Portrait Johannes Kasnatscheew
© MEET/Lessmann

KASNATSCHEEW, Dr. Johannes


MEET - Münster Electrochemical Energy Technology
Room: L.2.017
Corrensstraße 46
D-48149 Muenster

Phone: +49 251 83 -36826
johannes.kasnatscheew@uni-muenster.de

Position: Manager of Division Materials

Focus of research: Electrolyte, Materials

Topic of thesis: Determination of Failure Sources in Lithium-ion Batteries at High Voltage and Their Mitigation

 
  • Publications

    • , , , , , , , , , and . . “Elucidating ‘Transfer-Lithiation’ from Graphite to Si within Composite Anodes during Pre-Lithiation and Regular Charging.ChemSusChem, 18 doi: 10.1002/cssc.202401290.
    • , , , , and . . “In operando Raman Microscopy of Cu/Li1. 5Al0. 5Ge1. 5 (PO4) 3 Solid Electrolyte Interphase.Chemical communications, 61 doi: 10.1039/D4CC05718J.
    • , , , , , , and . . “Investigating the Existence of a Cathode Electrolyte Interphase on Graphite in Dual-Ion Batteries with LiPF6-based Aprotic Electrolytes and Unraveling the Origin of Capacity Fade.Advanced Energy and Sustainability Research, 6 doi: 10.1002/aesr.202400330.
    • , , , , , , , , , , , and . . “Evaluation of Alternative Lithium Salts for High-Voltage Lithium Ion Batteries: Higher Relevance of Plated Li Morphology than the Amount of Electrode Crosstalk.Small, 21 doi: 10.1002/smll.202410762.
    • , , , , , , , , , , , , , and . . “Evaluating the influence of surface reconstruction layers in Li/Mn-Rich layered oxide (LMR) electrodes on the anionic redox reactions and electrochemical properties of LMR || Li Cells.Energy Storage Materials, 75 doi: 10.1016/j.ensm.2025.104001.

