Prof. Dr. Harald Strauß
Institut für Geologie und Paläontologie - Historische und Regionale Geologie
Westfälische Wilhelms-Universität Münster
Corrensstr. 24
D-48149 Münster
hstrauss@uni-muenster.de
Tel.: +49 251 83-33932 (office)
+49 251 83-33943 (lab)
Fax: +49 251 83-33933
Zimmer-Nr.: 404
-
Forschungsschwerpunkte
- Stabile Isotopengeochemie, Sedimentgeochemie
- Entwicklung des Ozean-Atmosphäre-Systems
- Entwicklung geochemischer Kreisläufe
Vita
Akademische Ausbildung
- Habilitation, Ruhr-Universität Bochum
- Dr. rer. nat. (Geochemistry), Georg-August Universität Göttingen
- -
- Doctoral studies, Georg-August Universität Göttingen
- University degree (Diplom) in Geology, Clausthal University of Technology
- -
- Studies in Geology, Technische Universität Clausthal
Beruflicher Werdegang
- seit
- Universitätsprofessor (C 4) für Historische und Regionale Geologie an der WWU Münster
- -
- Associate Professor (Hochschuldozent C2), Institut für Geologie, Ruhr-Universität Bochum
- -
- Assistant Professor (Wiss. Assistent C1), Institute of Geology, Ruhr-Universität Bochum
- -
- Research Associate (Wiss. Mitarbeiter), Institute of Geology, Ruhr- Universität Bochum
- -
- Postdoctoral Fellow, University of California Los Angeles, Los Angeles, CA, USA
- -
- Member “Precambrian Paleobiology Research Group – Proterozoic (P.P.R.G.-P.)”
- -
- Postdoctoral Fellow, Indiana University, Bloomington, IN, USA
Preise
- Aufnahme als ordentliches Mitglied in die Nordrhein-Westfälische Akademie der Wissenschaften und der Künste - Nordrhein-Westfälische Akademie der Wissenschaften und der Künste
Mitgliedschaften und Aktivitäten in Gremien
- seit
- Gutachter für diverse Fachzeitschriften (Nature, Science, Geology, Geochimica et Cosmochimca Acta, Chemical Geology, Earth and Planetary Sciences, Precambrian Geology, Earth Science Reviews, Geological Magazine, International Journal of Earth Sciences)
- seit
- Gutachter für DFG, NERC, NSF, NRC
- seit
- Geochemical Society
- seit
- Geological Society of America
- seit
- Deutsche Mineralogische Gesellschaft
-
Lehre
- Exkursion: Exkursion Regionale Geologie Deutschlands (Harzvorland) [148048]
[- | Blockveranstaltung + Sa und So | Prof. Dr. Harald Strauß] - Praktikum: Umweltanalytisches Praktikum [148030]
(zusammen mit Prof. Dr. Christine Achten, Viviane Bayer)
[n. V. | Viviane Bayer] - Seminar: Projektarbeit [148027]
(zusammen mit Priv.-Doz. Patricia Göbel, Prof. Dr. Christine Achten)
[n. V. | Priv.-Doz. Patricia Göbel] - V/Ü: Biogeochemie mariner Sedimente [148014]
[- | Blockveranstaltung + Sa und So | Prof. Dr. Harald Strauß] - Vorlesung: Angewandte Isotopengeochemie [148013]
[ - | | wöchentlich | Di. | GEO 518 | Prof. Dr. Harald Strauß] - Vorlesung: V Erd- und Lebensgeschichte [148012]
(zusammen mit Prof. Dr. Ralph Becker, Prof. Dr. Benjamin Bomfleur)
[ - | | wöchentlich | Mo. | Fl 119 | Prof. Dr. Benjamin Bomfleur]
[ - | | wöchentlich | Di. | Fl 119 | Prof. Dr. Benjamin Bomfleur]
[ - | | wöchentlich | Do. | GEO1 Hrsaal | Prof. Dr. Benjamin Bomfleur]
- Übung: Ü System Erde [146193]
(zusammen mit Dr. Sümeyya Eroglu) - Praktikum: Biogeochemie und Stabile Isotope [146000]
- Seminar: S Umweltisotope [146003]
- Seminar: S Geochemie Sedimentärer Systeme [146002]
- Vorlesung: V Umweltisotope [146118]
- Vorlesung: V System Erde [146194]
(zusammen mit Prof. Dr. Heinrich Bahlburg) - Vorlesung: V Geochemie sedimentärer Systeme [146004]
- Vorlesung: Lagerstättenkunde [146213]
(zusammen mit apl. Prof. Michael Bröcker, Prof. Dr. Stephan Klemme) - Vorlesung: Regionale Geologie Europas [146001]
- Exkursion: Exkursion Regionale Geologie Deutschlands
- Praktikum: Umweltanalytisches Praktikum [144012]
(zusammen mit Prof. Dr. Christine Achten, Viviane Bayer) - Seminar: Projektarbeit [144127]
(zusammen mit Priv.-Doz. Patricia Göbel, Prof. Dr. Christine Achten) - V/Ü: Biogeochemie mariner Sedimente [144011]
- Vorlesung: V Erd- und Lebensgeschichte [144009]
(zusammen mit Prof. Dr. Ralph Becker, Prof. Dr. Benjamin Bomfleur) - Vorlesung: Angewandte Isotopengeochemie [144010]
- Exkursion: Exkursion Regionale Geologie Deutschlands (Harzvorland) [148048]
-
Projekte
- MGSE - Münster Graduate School of Evolution - Unterstützung des Evolution Think Tank ( - )
Drittmittel: Santander Consumer Bank AG - Geochemical and Multiple Isotope Investigation to assess the Impact of Anthropogenic Activities on Surface and Subsurface Environments of the Huainan Coalfield, China ( - )
Drittmittel: Chinesisch-Deutsches Zentrum für Wissenschaftsförderung | Förderkennzeichen: GZ 1055 - SPP 1006 Teilprojekt - Tiefbohrung im Wadi Gideah, Oman Ophiolith: Ein Schlüssel zum Verständnis des Mechanismus von Akkretion, magmatischer Entwicklung und Abkühlung der plutonischen, schnell-spreizenden ozeanischen Kruste ( - )
Drittmittel: DFG - Schwerpunktprogramm | Förderkennzeichen: STR 281/46-1 - From a modern highly mineralized spring to the Paleoproterozoic ocean: geomicrobiology and isotopic biogeochemistry of the Arvadi spring, Switzerland ( - )
Drittmittel: DFG - Sachbeihilfe/Einzelförderung | Förderkennzeichen: STR 281/41-1 - Formation of mega-glendonites in the aftermath of the Paleocene-Eocene thermal maximum ( - )
