.’ Applied Physics Letters 109, Nr. 3: 033105. doi: 10.1063/1.4959079.
- . . ‘Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3.’ Nature Communications 6, Nr. 1: 8593. doi: 10.1038/ncomms9593.
- . . ‘Independent dynamic acousto-mechanical and electrostatic control of individual quantum dots in a LiNbO3-GaAs hybrid.’ Applied Physics Letters 106, Nr. 1: 013107. doi: 10.1063/1.4905477.
- . . ‘Fourier synthesis of radiofrequency nanomechanical pulses with different shapes.’ Nature Nanotechnology 10, Nr. 6: 512–516. doi: 10.1038/nnano.2015.72.
- . . ‘Dynamic acousto-optic control of a strongly coupled photonic molecule.’ Nature Communications 6, Nr. 1: 8540. doi: 10.1038/ncomms9540.
- . . ‘Ultrafast Photodetection in the Quantum Wells of Single AlGaAs/GaAs-Based Nanowires.’ Nano Letters 15, Nr. 10: 6869–6874. doi: 10.1021/acs.nanolett.5b02766.
- . . ‘Alloy Fluctuations Act as Quantum Dot-like Emitters in GaAs-AlGaAs Core–Shell Nanowires.’ ACS Nano 9, Nr. 8: 8335–8343. doi: 10.1021/acsnano.5b04070.
- . . ‘Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite.’ Applied Physics Letters 105, Nr. 7: 071107. doi: 10.1063/1.4893570.
- . . ‘Radio Frequency Electromechanical Control over a Surface Plasmon Polariton Coupler.’ ACS Photonics 1, Nr. 2: 91–95. doi: 10.1021/ph400022u.
- . . ‘Radio frequency occupancy state control of a single nanowire quantum dot.’ Journal of Physics D: Applied Physics 47, Nr. 39: 394011. doi: 10.1088/0022-3727/47/39/394011.
- . . ‘Optical preparation of stable supercooled VO2 nanocrystals: A route towards reconfigurable photonic devices for telecom wavelengths.’ In Optics InfoBase Conference Papers.
- . . ‘Time-resolved coherent X-ray diffraction imaging of surface acoustic waves.’ Journal of Applied Crystallography 47, Nr. 5: 1596–1605. doi: 10.1107/S1600576714016896.
- . . ‘Active plasmonics with surface acousticwaves: Dynamic electro-mechanical control over a surface plasmon polariton launcher.’ In Conference on Lasers and Electro-Optics Europe - Technical Digest.
- . . ‘Dynamic Acoustic Control of Individual Optically Active Quantum Dot-like Emission Centers in Heterostructure Nanowires.’ Nano Letters 14, Nr. 5: 2256–64. doi: 10.1021/nl4040434.
- . . ‘Collective Lipid Bilayer Dynamics Excited by Surface Acoustic Waves.’ Physical Review Letters 113, Nr. 11: 118102. doi: 10.1103/PhysRevLett.113.118102.
- . . ‘Optical preparation of stable supercooled VO2 nanocrystals: A route towards reconfigurable photonic devices for telecomwavelengths.’ In Conference on Lasers and Electro-Optics Europe - Technical Digest.
- . . ‘Entanglement creation in a quantum-dot–nanocavity system by Fourier-synthesized acoustic pulses.’ Physical Review A 89, Nr. 1: 012327. doi: 10.1103/PhysRevA.89.012327.
- . . ‘Site-Selective Ion Beam Synthesis and Optical Properties of Individual CdSe Nanocrystal Quantum Dots in a SiO 2 Matrix.’ ACS applied materials & interfaces 6, Nr. 3: 1339–1344. doi: 10.1021/am404227x.
- . . ‘Ultrasonically assisted deposition of colloidal crystals.’ Applied Physics Letters 105, Nr. 3: 031113. doi: 10.1063/1.4891171.
- . . ‘Standing surface acoustic waves in LiNbO3 studied by time resolved X-ray diffraction at Petra III.’ AIP Advances 3, Nr. 7: 072127. doi: 10.1063/1.4816801.
- . . ‘Controlling exciton decay dynamics in semiconducting single-walled carbon nanotubes by surface acoustic waves.’ Chemical Physics 413: 39–44. doi: 10.1016/j.chemphys.2012.10.014.
- . . ‘Probing ultrafast carrier tunneling dynamics in individual quantum dots and molecules.’ Annalen der Physik 525, Nr. 1-2: 49–58. doi: 10.1002/andp.201200195.