    Articles in Scientific Journals, Newspapers or Magazines
    Research Articles (Journals)
    • , , , , , , , , , and . . “Systematic “Apple-to-Apple” Comparison of Single-Crystal and Polycrystalline Ni-Rich Cathode Active Materials: From Comparable Synthesis to Comparable Electrochemical Conditions.Small structures, 7 2400119. doi: 10.1002/sstr.202400119.
    • , , , , , , , , , , , , and . . “Direct Recycling at the Material Level: Unravelling Challenges and Opportunities through a Case Study on Spent Ni-Rich Layered Oxide-Based Cathodes.Advanced Energy Materials, 14: 2400840. doi: 10.1002/aenm.202400840.
    • , , and . . “Practical relevance of charge transfer resistance at the Li metal electrode|electrolyte interface in batteries?Journal of Solid State Electrochemistry, 4 doi: 10.1007/s10008-023-05792-4.
    • , , , , , , , , , and . . “Decoding the manganese-ion storage properties of Na1.25V3O8 nano-rod.Journal of Materials Chemistry A, 12 doi: 10.1039/D4TA00480A.
    • , , , , , , and . . “Prelithiated Carbon Nanotube-Embedded Silicon-based Negative Electrodes for High-Energy Density Lithium-Ion Batteries.Advanced Materials Interfaces, 11 doi: 10.1002/admi.202400024.
    • , , , , , , , , and . . “Radical Polymer-based Positive Electrodes for Dual-Ion Batteries: Enhancing Performance with γ-Butyrolactone-based Electrolytes.ChemSusChem, 17 e202400626. doi: 10.1002/cssc.202400626.
    • , , , , , , , , and . . “Toward High Specific Energy and Long Cycle Life Li/Mn-Rich Layered Oxide || Graphite Lithium-Ion Batteries via Optimization of Voltage Window.Advanced Energy and Sustainability Research, 5 (8) 2400129. doi: 10.1002/aesr.202400129.
    • , , , , , , , and . . “Enabling Aqueous Processing of Ni-Rich Layered Oxide Cathodes via Systematic Modification of Biopolymer (Polysaccharide)-Based Binders.Advanced Energy and Sustainability Research, online first 2400117. doi: 10.1002/aesr.202400117.
    • , , , , , , , and . . “Ultrahigh Ni-Rich (90%) Layered Oxide-Based Cathode Active Materials: The Advantages of Tungsten (W) Incorporation in the Precursor Cathode Active Material.SMALL SCIENCE, online first 2400135. doi: 10.1002/smsc.202400135.
    • , , , , , , , , and . . “Assessment of “Inverse” Cross-Talk (Anode to Cathode) in High-Voltage Li/Mn-Rich Layered Oxide || Li Cells.Advanced Functional Materials, 34 doi: 10.1002/adfm.202413958.
    • , , , , , , , , , and . . “Investigating the Limit of Lithium Difluorophosphate Electrolyte Additive for High-Voltage Li/Mn-Rich Layered Oxide || Graphite Cells.Energy & Environmental Materials, 8 doi: 10.1002/eem2.12835.
    Non-Scientific Contributions (Journals)
    • , , , , , , , , and . . “Toward High Specific Energy and Long Cycle Life Li/Mn-Rich Layered Oxide || Graphite Lithium-Ion Batteries via Optimization of Voltage Window.Advanced Energy and Sustainability Research, 5 doi: 10.1002/aesr.202470020.
    • , , , , , , , , and . . “Front Cover - High- Experimental Considerations of the Chemical Pre-Lithiation Process via Lithium Arene Complex Solutions on the Example of Si-based Anodes for Lithium Ion Batteries.Advanced Energy and Sustainability Research, 5 doi: 10.1002/aesr.202470003.
    • , , , , , and . . “Front Cover - Enabling Aqueous Processing of Ni-Rich Layered Oxide Cathodes via Systematic Modification of Biopolymer (Polysaccharide)-Based Binders.Advanced Energy and Sustainability Research, 5 doi: 10.1002/aesr.202470023.
    • , , , , , , , , and . . “Front Cover - Radical Polymer-based Positive Electrodes for Dual-Ion Batteries: Enhancing Performance with γ-Butyrolactone-based Electrolytes (ChemSusChem 17/2024).ChemSusChem, 17 doi: 10.1002/cssc.202481701.
    • , , , , , , , , , , , , and . . “Cover - Direct Recycling at the Material Level: Unravelling Challenges and Opportunities through a Case Study on Spent Ni-Rich Layered Oxide-Based Cathodes.Advanced Energy Materials, 14 doi: 10.1002/aenm.202470150.
    • , , , , , , , and . . “Front Cover - Ultrahigh Ni-Rich (90%) Layered Oxide-Based Cathode Active Materials: The Advantages of Tungsten (W) Incorporation in the Precursor Cathode Active Material.SMALL SCIENCE, 4 doi: 10.1002/smsc.202470039.
    • , , , , , , , , , and . . “Cover - Systematic “Apple-to-Apple” Comparison of Single-Crystal and Polycrystalline Ni-Rich Cathode Active Materials: From Comparable Synthesis to Comparable Electrochemical Conditions.Small structures, 5 doi: 10.1002/sstr.202470055.
    Posters
    • , , , , , , and . . “Pre-lithiation of Si electrodes using physical vapor deposition.” contributed to the Advanced Battery Power, Münster
    • , , , , , , and . . “Effect of Lithium Vapor Deposition on the Performance of High Capacity Silicon Electrodes.” contributed to the Advanced Automotive Battery Conference (AABC Europe), Strasbourg
    • , , , , , , and . . “Vacuum thermal evaporation in battery research: insights and case studies.” contributed to the 22nd International Meeting on Lithium Batteries (22nd IMLB), Hongkong
    Review Articles (Book Contributions)
    • , , , and . . “Lithium batteries - Secondary systems – Lithium-ion battery | Pre-lithiation in lithium ion batteries – An overview.” in Encyclopedia of Electrochemical Power Sources, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, edited by Jürgen Garche. Amsterdam: Elsevier. doi: 10.1016/B978-0-323-96022-9.00298-X.
    • , , , , , , , and . “Chapter 12 - Lithium-air batteries.” in Electrochemical Energy Storage Technologies Beyond LI-ION Batteries -Fundamentals, Materials, Devices , edited by Elsevier. Amsterdam: Elsevier. doi: 10.1016/B978-0-443-15514-7.00017-5.