Drittmittel: DFG - Sachbeihilfe/Einzelförderung | Förderkennzeichen: TE 642/3-1 - CHARON - FOR 1644 Teilprojekt - Unraveling the sulfur cycle with carbonates: mechanism of incorporation and diagenesis of structurally-substituted-sulfate ( - )
Drittmittel: DFG - Forschungsgruppe | Förderkennzeichen: STR 281/39-1 - Integrierte, maßstabsübergreifende Bewertung von Stressoren in Grundwasser-Ökosystemen ( - )
Eigenmittel - MIRC - Etablierung des Gerätezentrums Münster Isotope Research Center ( - )
Drittmittel: DFG - Sachbeihilfe/Einzelförderung | Förderkennzeichen: STR 853/3-1 - SPP 1006 - TP: Peering into the Cradle of Life: multiple sulphur isotopes reveal insigths into environmental conditions and early sulphur metabolism some 3.5 Ga ago ( - )
Drittmittel: DFG - Schwerpunktprogramm | Förderkennzeichen: STR 281/36-3, 601443 - SPP 1006 - TP: Resolving sedimentary sulphur cycling during the Shunga Event (early Paleoproterozoic) with sulphur isotopes (2. Förderphase) ( - )
Drittmittel: DFG - Schwerpunktprogramm | Förderkennzeichen: STR 281/35-2 - SPP 1006 - TP: Ein Blick in die Wiege des Lebens: multiple Schwefelisotope als Spiegel der Umweltbedingungen und des frühen Schwefelkreislaufs vor ca. 3.5 Milliarden Jahren (2. Förderphase) ( - )
Drittmittel: DFG - Schwerpunktprogramm | Förderkennzeichen: STR 281/36-2 - SPP 1006 - TP: Establishing a reference profile for fast-spreading oceanic crust: Petrology and geochemistry of the "Wadi Gideah" cross section in the Oman ophiolite ( - )
Drittmittel: DFG - Schwerpunktprogramm | Förderkennzeichen: STR 281/38-1 - SPP 1006 - TP: Die Entwicklung wichtiger Stoffwechselpfade am Archaikum-Proterozoikum-Übergang: Molekulare und isotopische Hinweise aus dem sedimentären organischen Kohlenstoff ( - )
Drittmittel: DFG - Schwerpunktprogramm | Förderkennzeichen: 584346 - SPP 1006 - TP: Ein Blick in die Wiege des Lebens: multiple Schwefelisotope als Spiegel der Umweltbedingungen und des frühen Schwefelkreislaufs vor ca. 3.5 Milliarden Jahren (1. Förderphase) ( - )
Drittmittel: DFG - Schwerpunktprogramm | Förderkennzeichen: STR 281/36-1 - SPP 1006 - TP: Schwefelisotope als Spiegel des sedimentären Schwefelumsatzes während des Shunga Events im frühen Paläoproterozoikum (1. Förderphase) ( - )
Drittmittel: DFG - Schwerpunktprogramm | Förderkennzeichen: 575123 - SPP 1006 - TP: Wechsel in der Biogeochemie im Zuge der beginnenden Oxidation sedimentärer Systeme am Archaikum-Proterozoikum-Übergang (3. Förderphase) ( - )
Drittmittel: DFG - Schwerpunktprogramm | Förderkennzeichen: 575121 - SPP 1006 - TP: Wechsel in der Biogeochemie im Zuge der beginnenden Oxidation sedimentärer Systeme am Archaikum-Proterozoikum-Übergang (2. Förderphase) ( - )
Drittmittel: DFG - Schwerpunktprogramm | Förderkennzeichen: 564322 - SPP 1006 - TP: Die Entwicklung wichtiger Stoffwechselpfade am Archaikum-Proterozoikum-Übergang: Molekulare und isotopische Hinweise aus dem sedimentären organischen Kohlenstoff ( - )
Drittmittel: DFG - Schwerpunktprogramm | Förderkennzeichen: 564280 - Multiple Schwefelisotopenuntersuchungen als Spiegel der Atmosphäre-Ozean-Entwicklung im Archaikum und Paläoproterozoikum ( - )
Drittmittel: DFG - Sachbeihilfe/Einzelförderung | Förderkennzeichen: 554843 - Chemostratigraphy of a Paleoproterozoic BIF-MnF succession – the Voëlwater Subgroup, Transvaal Supergroup, South Africa ( - )
Drittmittel: DFG - Sachbeihilfe/Einzelförderung | Förderkennzeichen: 534401 - SPP 1144 Teilprojekt - Schwefelisotopenuntersuchungen gelöster und fester Schwefelspezies in Fluiden, Mineralpräzipitaten, Sedimenten und Gesteinen des Mittelatlantischen Rückens ( - )
Drittmittel: DFG - Schwerpunktprogramm | Förderkennzeichen: 547705 - Biospärische Oxidation und Atmosphärenentwicklung zur Zeit der frühesten Eiszeiten auf der Erde ( - )
Drittmittel: DFG - Sachbeihilfe/Einzelförderung | Förderkennzeichen: STR 281/31-1; 553619 - SPP 1006 - TP: Wechsel in der Biogeochemie im Zuge der beginnenden Oxidation sedimentärer Systeme am Archaikum-Proterozoikum-Übergang (1. Förderphase) ( - )
Drittmittel: DFG - Schwerpunktprogramm | Förderkennzeichen: 537231 - Quantification and geochemical characterization of total mass fluxes in river catchments of the Rhenish Massif and the Black Forest, Germany ( - )
Drittmittel: DFG - Sachbeihilfe/Einzelförderung | Förderkennzeichen: HE 1704 / 5 - 1
- MGSE - Münster Graduate School of Evolution - Unterstützung des Evolution Think Tank ( - )
-
Publikationen
- . „Die Baumberge als isolierte Grundwasser-Ökosysteme und bedeutende Quellenregion im zentralen Münsterland.“ Z Grundwasser 2022. [Eingereicht]
- . . ‘Stable 15N isotopes in fine and coarse urban particulate matter.’ Aerosol Science and Technology 2021. doi: 10.1080/02786826.2021.1905150.
- . ‘Assessing the robustness of carbonate-associated sulfate during hydrothermal dolomitization of the Latemar platform, Italy.’ Terra Nova 33: 621-629.
- 10.1111/sed.12939. . ‘Constraints on the preservation of proxy data in carbonate archives – lessons from a marine limestone-to-marble transect, Latemar, Italy.’ Sedimentology 2021. doi:
- 10.1002/dep2.133. . ‘Microbial activity affects sulphur in biogenic aragonite.’ The Depositional Record 7: 500-519. doi:
- . ‘Sulfur isotope evidence for surface-derived sulfur in Eoarchean TTGs.’ Earth and Planetary Science Letters 576: 117218.