- . . ‘Quantification of energy losses in organic solar cells from temperature-dependent device characteristics.’ Physical Review B 88, Nr. 23: 235307–. doi: 10.1103/PhysRevB.88.235307.
- . . ‘Acousto-mechanical tuning of photonic crystal nanocavity modes.’ In 2013 IEEE International Ultrasonics Symposium (IUS), 725–728.: IEEE. doi: 10.1109/ULTSYM.2013.0187.
- . . ‘Time domain investigation of radio frequency acousto-mechanical tuning of photonic crystal nanocavity modes.’ In Optics InfoBase Conference Papers. doi: 10.1109/CLEOE-IQEC.2013.6801882.
- . . ‘Surface acoustic wave-driven carrier dynamics as a contact-less probe for mobilities of photogenerated carriers in undoped nanowires.’ In Optics InfoBase Conference Papers. doi: 10.1109/CLEOE-IQEC.2013.6800948.
- . . ‘Acoustically regulated carrier injection into a single optically active quantum dot.’ Physical Review B 88, Nr. 8: 085307. doi: 10.1103/PhysRevB.88.085307.
- . . ‘High-fidelity optical preparation and coherent Larmor precession of a single hole in an (In,Ga)As quantum dot molecule.’ Physical Review B 85, Nr. 24: 241306. doi: 10.1103/PhysRevB.85.241306.
- . . ‘Surface acoustic wave mediated carrier injection into individual quantum post nano emitters.’ Nanotechnology 23, Nr. 28: 285201. doi: 10.1088/0957-4484/23/28/285201.
- . . ‘Ion beam synthesis of nanothermochromic diffraction gratings with giant switching contrast at telecom wavelengths.’ Applied Physics Letters 100, Nr. 23: 231911. doi: 10.1063/1.4728110.
- . . ‘Probing ultrafast charge and spin dynamics in a quantum dot molecule.’ In Proceedings of SPIE, 826002–826002–9. doi: 10.1117/12.907795.
- . . ‘Surface acoustic wave controlled charge dynamics in a thin InGaAs quantum well.’ JETP Letters 95: 575–580. doi: 10.1134/S0021364012110082.
- . . ‘Electrical Control of Interdot Electron Tunneling in a Double InGaAs Quantum-Dot Nanostructure.’ Physical Review Letters 108, Nr. 19: 197402. doi: 10.1103/PhysRevLett.108.197402.
- . . ‘Erratum: “Ion beam synthesis of nanothermochromic diffraction gratings with giant switching contrast at telecom wavelengths” [Appl. Phys. Lett. 100, 231911 (2012)].’ Applied Physics Letters 101, Nr. 18: 189901. doi: 10.1063/1.4766169.
- . . ‘Surface acoustic wave controlled carrier injection into self-assembled quantum dots and quantum posts.’ Physica Status Solidi (C): Current Topics in Solid State Physics 9, Nr. 2: 407–410. doi: 10.1002/pssc.201100236.
- . . ‘Direct observation of dynamic surface acoustic wave controlled carrier injection into single quantum posts using phase-resolved optical spectroscopy.’ Applied Physics Letters 98, Nr. 2: 23109. doi: 10.1063/1.3541881.
- . . ‘Quantitative excited state spectroscopy of a single InGaAs quantum dot molecule through multi-million-atom electronic structure calculations.’ Nanotechnology 22, Nr. 31: 315709. doi: 10.1088/0957-4484/22/31/315709.
- . . ‘Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons.’ Nature Photonics 5, Nr. 10: 605–609. doi: 10.1038/nphoton.2011.208.
- . . ‘Electrical control of the exciton--biexciton splitting in self-assembled InGaAs quantum dots.’ Nanotechnology 22, Nr. 32: 325202. doi: 10.1088/0957-4484/22/32/325202.
- . . ‘Directional and dynamic modulation of the optical emission of an individual GaAs nanowire using surface acoustic waves.’ Nano Letters 11, Nr. 4: 1512–1517. doi: 10.1021/nl1042775.
- . . ‘Excited state quantum couplings and optical switching of an artificial molecule.’ Physical Review B 84: 081302. doi: 10.1103/PhysRevB.84.081302.
- . . ‘High-frequency tuning of photonic crystal defect cavity modes using surface acoustic waves.’ Contributed to the SPIE Photonics West, San Francisco, USA. doi: 10.1117/12.842710.
- . . ‘Recent progress towards acoustically mediated carrier injection into individual nanostructures for single photon generation.’ Contributed to the SPIE Photonics West, San Francisco, USA. doi: 10.1117/12.842511.
- . . Spins in Optically Active Quantum Dots: Concepts and Methods. Weinheim, Germany: Wiley-VCH. doi: 10.1002/9783527628988.