    Research Articles (Journals)
    • , , , , , , , , , and . . “High-Voltage Instability of Vinylene Carbonate (VC): Impact of Formed Poly-VC on Interphases and Toxicity.Advanced Science, 11 (1) 2305282. doi: 10.1002/advs.202305282.
    • , , , , , , , , and . . “Experimental Considerations of the Chemical Prelithiation Process via Lithium Arene Complex Solutions on the Example of Si-Based Anodes for Lithium-Ion Batteries.Advanced Energy and Sustainability Research, 5 doi: 10.1002/aesr.202300177.
    • , , and . . “Perspective on the mechanism of mass transport-induced (tip-growing) Li dendrite formation by comparing conventional liquid organic solvent with solid polymer-based electrolytes.Journal of Electrochemical Science and Technology, 13 (5) doi: 10.5599/jese.1724 .
    Conference Contributions
    Abstracts in Digital Collections (Conferences)
    • , , , , and . . “Formation and Suppression of Toxic Organofluorophosphates in Lithium Ion Batteries: Making the High-Voltage Additive Lithium Difluorophosphate Viable for Commercial Applications.” contribution to the 243rd ECS Meeting, Boston doi: 10.1149/MA2023-012645mtgabs.
    • . . “Pre-Lithiation of Silicon-Based Anode Materials: Concepts and Realization.” contribution to the 244th ECS Meeting, Gothenburg doi: 10.1149/MA2023-022149mtgabs.
    Posters
    • . . “Lithium Metal Thin Films Obtained by Vacuum Thermal Evaporation and Calendering.” contributed to the European Advanced Automotive Battery Conference (13th AABC Europe 2023), Mainz

    Articles in Scientific Journals, Newspapers or Magazines
    Research Articles (Journals)
    • , , , , , , , , , and . . “Suppressing Electrode Crosstalk and Prolonging Cycle Life in High-Voltage Li Ion Batteries: Pivotal Role of Fluorophosphates in Electrolytes.ChemElectroChem, 9 (13) e202200469. doi: 10.1002/celc.202200469.
    • , , , , , and . “Single-Ion versus Dual-Ion Conducting Electrolytes: The Relevance of Concentration Polarization in Solid-State Batteries.ACS applied materials & interfaces, 14 (9): 1155911566. doi: 10.1021/acsami.2c00084.
    • , , , , , , , and . . “Lithium Difluorophosphate Electrolyte Additive: a Boon for good High Voltage Li Ion Batteries, but a Bane for high Thermal Stability and low Toxicity: Towards a Synergistic Dual-Additive Approach with Fluoroethylene Carbonate to Circumvent this Dilemma.ChemSusChem, 16 (6) e202202189. doi: 10.1002/cssc.202202189.
    • , , , and . . “Different Efforts but Similar Insights in Battery R&D: Electrochemical Impedance Spectroscopy vs Galvanostatic (Constant Current) Technique.Chemistry of Materials, 34 (23): 1027210278. doi: 10.1021/acs.chemmater.2c02376.
    Non-Scientific Contributions (Journals)
    • , , , , , , , , , and . . “Cover Picture "Suppressing Electrode Crosstalk and Prolonging Cycle Life in High-Voltage Li Ion Batteries: Pivotal Role of Fluorophosphates in Electrolytes".ChemElectroChem, 9 (13) e202200579. doi: 10.1002/celc.202200579.
    Posters
    • , , , and . . “Understanding the Performance Boost of High Voltage Li-Ion Batteries with EC-Eliminated (“EC-Free”) Electrolytes.” contributed to the IMLB 2022, Sydney