- . ‘Coastal seawater geochemistry of a modern arid 'epeiric´ sea: spatial variability and effects of organic decomposition.’ Geochimica et Cosmochimica Acta 314: 159-177.
- 10.3389/feart.2021.776925. . ‘Trace element and isotope systematics in vent fluids and sulphides from Maka volcano, North Eastern Lau Spreading Centre: Insights into three-component fluid mixing.’ Frontiers in Earth Sciences 9: 776925. doi:
- . ‘SO2 disproportionation impacting hydrothermal sulfur cycling: Insights from multiple sulfur isotopes for hydrothermal fluids from the Tonga-Kermadec intraoceanic arc and the NE Lau Basin.’ Chemical Geology 586: 120586.
- . ‘Boiling effects on trace element and sulfur isotope compositions of sulfides in shallow-marine hydrothermal systems: Evidence from Milos Island, Greece.’ Chemical Geology 583: 120457.
- 10.1016/j.gca.2021.07.020. . ‘Intense biogeochemical iron cycling revealed in Neoarchean micropyrites from stromatolites.’ Geochimica et Cosmochimica Acta 312: 299-320. doi:
- 10.1016/j.marpetgeo.2020.104819. . ‘Peculiar Berriasian “Wealden” Shales of the western Lower Saxony Basin, Germany: Organic facies, depositional environment, thermal maturity and kinetics of petroleum generation.’ Marine and Petroleum Geology 124. doi:
- 10.1130/G48069.1. . ‘A novel authigenic magnetite source for sedimentary magnetizations.’ Geology 49: 360-365. doi:
- 10.1016/j.marpetgeo.2021.105020. . ‘Deciphering the geochemical link between seep carbonates and enclosed pyrite: A case study from the northern South China Sea.’ Marine and Petroleum Geology 128. doi:
- 10.3389/feart.2021.641654. . ‘Trace element signatures in pyrite and marcasite from shallow marine island arc-related hydrothermal vents, Calypso Vents, New Zealand, and Paleochori Bay, Greece.’ Frontiers in Earth Sciences . doi:
- . ‘Molybdenum isotope composition of seep carbonates – Constraints on sediment biogeochemistry in seepage environments.’ Geochimica et Cosmochimca Acta 307: 56-71.
- . ‘Trace element fractionation and precipitation in submarine back-arc hydrothermal systems, Nifonea caldera, New Hebrides subduction zone.’ Ore Geology Reviews 135: 104211.
- 10.1016/j.jhydrol.2020.125037. . ‘Contamination characteristic and multiple stable isotope fractionation in hydrology: a case of tap water from rural Beijing.’ Journal of Hydrology 588: 125037. doi:
- . ‘Origins of kimberlites and associated carbonatites during continental collision – perspectives from the Kaapvaal craton.’ Earth Science Reviews 208: 103287.
- 10.1021/acs.analchem.0c03253. . ‘Simultaneous compound-specific analysis of δ33S and δ34S in organic compounds by GC-MC-ICPMS using medium and low mass resolution mode.’ Analytical Chemistry 92: 14685-14692. doi:
- 10.1002/dep2.133. . ‘Microbial activity affects sulphur in biogenic aragonite.’ The Depositional Record . doi:
- 10.1016/j.precamres.2020.105767. . ‘Positive cerium anomalies imply pre-GOE redox stratification and manganese oxidation in Paleoproterozoic shallow marine environments.’ Precambrian Research 344: 105767. doi:
- 10.1016/j.oregeorev.2020.103527. . ‘Heterogeneous lead isotopic compositions of sulfide minerals from a hydrothermal replacement deposit (Janggun mine, South Korea).’ Ore Geology Reviews 122: 103527. doi:
- 10.1016/j.chemgeo.2019.119325. . ‘Effects of magmatic volatile influx in mafic VMS hydrothermal systems: evidence from the Troodos ophiolite, Cyprus.’ Chemical Geology 531. doi:
- 10.1016/j.chemgeo.2020.119495. . ‘Sub-seafloor sulfur cycling in a low-temperature barite field: A multi-proxy study from the Arctic Loki’s Castle vent field.’ Chemical Geology 539. doi:
- 10.1016/j.chemgeo.2020.119501. . ‘Structure, kinematics and composition of fluid-controlled brittle faults and veins in Lower Cretaceous claystones (Lower Saxony Basin, Northern Germany): Constraints from petrographic studies, microfabrics, stable isotopes and biomarker analyses.’ Chemical Geology 540. doi:
- . ‘Mineralization and alteration of a modern bimodal-mafic volcaniclastic-hosted massive sulfide deposit.’ Economic Geology 114: 857-896.
- . ‘Silver-rich sulfide mineralization in the northwestern termination of the Western Cycladic Detachment System, at Mt. Hymittos (Attica, Greece): a mineralogical, geochemical and stable isotope study.’ Ore Geology Reviews 111.
- . ‘Heterogeneity of free and occluded bitumen in a natural maturity sequence from Oligocene Lake Enspel.’ Geochimica et Cosmochimica Acta 245: 240-265.
- 10.1016/j.margeo.2019.105986. . ‘Deep Sulfate-Methane-Transition and sediment diagenesis in the Gulf of Alaska (IODP Site U1417).’ Marine Geology 417. doi:
- 10.1016/j.chemgeo.2019.119289Get. . ‘Geochemical characterization of highly diverse hydrothermal fluids from volcanic vent systems of the Kermadec intraoceanic arc.’ Chemical Geology 528. doi:
- 10.1029/2019GC008525. . ‘Origin of High Mg and SO4 Fluids in Sediments of the Terceira Rift, Azores‐Indications for Caminite Dissolution in a Waning Hydrothermal System.’ Geochemistry, Geophysics, Geosystems 20: 6078-6094. doi:
- . ‘Intra-formational fluid flow in the Thuringian Syncline (Germany) - evidence from stable isotope data in vein mineralization of Late Permian and Mesozoic sediments.’ Chemical Geology 523: 133-153.
- . ‘Contamination patterns in river water from rural Beijing: a hydrochemical and multiple stable isotope study.’ Science of the Total Environment 654: 226-236.
- . ‘Distribution of platinum-group elements in pristine and near-surface oxidized Platreef ore and the variation along strike, northern Bushveld Complex, South Africa.’ Mineralium Deposita .
- . ‘Deep-seated fault-related volcanogenic H2S as the key agent of high sinkhole concentration areas.’ Earth Surface Processes and Landforms .
- . ‘Testing models of pre-GOE environmental oxidation: a Paleoproterozoic marine signal in platform dolomites of the Tongwane Formation (South Africa).’ Precambrian Research 313: 205-220.