- . . ‘Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves.’ Nano Letters 10, Nr. 9: 3399–3407. doi: 10.1021/nl1013053.
- . . ‘Noninvasive probing of persistent conductivity in high quality ZnCdSe/ZnSe quantum wells using surface acoustic waves.’ Journal of Applied Physics 107, Nr. 9: 093717. doi: 10.1063/1.3373415.
- . . ‘Surface acoustic wave mediated coupling of free-space radiation into surface plasmon polaritons on plain metal films.’ Physical Review B 82, Nr. 8: 081416. doi: 10.1103/PhysRevB.82.081416.
- . . ‘Cascaded exciton emission of an individual strain-induced quantum dot.’ Applied Physics Letters 95, Nr. 8: 83122. doi: 10.1063/1.3216807.
- . . ‘Quantum posts with tailored structural, electronic and optical properties for optoelectronic and quantum electronic device applications.’ Solid State Communications 149, Nr. 35-36: 1386–1394. doi: 10.1016/j.ssc.2009.04.037.
- . . ‘A semiconductor exciton memory cell based on a single quantum nanostructure.’ Nano Letters 8, Nr. 6: 1750–1755. doi: 10.1021/nl800911n.
- . . ‘InGaAs quantum posts: Tunable terahertz nanostructures.’ In Optics InfoBase Conference Papers.
- . . ‘Growth and optical properties of self-assembled InGaAs quantum posts.’ Physica E: Low-dimensional Systems and Nanostructures 40, Nr. 6: 1785–1789. doi: 10.1016/j.physe.2007.09.165.
- . . ‘Growth, structural, and optical properties of self-assembled (In,Ga)As quantum posts on GaAs.’ Nano Letters 7, Nr. 3: 802–6. doi: 10.1021/nl070132r.
- . . ‘Optical properties of quantum dots and quantum posts.’ In Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS. doi: 10.1109/LEOS.2007.4382258.
- . . ‘Nonequilibrium carrier dynamics in self-assembled InGaAs quantum dots.’ Physica Status Solidi (B) - Basic Solid State Physics 243, Nr. 10: 2217–2223. doi: 10.1002/pssb.200668006.
- . . ‘Vertical quantum wire realized with double cleaved-edge overgrowth.’ Applied Physics Letters 89, Nr. 3: 32102. doi: 10.1063/1.2222347.
- . . ‘Direct observation of acoustic phonon mediated relaxation between coupled exciton states in a single quantum dot molecule.’ Physical Review B 74, Nr. 12: 121305. doi: 10.1103/PhysRevB.74.121305.
- . . ‘Nonlinear optical response of a single self-assembled InGaAs quantum dot: A femtojoule pump-probe experiment.’ Applied Physics Letters 88, Nr. 20: 203110. doi: 10.1063/1.2205722.
- . . ‘Optically Probing Spin and Charge Interactions in a Tunable Artificial Molecule.’ Physical Review Letters 97, Nr. 7: 76403. doi: 10.1103/PhysRevLett.97.076403.
- . . ‘Spin-preserving ultrafast carrier capture and relaxation in InGaAs quantum dots.’ Applied Physics Letters 87, Nr. 15: 153113. doi: 10.1063/1.2103399.
- . . ‘Investigation of cavity modes and direct observation of Purcell enhancement in 2D photonic crystal defect microcavities.’ Physica E: Low-dimensional Systems and Nanostructures 26: 351–355. doi: 10.1016/j.physe.2004.08.075.
- . . ‘Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals.’ Physical Review B 71, Nr. 24: 241304. doi: 10.1103/PhysRevB.71.241304.
- . . ‘Direct Observation of Controlled Coupling in an Individual Quantum Dot Molecule.’ Physical Review Letters 94, Nr. 5: 57402. doi: 10.1103/PhysRevLett.94.057402.
- . . ‘Recent advances in exciton-based quantum information processing in quantum dot nanostructures.’ New Journal of Physics 7: 184. doi: 10.1088/1367-2630/7/1/184.
- . . ‘Physics and applications of self-assembled quantum dots.’ Physica Status Solidi (C): Current Topics in Solid State Physics 1, Nr. 8: 2131–2159. doi: 10.1002/pssc.200404764.
- . . ‘Two-color Femtosecond Spectroscopy of Blue-Shifted InAs/AlGaAs Quantum Dots.’ Physica Status Solidi (B) - Basic Solid State Physics 233, Nr. 3: 401–407. doi: 10.1002/1521-3951(200210)233:3401::AID-PSSB401>3.0.CO;2-E.