    Research Articles (Journals)
    • , , , , , , , , , , , , and . . “Understanding the Role of Commercial Separators and their Reactivity towards LiPF6 on the Failure Mechanism of High-Voltage NCM523 || Graphite Lithium Ion Cells.Advanced Energy Materials, 12 (2): 2102599. doi: 10.1002/aenm.202102599.
    • , , , , , , , , , and . . “Re-evaluating common electrolyte additives for high-voltage lithium ion batteries.Cell Reports Physical Science, 2 (8): 100521. doi: 10.1016/j.xcrp.2021.100521.
    • , , , and . “Realizing poly(ethylene oxide) as a polymer for solid electrolytes in high voltage lithium batteries via simple modification of the cell setup.Materials Advances, 2 doi: 10.1039/d1ma00009h.
    • , and . “The Sand equation and its enormous practical relevance for solid-state lithium metal batteries.Materials Today, 44 doi: 10.1016/j.mattod.2020.11.025.
    • , , , , , , , , , , , and . “On the Beneficial Impact of Li2CO3 as Electrolyte Additive in NCM523 parallel to Graphite Lithium Ion Cells Under High-Voltage Conditions.Advanced Energy Materials, 11 doi: 10.1002/aenm.202003756.
    • , , , , , , , , , and . “Understanding the Outstanding High-Voltage Performance of NCM523||Graphite Lithium Ion Cells after Elimination of Ethylene Carbonate Solvent from Conventional Electrolyte.Advanced Energy Materials, 11 doi: 10.1002/aenm.202003738.
    • , , , and . “Area Oversizing of Lithium Metal Electrodes in Solid-State Batteries: Relevance for Overvoltage and thus Performance?ChemSusChem, 14 doi: 10.1002/cssc.202100213.
    • , , , , , , , , and . “Prospects and limitations of single-crystal cathode materials to overcome cross-talk phenomena in high-voltage lithium ion cells.Journal of Materials Chemistry A, 9 doi: 10.1039/d0ta11775g.
    • , , , , , , and . “Evaluating the Passivation Layer of Freshly Cleaved Silicon Surfaces by Binary Silane-Based Electrolytes.Batteries & Supercaps, 4 doi: 10.1002/batt.202100106.
    • , , , , , , , , , , , , and . “Fast Charging of Lithium-Ion Batteries: A Review of Materials Aspects.Advanced Energy Materials, 11 doi: 10.1002/aenm.202101126.
    • , , , , and . “Pragmatic Approaches to Correlate between the Physicochemical Properties of a Linear Poly(ethylene oxide)-Based Solid Polymer Electrolyte and the Performance in a High-Voltage Li-Metal Battery.Journal of Physical Chemistry C, 125 doi: 10.1021/acs.jpcc.1c03614.
    • , , , , , , , , and . “Demonstrating Apparently Inconspicuous but Sensitive Impacts on the Rollover Failure of Lithium-Ion Batteries at a High Voltage.ACS applied materials & interfaces, 13 (48): 5724157251. doi: 10.1021/acsami.1c17408.
    Non-Scientific Contributions (Journals)
    • , , , , , , , and . . “Front Cover: Exploiting the Degradation Mechanism of NCM523||Lithium‐Ion Full Cells Operated at High Voltage.ChemSusChem, 2 doi: 10.1002/cssc.202002871.
    • , , , , , , , and . . “Cover Profile of Front Cover: Exploiting the Degradation Mechanism of NCM523||Lithium‐Ion Full Cells Operated at High Voltage.ChemSusChem, 2 doi: 10.1002/cssc.202002870.
    • , , , , , , , , , , , and . . “Front cover - On the Beneficial Impact of Li2CO3 as Electrolyte Additive in NCM523 ∥ Graphite Lithium Ion Cells Under High‐Voltage Conditions.Advanced Energy Materials, 10 doi: 10.1002/aenm.202170039.
    • , , , , , , , , , and . . “Prospects and Limitations of Single-Crystal Cathode Materials to Overcome Cross-Talk Phenomena in High-Voltage Lithium Ion Cells.Journal of Materials Chemistry A, 9 doi: 10.1039/D1TA90066H.
    • , , , , , , , , , and . . “Front Cover - Understanding the Outstanding High‐Voltage Performance of NCM523||Graphite Lithium Ion Cells after Elimination of Ethylene Carbonate Solvent from Conventional Electrolyte.Advanced Energy Materials, 14 doi: 10.1002/aenm.202170053.
    • , , , and . . “Fron Cover - Area Oversizing of Lithium Metal Electrodes in Solid-State Batteries: Relevance for Overvoltage and thus Performance?ChemSusChem, 14 doi: 10.1002/cssc.202100779.
    • , , , and . . “Cover Profile of Front Cover - Area Oversizing of Lithium Metal Electrodes in Solid-State Batteries: Relevance for Overvoltage and thus Performance?ChemSusChem, 14 doi: 10.1002/cssc.202100778.
    • , , , and . . “Front Cover - The Sand Equation and its Enormous Practical Relevance for Solid-State Lithium Metal Batteries.Materials Today, 44 doi: 10.1016/j.mattod.2021.02.014.
    • , , , and . . “Back Cover - Realizing Poly(Ethylene Oxide) as a Polymer for Solid Electrolytes in High Voltage Lithium Batteries via simple Modification of the Cell Setup.Materials Advances, 2 doi: 10.1039/D1MA90054D.
    • , , , and . . “Cover - Pragmatic Approaches to Correlate between the Physicochemical Properties of a Linear Poly(ethylene oxide)-Based Solid Polymer Electrolyte and the Performance in a High-Voltage Li-Metal Battery.Journal of Physical Chemistry C, 125 doi: 10.1021/acs.jpcc.1c03614 .