- . ‘Multiple sulfur isotopic evidence for the origin of elemental sulfur in an iron-dominated gas hydrate-bearing sedimentary environment.’ Marine Geology 403: 271-284.
- 10.1016/j.dsr2.2018.03.006. . ‘Multidisciplinary investigation on cold seeps with vigorous gas emissions in the Sea of Marmara (MarsiteCruise): Strategy for site detection and sampling and first scientific outcome.’ Deep Sea-Research Part II 153: 36-47. doi:
- . ‘Contamination of heavy metals and isotopic tracing of Pb in surface and profile soils in a polluted farmland from a typical karst area in southern China.’ Science of the Total Environment 637-638: 1035-1045.
- . ‘Multiple sulfur isotopes (δ34S, D33S) of organic sulfur and pyrite from Late Cretaceous to Early Eocene oil shales in Jordan.’ Organic Geochemistry 125: 29-40.
- . ‘Iron isotope constraints on diagenetic iron cycling in the Taixinan seepage area, South China Sea.’ Journal of Asian Earth Sciences 168: 112-124.
- . ‘Tracking water-rock interaction at the Atlantis Massif (MAR, 30°N) using sulfur geochemistry.’ Geochemistry, Geophysics, Geosystems 19: 5461-5483.
- 10.1016/j.dsr2.2017.11.014. . ‘Sulfate-dependent anaerobic oxidation of methane at a highly dynamic bubbling site in the Eastern Sea of Marmara (Çinarcik Basin).’ Deep-Sea Research Part II 153: 79-91. doi:
- . ‘Decoupling of Neoarchean sulfur sources recorded in Algoma-type banded iron formation.’ Earth and Planetry Science Letters 489: 1-7.
- . ‘Incorporation and subsequent diagenetic alteration of sulfur in Arctica islandica.’ Chemical Geology 482: 72-90.
- . ‘Anaerobic microbial activity affects earliest diagenetic pathways of bivalve shells.’ Sedimentology 65: 1390-1411.
- . ‘The enrichment of heavy iron isotopes in authigenic pyrite as a possible indicator of sulfate-driven anaerobic oxidation of methane: Insights from the South China Sea.’ Chemical Geology 449: 15-29.
- 10.1016/j.chemgeo.2016.08.019. . ‘Plates or plumes in the origin of kimberlites: insights from U/Pb age and Sr-Nd-Hf-Os isotopes analyses, Renard and Wemindji clusters, Superior Craton, Canada.’ Chemical Geology 2017, Nr. 455: 57-83. doi:
- 10.1016/j.palaeo.2017.02.025. . ‘Volatile Early Triassic sulfur cycle: A consequence of persistent low seawater sulfate concentrations and a high sulfur cycle turnover rate?’ Palaeogeography Palaeoclimatology Palaeoecology 486: 74-85. doi:
- . ‘Diagenesis of carbonate associated sulfate.’ Chemical Geology 463: 61-75.
- . . ‘Geochemical, isotopic and geochronological characterization of listvenite from the Upper Unit on Tinos, Cyclades, Greece.’ Lithos 282-283: 281-297. doi: 10.1016/j.lithos.2017.02.019.
- . ‘A multiple sulfur isotope study through the volcanic section of the Troodos ophiolite.’ Chemical Geology 468: 49-62.
- . ‘Preparation of authigenic pyrite from methane-bearing sediments for in-situ sulfur isotope analysis using SIMS.’ Journal of Visualized Experiments 126: e55970.
- . ‘Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane: Evidence from authigenic pyrite in seepage areas of the South China Sea.’ Geochimica et Cosmochimica Acta 211: 153-173.
- 10.1016/j.chemgeo.2017.02.017. . ‘Sulfur diagenesis under rapid accumulation of organic-rich sediments in a marine mangrove from Guadeloupe (French West Indies).’ Chemical Geology 454: 67-79. doi:
- . ‘Using stable isotopes to trace sources and formation processes of sulfate aerosols from Beijing, China.’ Scientific Reports 6.
- 10.1016/j.envpol.2016.06.038. . ‘Effect of the pollution control measures on PM2.5 during the 2015 China Victory Day Parade: Implication from water-soluble ions and sulfur isotope.’ Environmental Pollution 218: 230-241. doi:
- . ‘How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: A SIMS study from the South China Sea.’ Chemical Geology 440: 26-41.
- . ‘Multiple sulfur isotopes (δ34S, Δ33S), carbon isotopes (δ13Corg) and trace elements (Mo, U, V) reveal changing palaeoenvironments in the Chokier Formation, Belgium, Upper Carboniferous.’ Chemical Geology 441: 47-62.
- 10.1371/journal.pone.0147629. . ‘A rare glimpse of Paleoarchean life: Geobiology of an exceptionally preserved microbial mat facies (3.4 Ga Strelley Pool Formation, Western Australia).’ PlosOne 2016. doi:
- 10.1017/S1473550415000531. . ‘Sulphur Tales from the Early Archean World.’ International Journal of Astrobiology 15. doi:
- . ‘Systematic variations of trace element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulfide deposits, Troodos ophilolite, Cyprus.’ Chemical Geology 423: 7-18.
- . ‘Multiple sulfur isotope signature of early Archean oceanic crust, Isua (SW-Greenland).’ Precambrian Research 283: 1-12.
- . ‘Eutrophication, microbial-sulfate reduction and mass extinctions.’ Communicative & Integrative Biology 9: 1-9.
- 10.1073/pnas.1503755112. . ‘Flourishing ocean drives the end-Permian marine mass-extinction.’ Proceedings of the National Academy of Sciences 112: 10298-10303. doi:
- 10.1016/j.gexplo.2015.05.013. . ‘Geochemical and multiple stable isotope (N, O, S) investigation on tap and bottled water from Beijing, China.’ Journal of Geochemical Exploration 157: 36-51. doi:
- . ‘Native sulfur, sulfates and sulfides from the active Campi Flegrei volcano (southern Italy): genetic environments and degassing dynamics revealed by mineralogy and isotope geochemistry.’ Journal of Volcanology and Geothermal Research 304: 180-193.
- . ‘The role of bacterial sulfate reduction during dolomite precipitation: implications from Upper Jurassic platform carbonates.’ Chemical Geology 412: 1-14.
- 10.1016/j.precamres.2015.06.008. . ‘Paleoarchean sulfur cycling: multiple sulfur isotope constraints from the Barberton Greenstone Belt, South Africa.’ Precambrian Research 2015. doi:
- 10.1017/S0016756815000187. . ‘Questioning a widespread euxinia for the Furongian ( 1 Late Cambrian) SPICE event: Indications from δ13C, δ18O, δ34S, and from biostratigraphic constraints.’ Geological Magazine 2015. doi:
- . ‘δ34S and Δ33S records of Paleozoic seawater sulfate based on the analysis of carbonate associated sulfate.’ Earth & Planetary Science Letters 399: 44-51.
- 10.1080/10256016.2015.1032961. . ‘Multiple sulfur and oxygen isotopes reveal microbial sulfur cycling in spring waters in the Lower Engadin, Switzerland.’ Isotopes in Environmental and Health Studies 2015: 1-19. doi:
- . ‘Depositional environment and source-rock characterization of organic-matter rich Upper Santonian-Upper Campanian carbonates, northern Lebanon.’ Journal of Petroleum Geology 37: 5-24.
- . ‘Reconstructing marine redox conditions for the transition between Cambrian Series 2 and Cambrian Series 3, Kaili area, Yangtze Platform: Evidence from biogenic sulfur and degree of pyritization.’ Palaeogeography Palaeoclimatology Palaeoecology 398: 144-153.
- . ‘Biosignatures in chimney structures and sediment from the Loki’s Castle low-temperature hydrothermal vent field at the Arctic Mid-Ocean Ridge.’ Extremophiles 18: 545-560.
- . ‘Barite in hydrothermal environments as a recorder of subseafloor processes: a multiple-isotope study from the Loki’s Castle vent field.’ Geobiology 12: 308-321.
- . ‘Airborne hydrocarbon contamination from laboratory atmospheres.’ Organic Geochemistry 76: 26-38.
- . ‘Drilling shallow-water massive sulfides at the Palinuro Volcanic Complex, Aeolian Island Arc, Italy.’ Economic Geology 109: 2129-2157.
- In Reading the Archive of Earth’s Oxygenation. Volume 3: Global Events and the Fennoscandian Arctic Russia - Drilling Early Earth Project., edited by , 1049-1058. . ‘The End of Mass-Independent Fractionation of Sulphur Isotopes.’
- In Reading the Archive of Earth’s Oxygenation. Volume 3: Global Events and the Fennoscandian Arctic Russia - Drilling Early Earth Project., edited by , 1169-1194. . ‘Abundant Marine Calcium Sulphates – Radical Change of Seawater Sulphate Reservoir and Sulphur Cycle.’
- In Reading the Archive of Earth’s Oxygenation. Volume 3: Global Events and the Fennoscandian Arctic Russia - Drilling Early Earth Project., edited by , 1195-1273. . ‘Enhanced Accumulation of Organic Matter – The Shunga Event.’
- In Reading the Archive of Earth’s Oxygenation. Volume 3: Global Events and the Fennoscandian Arctic Russia - Drilling Early Earth Project., edited by , 1395-1405. . ‘Biomarkers and Isotopic Tracers.’
- . ‘High resolution organic carbon isotope stratigraphy from a slope to basinal setting on the Yangtze Platform, South China: Implications for the Ediacaran – Cambrian transition.’ Precambrian Research 225: 209-217.
- . ‘Linking geology, fluid chemistry and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments.’ Geobiology 11: 340-355.
- . ‘Multiple sulfur and carbon isotope composition of sediments from the Belingwe Greenstone Belt (Zimbabwe): a biogenic methane regulation on mass independent fractionation of sulfur during the early Neoarchean?’ Geochimica et Cosmochimica Acta 121: 120-138.
- . ‘Atmospheric sulfur rearrangement 2.7 billion years ago: evidence for oxygenic photosynthesis.’ Earth & Planetary Science Letters 366: 17-26.
- . ‘Regional sulfate–hematite–sulfide zoning in the auriferous Mariana anticline, Quadrilátero Ferrífero of Minas Gerais, Brazil.’ Mineralium Deposita 48: 805-816.
- . ‘Tracing the source of Beijing soil organic carbon: A carbon isotope approach.’ Environmental Pollution 176: 208-214.
- . ‘Widespread occurrence of two carbon fixation pathways in tubeworm endosymbionts: lessons from hydrothermal vent associated tubeworms from the Mediterranean Sea.’ Frontiers in Microbiology 3.
- . ‘A Profile of Multiple Sulfur Isotopes through the Oman Ophiolite.’ Chemical Geology 312-313: 27-46.
- . ‘Sulphur diagenesis in the sediments of the Kiel Bight, SW Baltic Sea, as reflected by multiple sulfur isotopes.’ Isotopes in Environmental and Health Studies 48: 166-179.
- . ‘Isotopic evidence for a sizeable seawater sulfate reservoir at 2.1 Ga.’ Precambrian Research 192-195: 78-88.
- . ‘Paired δ34S data from carbonate-associated sulfate and chromium-reducible sulfur across the traditional Lower–Middle Cambrian boundary of W-Gondwana.’ Geochimica et Cosmochimica Acta 85: 228-253.
- . ‘Isotopic evidence for a sizeable seawater sulfate reservoir at 2.1 Ga.’ Precambrian Research 192: 78-88.
- . ‘Carbonate-associated sulfate: Experimental comparisons of common extraction methods and recommendations toward a standard analytical protocol.’ Chemical Geology 326-327: 132-144.
- . ‘Hydrothermalism in the Tyrrhenian Sea: inorganic and microbial sulfur cycling as revealed by geochemical and multiple sulfur isotope data.’ Chemical Geology 280: 217-231.
- . ‘Fluid elemental and stable isotope composition of the Nibelungen hydrothermal field (8°18'S, Mid-Atlantic Ridge): Constraints on fluid-rock interaction in heterogeneous lithosphere.’ Chemical Geology 280: 1-18.
- . ‘Strontium, carbon and oxygen isotope geochemistry of marbles from the Cycladic blueschist belt, Greece.’ Geological Magazine 148: 511-528.
- In Encyclopedia for Astrobiology, edited by , 183-187. . ‘Isotopic Biomarkers.’
- . ‘Iron and sulphur isotopes from the Carajás mining province (Pará, Brazil): Implications for the oxidation of the ocean and the atmosphere across the Archaean–Proterozoic transition.’ Chemical Geology 289: 124-139.
- In STROMATOLITES: Interaction of Microbes with Sediments, edited by , 689-701. . ‘Sulfur isotopes and stromatolites.’
- . ‘Driving forces behind the biotope structures in the diffuse venting low-temperature hydrothermal sites at 5°S and 9°S MAR.’ Environmental Microbiology Reports 3: 727-737.