    • , , , , , , , , and . . “Identical Materials but Different Effects of Film-Forming Electrolyte Additives in Li Ion Batteries: Performance of Benchmark System as the Key.Chemistry of Materials, 32 (15): 62796284. doi: 10.1021/acs.chemmater.0c01952.
    • , , , , , and . . “Poly(Ethylene Oxide)-based Electrolyte for Solid-State-Lithium-Batteries with High Voltage Positive Electrodes: Evaluating the Role of Electrolyte Oxidation in Rapid Cell Failure.Scientific Reports, 10 doi: 10.1038/s41598-020-61373-9.
    • , , , , , , , and . “High-Voltage All-Solid-State Lithium Battery with Sulfide-Based Electrolyte: Challenges for the Construction of a Bipolar Multicell Stack and How to Overcome Them.ACS Applied Energy Materials, 3 doi: 10.1021/acsaem.0c00041.
    • , , , and . “Elimination of “Voltage Noise” of Poly (Ethylene Oxide)-Based Solid Electrolytes in High-Voltage Lithium Batteries: Linear versus Network Polymers.iScience, 23 doi: 10.1016/j.isci.2020.101225.
    • , , , , , , and . “Conventional Electrolyte and Inactive Electrode Materials in Lithium-Ion Batteries: Determining Cumulative Impact of Oxidative Decomposition at High Voltage.ChemSusChem, 13 doi: 10.1002/cssc.202001530.
    • , , , , and . “Effective Optimization of High Voltage Solid-State Lithium Batteries by Using Poly(ethylene oxide)-Based Polymer Electrolyte with Semi-Interpenetrating Network.Advanced Functional Materials, 30 doi: 10.1002/adfm.202006289.
    • , , , , , , , and . “Exploiting the Degradation Mechanism of NCM523 parallel to Graphite Lithium-Ion Full Cells Operated at High Voltage.ChemSusChem, 14 doi: 10.1002/cssc.202002113.
    • , , , and . “Kinetical threshold limits in solid-state lithium batteries: Data on practical relevance of sand equation.Data in Brief, 34 doi: 10.1016/j.dib.2020.106688.
    • , , , , , , and . “Enabling Mg-Based Ionic Liquid Electrolytes for Hybrid Dual-Ion Capacitors.Batteries & Supercaps, 4 doi: 10.1002/batt.202000246.
    • , , , , , and . . “A reality check and tutorial on electrochemical characterization of battery cell materials: How to choose the appropriate cell setup.Materials Today, 32: 131146. doi: 10.1016/j.mattod.2019.07.002.

    • , , , and . . “Investigation of Various Layered Lithium Ion Battery Cathode Materials by Plasma- and X-ray-Based Element Analytical Techniques.Analytical and Bioanalytical Chemistry, 411 (1): 277285. doi: 10.1007/s00216-018-1441-8.
    • , , , , , , , , , , and . . “Study of the Formation of a Solid Electrolyte Interphase (SEI) on a Silicon Nanowire Anode in Liquid Disiloxane Electrolyte with Nitrile End Groups for Lithium-Ion Batteries.Batteries & Supercaps, 2 (3): 213222. doi: 10.1002/batt.201800123.
    • , , , , , , , , , , , , and . . “Disiloxane with nitrile end groups as Co-solvent for electrolytes in lithium-sulfur batteries - A feasible approach to replace LiNO3. Electrochim. Acta 2019, 307, 76-82.Electrochimica Acta, 307: 7682. doi: 10.1016/j.electacta.2019.03.144.
    • , , , and . . “Do Increased Ni Contents in LiNixMnyCozO2 (NMC) Electrodes Decrease Structural and Thermal Stability of Li Ion Batteries? A Thorough Look by Consideration of the Li+ Extraction Ratio.ACS Appl. Energy Mater, 2019 doi: 10.1021/acsaem.9b01440.

    Research Articles (Journals)
    • , , , and . . “Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry.Topics in Current Chemistry, 376 (3): 16. doi: 10.1007/s41061-018-0196-1.
    • , , , , , , , , , and . . “Fluorinated Electrolyte Compound as a Bi-Functional Interphase Additive for Both, Anodes and Cathodes in Lithium-Ion Batteries.Journal of The Electrochemical Society, 165: A3525. doi: 10.1149/2.1221814jes.
    • , , , , , , and . . “Performance tuning of lithium ion battery cells with area-oversized graphite based negative electrodes.Journal of Power Sources, 396: 519526. doi: 10.1016/j.jpowsour.2018.06.043.
    Posters
    • , , , and . . “Application of Total Reflection X-Ray Fluorescence for the Investigation of Transition Metal Dissolution in the Field of Lithium Ion Batteries.” contributed to the European Conference on X-Ray Spectrometry: EXRS2018, Ljubljana
    • , , , , and . . “Total Reflection X-ray Fluorescence in the Analysis of Lithium Ion Battery Materials.” contributed to the CANAS & ESAS 2018, Berlin
    Review Articles (Book Contributions)
    • , , , and . . “Book Chapter - Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry.” in Modeling Electrochemical Energy Storage at the Atomic Scale , edited by Martin Korth. Berlin: Springer Nature. doi: 10.1007/978-3-030-00593-1_2.