- . . ‘Corrigendum to "A negative carbon isotope excursion defines the boundary from Cambrian Series 2 to Cambrian Series 3 on the Yangtze Platform, South China" [Palaeogeography, Palaeoclimatology, Palaeoecology 285 (2010) 143-151] (DOI:10.1016/j.palaeo.2009.11.005).’ Palaeogeography, Palaeoclimatology, Palaeoecology 288, Nr. 1-4: 118. doi: 10.1016/j.palaeo.2010.01.022.
- . . ‘Determining the growth rate of topographic relief using in situ-produced 10Be: A case study in the Black Forest, Germany.’ Earth and Planetary Science Letters 290, Nr. 3-4: 391-402. doi: 10.1016/j.epsl.2009.12.034.
- . . ‘Sulfur isotope characteristics of metamorphosed Zn-Cu volcanogenic massive sulfides in the Areachap Group, Northern Cape Province, South Africa.’ MINERALIUM DEPOSITA 45, Nr. 5: 481-496. doi: 10.1007/s00126-010-0285-8.
- . . ‘Evaluating the S-isotope fractionation associated with Phanerozoic pyrite burial.’ GEOCHIMICA ET COSMOCHIMICA ACTA 74, Nr. 7: 2053-2071. doi: 10.1016/j.gca.2009.12.012.
- . . ‘Sulfur cycling at the Mid-Atlantic Ridge: A multiple sulfur isotope approach.’ CHEMICAL GEOLOGY 269, Nr. 3-4: 180-196. doi: 10.1016/j.chemgeo.2009.09.016.
- . . ‘A negative carbon isotope excursion defines the boundary from Cambrian Series 2 to Cambrian Series 3 on the Yangtze Platform, South China.’ PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY 285, Nr. 3-4: 143-151. doi: 10.1016/j.palaeo.2009.11.005.
- . ‘Strontium, carbon and oxygen isotope geochemistry of marbles from the Cycladic blueschist belt, Greece.’ Geological Magazine 148: 511-528.
- . . ‘Short-term microbial and physico-chemical variability in low-temperature hydrothermal fluids near 5°S on the Mid-Atlantic Ridge.’ Environmental Microbiology 11, Nr. 10: 2526-2541. doi: 10.1111/j.1462-2920.2009.01978.x.
- . . ‘Isotopic constraints on the Late Archean carbon cycle from the Transvaal Supergroup along the western margin of the Kaapvaal Craton, South Africa.’ Precambrian Research 169, Nr. 1-4: 15-27. doi: 10.1016/j.precamres.2008.10.010.
- . . ‘Short-term microbial and physico-chemical variability in low-temperature hydrothermal fluids near 5 degrees S on the Mid-Atlantic Ridge.’ Environmental microbiology 11, Nr. 10: 2526-41. doi: 10.1111/j.1462-2920.2009.01978.x.
- . . ‘Reconstructing Earth's surface oxidation across the Archean-Proterozoic transition.’ GEOLOGY 37, Nr. 5: 399-402. doi: 10.1130/G25423A.1.
- . . ‘Petroleum surface oil seeps from a Palaeoproterozoic petrified giant oilfield.’ TERRA NOVA 21, Nr. 2: 119-126. doi: 10.1111/j.1365-3121.2009.00864.x.
- . . Isotopic constraints on the Late Archean carbon cycle from the Transvaal Supergroup along the western margin of the Kaapvaal Craton, South Africa. doi: 10.1016/j.precamres.2008.10.010.
- In Encyclopedia of Paleoclimatology and Ancient Environments, edited by , 926-929. . ‘Sulfur Isotopes.’
- . . ‘Erosion rates on different timescales derived from cosmogenic 10Be and river loads: implications for landscape evolution in the Rhenish Massif, Germany.’ International Journal of Earth Sciences : 1-18.
- . . ‘Evidence for denitrification regulated by pyrite oxidation in a heterogeneous porous groundwater system.’ Chemical Geology 255, Nr. 1-2: 60-67. doi: 10.1016/j.chemgeo.2008.06.005.
- . . ‘Abiotic oxidation of pyrite by Fe(III) in acidic media and its implications for sulfur isotope measurements of lattice-bound sulfate in sediments.’ Chemical Geology 253, Nr. 1-2: 30-37. doi: 10.1016/j.chemgeo.2008.03.014.
- . . ‘Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: Evidence from sulphate evaporites in the ∼2.2-2.1 Gyr shallow-marine Lucknow Formation, South Africa.’ Terra Nova 20, Nr. 2: 108-117. doi: 10.1111/j.1365-3121.2008.00795.x.
- . . ‘Rivers of North-Rhine Westphalia revisited: Tracing changes in river chemistry.’ Applied Geochemistry 23, Nr. 12: 3290-3304. doi: 10.1016/j.apgeochem.2008.06.030.
- . . ‘Hydrothermal venting at pressure-temperature conditions above the critical point of seawater, 5°S on the Mid-Atlantic Ridge.’ Geology 36, Nr. 8: 615-618. doi: 10.1130/G24726A.1.
- . . ‘Erratum: Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: Evidence from sulphate evaporites in the ∼2.2-2.1 Gyr shallow-marine Lucknow Formation, South Africa (Terra Nova (115-117)).’ Terra Nova 20, Nr. 3: 252.
- . . ‘Ferruginous conditions dominated later neoproterozoic deep-water chemistry.’ SCIENCE 321, Nr. 5891: 949-952. doi: 10.1126/science.1154499.
- . . ‘Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the Early Cambrian.’ Palaeogeography, Palaeoclimatology, Palaeoecology 254, Nr. 1-2: 194-216. doi: 10.1016/j.palaeo.2007.03.016.
- . . ‘The influence of ultramafic rocks on microbial communities at the Logatchev hydrothermal field, located 15°N on the Mid-Atlantic Ridge.’ FEMS Microbiology Ecology 61, Nr. 1: 97-109. doi: 10.1111/j.1574-6941.2007.00325.x.
- . . ‘Geochemistry of bedded barite of the Mesoproterozoic Aggeneys-Gamsberg Broken Hill-type district, South Africa.’ Mineralium Deposita 42, Nr. 5: 537-549. doi: 10.1007/s00126-007-0128-4.
- . . ‘Barite-bearing cap dolostones of the Taoudéni Basin, northwest Africa: Sedimentary and isotopic evidence for methane seepage after a Neoproterozoic glaciation.’ Precambrian Research 153, Nr. 3-4: 209-235. doi: 10.1016/j.precamres.2006.11.011.
- . . ‘Chemostratigraphy and diagenetic constraints on Neoproterozoic carbonate successions from the Sierras Bayas Group, Tandilia System, Argentina.’ Chemical Geology 237, Nr. 1-2: 127-146.
- . . ‘Carbon isotopic evolution of the terminal Neoproterozoic and early Cambrian: Evidence from the Yangtze Platform, South China.’ Palaeogeography, Palaeoclimatology, Palaeoecology 254, Nr. 1-2: 140-157. doi: 10.1016/j.palaeo.2007.03.014.
- . . ‘Microbial CO2 fixation and sulfur cycling associated with low-temperature emissions at the Lilliput hydrothermal field, southern Mid-Atlantic Ridge (9°S).’ Environmental Microbiology 9, Nr. 5: 1186-1201. doi: 10.1111/j.1462-2920.2007.01241.x.
- . . ‘From snowball earth to the Cambrian bioradiation: Calibration of Ediacaran-Cambrian earth history in South China.’ Palaeogeography, Palaeoclimatology, Palaeoecology 254, Nr. 1-2: 1-6. doi: 10.1016/j.palaeo.2007.03.026.
- . . ‘Modeling the carbon and sulfur isotope compositions of marine sediments: Climate evolution during the Devonian.’ Chemical Geology 246, Nr. 1-2: 19-38. doi: 10.1016/j.chemgeo.2007.08.014.
- . . ‘Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes.’ Palaeogeography, Palaeoclimatology, Palaeoecology 254, Nr. 1-2: 175-193. doi: 10.1016/j.palaeo.2007.03.015.
- . . ‘Young volcanism and related hydrothermal activity at 5°S on the slow-spreading southern Mid-Atlantic Ridge.’ Geochemistry, Geophysics, Geosystems 8, Nr. 11. doi: 10.1029/2006GC001509.
- . . ‘Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry.’ NATURE 449, Nr. 7163: 706-709. doi: 10.1038/nature06202.
- . . Quantification of sulphur cycling at the Mid-Atlantic Ridge.
- . . ‘The influence of ultramafic rocks on microbial communities at the Logatchev hydrothermal field, located 15 degrees N on the Mid-Atlantic Ridge.’ FEMS microbiology ecology 61, Nr. 1: 97-109. doi: 10.1111/j.1574-6941.2007.00325.x.
- . . ‘Microbial CO(2) fixation and sulfur cycling associated with low-temperature emissions at the Lilliput hydrothermal field, southern Mid-Atlantic Ridge (9 degrees S).’ Environmental microbiology 9, Nr. 5: 1186-201. doi: 10.1111/j.1462-2920.2007.01241.x.
- . . ‘The chemostratigraphy of a Paleoproterozoic MnF-BIF succession - The Voëlwater Subgroup of the Transvaal Supergroup in Griqualand West, South Africa.’ South African Journal of Geology 109, Nr. 1-2: 63-80. doi: 10.2113/gssajg.109.1-2.63.
- . . ‘Insights from stable S and O isotopes into biogeochemical processes and genesis of Lower Cambrian barite-pyrite concretions of South China.’ Organic Geochemistry 37, Nr. 10: 1278-1288. doi: 10.1016/j.orggeochem.2006.04.013.
- . . ‘Reconstructing the evolution of the latest Pennsylvanian-earliest Permian Lake Odernheim based on stable isotope geochemistry and palynofacies: A case study from the Saar-Nahe Basin, Germany.’ Palaeogeography, Palaeoclimatology, Palaeoecology 240, Nr. 1-2: 204-224. doi: 10.1016/j.palaeo.2006.03.049.
- . . ‘Sulfur and strontium isotopic compositions of carbonate and evaporite rocks from the late Neoproterozoic-early Cambrian Bilara Group (Nagaur-Ganganagar Basin, India): Constraints on intrabasinal correlation and global sulfur cycle.’ Precambrian Research 149, Nr. 3-4: 217-230. doi: 10.1016/j.precamres.2006.06.008.
- . . ‘A major sulphur isotope event at c. 510 Ma: A possible anoxia-extinction-volcanism connection during the Early-Middle Cambrian transition?’ Terra Nova 18, Nr. 4: 257-263.
- . . ‘The land plant delta C-13 record and plant evolution in the Late Palaeozoic.’ Palaeogeography Palaeoclimatology Palaeoecology 240, Nr. 1-2: 237-252. doi: 10.1016/j.palaeo.2006.03.051.
- . . ‘Sulphur and oxygen isotope signatures of late Neoproterozoic to early Cambrian sulphate, Yangtze Platform, China: Diagenetic constraints and seawater evolution.’ Precambrian Research 137, Nr. 3-4: 223-241. doi: 10.1016/j.precamres.2005.03.003.
- . . ‘Carbon and oxygen isotopic composition of Lower to Middle Cambrian sediments at Taijiang, Guizhou Province, China.’ Geological Magazine 142, Nr. 6: 723-733. doi: 10.1017/S0016756805001202.
- . . ‘Carbon isotopic bio-geochemical study on the section of Doushantuo Formation in Weng'an, Guizhou Province.’ Kuangwu Yanshi 25, Nr. 2: 75-80.
- . . ‘Stable isotopes, life, and early earth history: A special issue of Precambrian Research in honor of Manfred Schidlowski.’ Precambrian Research 137, Nr. 3-4: 115-117. doi: 10.1016/j.precamres.2005.03.001.
- . . ‘Emergence of the aerobic biosphere during the Archean-Proterozoic transition: Challenges of future research.’ GSA Today 15, Nr. 11: 4-11. doi: 10.1130/1052-5173(2005)015[4:EOAABD]2.0.CO;2.
- . . ‘Active microbial sulfur disproportionation in the Mesoproterozoic.’ SCIENCE 310, Nr. 5753: 1477-1479. doi: 10.1126/science.1117824.
- . . ‘Carbon, sulfur, oxygen and strontium isotope records, organic geochemistry and biostratigraphy across the Permian/Triassic boundary in Abadeh, Iran.’ International Journal of Earth Sciences 93, Nr. 4: 565-581.
- . . ‘FISH shows that Desulfotomaculum spp. are the dominating sulfate-reducing bacteria in a pristine aquifer.’ Microbial ecology 47, Nr. 3: 236-42. doi: 10.1007/s00248-004-9952-6.
- . . ‘The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates.’ CHEMICAL GEOLOGY 204, Nr. 3-4: 255-286. doi: 10.1016/j.chemgeo.2003.11.013.
- . . ‘4 Ga of seawater evolution: evidence from the sulfur isotopic composition of sulfate.’ In Sulfur Biogeochemistry: past and present, edited by , 195-205. Boulder, Colorado: Geological Society of Amer.
- . . ‘The Paleozoic to Mesozoic carbon cycle revisited: The carbon isotopic composition of terrestrial organic matter.’ Geochemistry, Geophysics, Geosystems 4, Nr. 10. doi: 10.1029/2003GC000555.
- . . ‘Sulphur isotopes and the early Archaean sulphur cycle.’ Precambrian Research 126, Nr. 3-4: 349-361. doi: 10.1016/S0301-9268(03)00104-9.