    • , , , , , , and . . “Learning from electrochemical data: Evaluation and classification of LiMO2 type based positive electrodes for Li ion batteries by using a novel electrochemical analysis methodology.Energy Technology, xxx doi: 10.1002/ente.201700068.
    • , , , , , , , , and . . “Magnesium-based additives for the cathode slurry to enable high voltage application of lithium-ion batteries.Electrochimica Acta, 228: 917. doi: 10.1016/j.electacta.2017.01.029.
    • , , , , , , and . . “Lithium Ion Battery Cells under Abusive Discharge Conditions: Electrode Potential Development and Interactions between Positive and Negative electrod.Journal of Power Sources, 362: 278282. doi: 10.1016/j.jpowsour.2017.07.044.
    • , , , , , , , and . . “Highly effective solid electrolyte interphase (SEI)-forming electrolyte additive enabling high voltage lithium ion batteries.Chemistry of Materials, 2017 doi: 10.1021/acs.chemmater.7b01977.
    • , , , , , , , and . . “A Tutorial into Practical Capacity and Mass Balancing of Lithium Ion Batteries.Journal of The Electrochemical Society, 164 (12): A2479–A2486. doi: 10.1149/2.0961712jes.
    • , , , , , and . . “Determining oxidative stability of battery electrolytes: Validity of common electrochemical stability window (ESW) data and alternative strategies.Physical Chemistry Chemical Physics, 2017 doi: 10.1039/C7CP03072J.
    • , , , , , , and . . “Improving cycle life of layered lithium transition metal oxide (LiMO2) based positive electrodes for Li ion batteries by smart selection of the electrochemical charge conditions.Journal of Power Sources, 359: 458467. doi: 10.1016/j.jpowsour.2017.05.092.
    • , , , , , , , , and . . “Influence of LiPF6 on the Aluminum Current Collector Dissolution in High Voltage Lithium Ion Batteries after Long-Term Charge/Discharge Experiments.Journal of The Electrochemical Society, 2017 doi: 10.1149/2.0671707jes.
    • , , , , , , and . . “Changing Established Belief on Capacity Fade Mechanisms: Thorough Investigation of LiNi1/3Co1/3Mn1/3O2 under High Voltage Conditions.The Journal of Physical Chemistry C, 121 (3): 1521–1529. doi: 10.1021/acs.jpcc.6b11746.
    • , , , , , and . . “Sodium-Based vs. Lithium-Based Dual-Ion Cells: Electrochemical Study of Anion Intercalation/De-Intercalation into/from Graphite and Metal Plating/Dissolution Behavior.Electrochimica Acta, 228: 18–27. doi: 10.1016/j.electacta.2017.01.034.
    • , , , , , , , and . . “Evaluation of allylboronic acid pinacol ester as effective shutdown overcharge additive for lithium ion cells.Journal of The Electrochemical Society, 164 (2): A168–A172. doi: 10.1149/2.0711702jes.