- . . ‘Unravelling chemostratigraphic signatures of sedimentation and diagenesis in Palaeoproterozoic iron and manganese formations.’ Transactions of the Institution of Mining and Metallurgy, Section B: Applied Earth Science 112, Nr. 2 AUG: B159-B161.
- . . ‘Water column anoxia, enhanced productivity and concomitant changes in δ13C and δ34S across the Frasnian-Famennian boundary (Kowala - Holy Cross Mountains/Poland).’ Chemical Geology 175, Nr. 1-2: 109-131. doi: 10.1016/S0009-2541(00)00365-X.
- . . ‘The sulfur isotopic composition of Neoproterozoic to early Cambrian seawater - Evidence from the cyclic Hanseran evaporites, NW India.’ Chemical Geology 175, Nr. 1-2: 17-28. doi: 10.1016/S0009-2541(00)00361-2.
- . . ‘The sulphur isotopic composition of trace sulphates in Carboniferous brachiopods: Implications for coeval seawater, correlation with other geochemical cyles and isotope stratigraphy.’ Chemical Geology 175, Nr. 1-2: 149-173. doi: 10.1016/S0009-2541(00)00367-3.
- . . ‘Sulfate Reduction at a Lignite Seam: Microbial Abundance and Activity.’ Microbial ecology 42, Nr. 3: 238-247. doi: 10.1007/s00248-001-1014-8.
- . . ‘The carbon isotopic composition of terrestrial organic matter from the Late Paleozoic.’ Terra Nostra 4: 52-56.
- . . ‘Early diagenetic alteration of organic matter by sulfate reduction in Quaternary sediments from the northeastern Arabian Sea.’ Marine Geology 158, Nr. 1-4: 1-13. doi: 10.1016/S0025-3227(98)00191-1.
- . . ‘Stable carbon and oxygen isotope geochemistry of the upper Visingsö Group (early Neoproterozoic), southern Sweden.’ Geological Magazine 136, Nr. 1: 63-73. doi: 10.1017/S0016756899002253.
- . . ‘Geological evolution from isotope proxy signals - Sulfur.’ Chemical Geology 161, Nr. 1: 89-101. doi: 10.1016/S0009-2541(99)00082-0.
- . . ‘87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater.’ Chemical Geology 161, Nr. 1-3: 59-88. doi: 10.1016/S0009-2541(99)00081-9.
- . . ‘Sulphur isotope compositions of sedimentary phosphorites from the basal Cambrian of China: Implications for Neoproterozoic-Cambrian biogeochemical cycling.’ Journal of the Geological Society 156, Nr. 5: 943-955. doi: 10.1144/gsjgs.156.5.0943.
- . . ‘The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma.’ Chemical Geology 161, Nr. 1-3: 103-125. doi: 10.1016/S0009-2541(99)00083-2.
- . . ‘The sulfur and strontium isotopic compositions of Permian evaporites from the Zechstein Basin, northern Germany.’ Geologische Rundschau 87, Nr. 2: 192-199. doi: 10.1007/s005310050201.
- . . ‘Isotope ratios of sulphur and carbon species from sediments and deep groundwaters of the Lower Rhine Inlet | Isotopenverhaltnisse der Schwefel- und Kohlenstoffspezies aus Sedimenten und tiefen Grundwassern der Niederrheinischen Bucht.’ Grundwasser 2, Nr. 3: 103-110. doi: 10.1007/s767-1997-8531-4.
- . . ‘Oxygen isotope evolution of Phanerozoic seawater.’ Palaeogeography, Palaeoclimatology, Palaeoecology 132, Nr. 1-4: 159-172. doi: 10.1016/S0031-0182(97)00052-7.
- . . ‘Carbon isotope geochemistry and palaeontology of Neoproterozoic to early Cambrian siliciclastic successions in the East European Platform, Poland.’ Geological Magazine 134, Nr. 1: 1-16. doi: 10.1017/S0016756897006602.
- . . ‘The isotopic composition of sedimentary sulfur through time.’ Palaeogeography, Palaeoclimatology, Palaeoecology 132, Nr. 1-4: 97-118. doi: 10.1016/S0031-0182(97)00067-9.
- . . ‘Carbon and sulfur isotopic compositions of organic carbon and pyrite in sediments from the Transvaal Supergroup, South Africa.’ Precambrian Research 79, Nr. 1-2: 57-71. doi: 10.1016/0301-9268(95)00088-7.
- . . ‘Analysis of respiratory water--a new method for evaluation of myocardial energy metabolism.’ Journal of applied physiology (Bethesda, Md. : 1985) 81, Nr. 5: 2115-22.
- . . ‘The sulfur isotopic record of Precambrian sulfates: new data and a critical evaluation of the existing record.’ Precambrian Research 63, Nr. 3-4: 225-246. doi: 10.1016/0301-9268(93)90035-Z.
- . . ‘Proterozoic carbon cycle [5].’ Nature 362, Nr. 6416: 118.
- . . ‘Proterozoic carbon cycle [3].’ Nature 362, Nr. 6416: 117-118. doi: 10.1038/362117b0.
- . . ‘Stable isotope geochemistry and palynology of the late Precambrian to early Cambrian sequence in Newfoundland.’ Canadian Journal of Earth Sciences 29, Nr. 8: 1662-1673. doi: 10.1139/e92-131.
- . . ‘Ediacaran fossils from the Innerelv Member (late Proterozoic) of the Tanafjorden area, northeastern Finnmark.’ Geological Magazine 129, Nr. 2: 181-195. doi: 10.1017/S001675680000827X.
- . . ‘Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment.’ Nature 359, Nr. 6396: 605-9. doi: 10.1038/359605a0.
- . . ‘Nature and nurture: Environmental isotope story of the river Rhine.’ Naturwissenschaften 78, Nr. 8: 337-346. doi: 10.1007/BF01131605.
- . . ‘A sulfur isotope study of pyrite genesis: The mid-proterozoic Newland formation, belt supergroup, Montana.’ Geochimica et Cosmochimica Acta 54, Nr. 1: 197-204. doi: 10.1016/0016-7037(90)90207-2.
- . . ‘Carbon and sulfur isotope data for carbonaceous metasediments from the Kidd Creek massive sulfide deposit and vicinity, Timmins, Ontario.’ Economic Geology 84, Nr. 4: 959-962. doi: 10.2113/gsecongeo.84.4.959.
- . . ‘Carbon and sulfur isotopes in Precambrian sediments from the Canadian Shield.’ Geochimica et Cosmochimica Acta 50, Nr. 12: 2653-2662. doi: 10.1016/0016-7037(86)90216-4.