    Research Articles (Journals)
    • , , , , , , , , and . . “Impact of Selected LiPF6 Hydrolysis Products on the High Voltage Stability of Lithium-Ion Battery Cell.ACS applied materials & interfaces, 8 (45), 30871-30 (45): 3087130878. doi: 10.1021/acsami.6b09164.
    • , , , , , , , , , , , , and . . “The Truth about 1st Cycle Coulombic Efficiency of LiNi1/3Co1/3Mn1/3O2 (NCM) Cathodes.Physical Chemistry Chemical Physics, 18: 39563965. doi: 10.1039/C5CP07718D.
    • , , , , , , and . . “Graphite Recycling from Spent Lithium Ion Batteries.ChemSusChem, 9 (24): 3473–3484. doi: 10.1002/cssc.201601062.
    • , , , , , , , and . . “Learning from Overpotentials in Lithium Ion Batteries: A Case Study on the LiNi1/3Co1/3Mn1/3O2 (NCM) Cathode.Journal of The Electrochemical Society, 163 (14): A2943–A2950. doi: 10.1149/2.0461614jes.
    • , , , , , and . . “Unraveling Transition Metal Dissolution of Li1.04Ni1/3Co1/3Mn1/3O2 (NCM 111) in Lithium Ion Full Cells by Using the Total Reflection X-ray Fluorescence Technique.Journal of Power Sources, 239: 364371. doi: 10.1016/j.jpowsour.2016.08.099.
    • , , , , , , , , , , , , , and . “Counterintuitive Role of Magnesium Salts as Effective Electrolyte Additives for High Voltage Lithium-Ion Batteries.Advanced Materials Interfaces, null (null) doi: 10.1002/admi.201600096.
    Conference Contributions
    Abstracts in Digital Collections (Conferences)
    • , , , , , , and . . “New methodology for investigation of anodic Al-dissolution of state of the art electrolytes and new electrolytes based on alternative solvents and salts.” contribution to the Kraftwerk Batterie, Münster
    • , , , , , , , , , and . “Counterintuitive role of magnesium salts as electrolyte additives on the susceptible cathode/electrolyte interface for high voltage lithium-ion batteries.” contribution to the Kraftwerk Batterie, Münster, Germany
    • , , , , , , , , , and . . “Beneficial influence of LiPF6 hydrolysis products as efficient cathode/electrolyte interface film forming additives for high voltage lithium-ion batteries.” contribution to the Advanced Automotive Batterie Conference (AABC), Mainz, Germany
    Posters
    • , , , , and . . “Analysis of Transition Metal Deposition of Li1Ni1/3Co1/3Mn1/3O2 on Graphitic Anodes using Total Reflection X-Ray Fluorescence (TXRF).” contributed to the 8. Kraftwerk Batterie Fachtagung, Münster
    • , , , , and . . “Unraveling the Transition Metal Dissolution of Li1Ni1/3Co1/3Mn1/3O2 by Deposition on Graphitic Anodes.” contributed to the European Conference on X-Ray Spectrometry: EXRS2016, Göteburg

    Research Articles in Edited Proceedings (Conferences)
    • , , , , , , , , , , , , , , , , , and . . “Towards high-voltage cathodes using new electrolyte approaches.” in Large Lithium Ion Battery Technology and Application Symposium, LLIBTA 2015 and Large EC Capacitor Technology and Application Symposium, ECCAP 2015, edited by EnerTech Cambridge and Innovation Institute Cambridge. Newcastle upon Tyne: Cambridge Scholars Publishing.
    Abstracts in Digital Collections (Conferences)
    • , , , , , , , , , , and . . “Metallic salts: Novel electrolyte additives for high-voltage lithium-ion batteries.” contribution to the Batterieforum Deutschland, Berlin
    • , , , , , , , , , , , , , , and . . “Metal salts: Novel electrolyte additives for high-voltage lithium-ion batteries.” contribution to the Advanced Automotive Batterie Conference (AABC), Mainz

    Articles in Scientific Journals, Newspapers or Magazines
    Research Articles (Journals)
    • , , , , , , and . . “Vinyl sulfones as SEI-forming additives in propylene carbonate based electrolytes for lithium-ion batteries.Electrochemistry Communications, 40: 8083. doi: 10.1016/j.elecom.2014.01.004.
    Review Articles (Journals)
    • , , , , , , , , , , , , , , , , , and . . “Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: Systematic electrochemical characterization and detailed analysis by spectroscopic methods.Progress in Solid State Chemistry, 42: 6584. doi: 10.1016/j.progsolidstchem.2014.04.003.
    Abstracts in Digital Collections (Conferences)
    • , , , , , , and . . “Vinyl sulfones as SEI-forming additives in propylene carbonate based electrolytes for lithium-ion batteries.” contribution to the Kraftwerk Batterie, Münster, Germany

    • , , , , and . “Fluoroethylene carbonate as an additive for γ-butyrolactone based electrolytes.Journal of The Electrochemical Society, 160 (9) doi: 10.1149/2.009309jes.
  • Scientific Talks

    • Kasnatscheew, Johannes : “High Voltage Li Ion Batteries: Identical Additives but Different Impacts in EC-based vs. EC-free electrolyte ”. ECS Prime 2024, Honolulu, .
    • Kasnatscheew, Johannes : “High Voltage Li Ion Battery: Challenges and Prospects on Material Level”. LaMa Seminar - Justus Liebig Universität (JLU), Gießen, .
    • Kasnatscheew, Johannes; : “Li Ion Batteries: "Potentials" and Limits of Cathodes”. MSN Laboratory Seminar, Marrakesh, .
    • Kasnatscheew, Johannes; : “Understanding and Developing High Voltage Li Ion Batteries via Modification of Commercial Electrolytes”. Kraftwerk Batterie, Münster, .
    • Johannes Kasnatscheew : “Towards High Voltage Li-Ion Batteries: The importance of Cathode Design”. Scientific Symposium on Generation 3b Lithium-Ion Batteries 2023, Barcelona, .
    • Kolesnikov, Aleksei; Profanter, Laurin; Lee, Ilha, Haneke, Lukas; Winter, Martin; Kasnatscheew, Johannes : “Pre-Lithiation of Silicon-Based Anode Materials: Concepts and Realization”. , Gothenburg, .
    • Johannes Kasnatscheew : “Li Ion Battery: Potential Fully Exhausted? ”. BACCARA Power Day, Münster, .
    • Johannes Kasnatscheew : “Understanding and developing high voltage Li-ion batteries via modification of commercial electrolytes”. ACS Fall 2023, San Francisco, .
    • Johannes Kasnatscheew; Marco Joes Lüther : “‘Lithium Battery Concepts with High Energy Density, Power and Safety (LiBEST2): Ni-rich‚ single-crystal‘ NCM811 – Synergy between morphology and coating?‘, ”. German-Taiwan workshop, Taipei, .
    • Kasnatscheew, Johannes; Stolz, Lukas; Winter, Martin; : “Physicochemical Interplay in Solid Polymer Electrolytes: Benchmarking, Prospects and Limits in High Voltage Lithium-based Batteries”. , Vancouver, .
    • Kasnatscheew, Johannes; Winter, Martin; : “The real impact of LiPF6/Organic Carbonate-based electrolyte oxidation on specific capacity losses and cycle life at high positive electrode potentials”. AIMES Meeting, Cancun, .
    • Nowak, Sascha; Evertz, Marco; Horsthemke, Fabian; Kasnatscheew, Johannes; Börner, Markus; Winter, Martin : “Unraveling Transition Metal Dissolution of Li1.04Ni1/3Co1/3Mn1/3O2 (NCM 111) in Lithium Ion Full Cells by Using the Total Reflection X-ray Fluorescence Technique”. 9. TXRF und µ-XRF-Workshop, Münster, Deutschland, .
    • Evertz, Marco; Kasnatscheew, Johannes; Winter, Martin; Nowak, Sascha : “Total Reflection X-Ray Fluorescence in the Field of Lithium Ion Batteries – Elemental Detection on Carbonaceous Anodes”. 17th International Conference on Total Reflection X-Ray Fluorescence Analysis and Related Methods (TXRF2017), Brescia, Italien, .
    • Kasnatscheew, Johannes; Winter, Martin : “Investigation and optimization of SEI-layers caused by novel siloxane-based aprotic liquid electrolytes ”. German Israel Battery School (GIBS), , Hadera/Tel Aviv, .
    • Evertz, Marco; Kasnatscheew, Johannes; Zech, Claudia; Beckhoff; Winter, Martin; Nowak, Sascha : “Elemental Investigation of various Lithium Ion Battery Cathode Materials by means of Plasma- and X-Ray-Based Techniques”. ANAKON 2017, Tübingen, Deutschland, .
    • Kasnatscheew Johannes; Cekic-Laskovic, Isidora; Wagner, Ralf; Winter, Martin; : “The real impact of LiPF6 carbonate-based electrolyte on the first cycle Coulombic Efficiency (CE) of LiNi1/3Co1/3Mn1/3O2 (NCM) cathode at 4.6 V.The Second International Forum on Electrolyte & Separator for Advanced Batteries, Shenzhen, .
    • Kasnatscheew, Johannes; Wagner, Ralf; Winter, Martin; : “‘Fluoroethylene carbonate as an additive for γ-Butyrolactone based electrolytes’”. 225th ECS Meeting, Orlando, Florida, .
    • Kasnatscheew, Johannes : “Investigation of lithium carbide contamination in battery grade lithium metal”. DFG Statusmeeting, Hamburg, .
    • Kasnatscheew, Johannes : “Cis-bis-(trifluoromethyl)-ethylenecarbonate as a Cosolvent for Li-ion based Batteries”. DFG Statusmeeting, Braunschweig, .