| Private Homepage | http://www.schukajlow.de/ |
| Research Interests | Mathematisches Modellieren Emotionen, Motivation und Überzeugungen zu Mathematik Visuelle Repräsentationen und Lesestrategien Schulpraxis in der Lehrerbildung |
| Current Talks | • Offenheit realitätsbezogener Probleme: Ein Literaturreview und eine Studie zu Lösungsprozessen. Herbsttagung des GDM-Arbeitskreises Psychologie und Mathematikdidaktik, Würzburg • Welche Rolle spielen offene Aufgaben im realitätsbezogenen Mathematikunterricht? Ein systematisches Literaturreview. 58. Jahrestagung der Gesellschaft für Didaktik der Mathematik (GDM), Saarbrücken • Kompetenzerleben, Autonomieerleben und ihre Wechselwirkungen: Die Bedeutung von Modellierungsleistung und Unterricht mit offenen Modellierungsaufgaben. Herbsttagung des GDM-Arbeitskreises Psychologie und Mathematikdidaktik, Lüneburg • Kompetenzerleben, Autonomieerleben und ihre Wechselwirkungen: Die Bedeutung von Unterricht mit offenen Modellierungsaufgaben . Frühjahrestagung des GDM-Arbeitskreises Affekt, Motivation und Beliefs, Potsdam • Textverstehen und Blickbewegungen: Zwei Studien zur Rolle der Fragestellung bei Modellierungsaufgaben. Arbeitskreis Empirische Bildungsforschung, Münster • Modellieren beim Problem Posing – Modellierungsaktivitäten beim Problem Posing zu realweltlichen Situationen. GDM, Frankfurt • Verstehen Schüler*innen Modellierungsaufgaben besser, wenn sie die Fragestellung schon kennen?. 56. Jahrestagung der Gesellschaft für Didaktik der Mathematik, Frankfurt am Main • The process of modelling-related problem posing - a case study with preservice teachers. PME, Alicante • Modelling while problem posing – A case study of preservice teachers. CERME, Bozen (online) |
| Current Publications | • Beckschulte, Catharina; Quarder, Jascha; Schukajlow, Stanislaw; Blankenstein, Samuel Portfolio as a form of assessment for mathematical modelling with digital tools - Advantages and challenges
from students’ perspective. , 2025 online • Quarder, J.; Schukajlow, S.; Krawitz, J.; Wiehe, K.; & Rakoczy, K. Experiences of autonomy and competence and their reciprocal relationship: The roles of prior performance and open modelling problems in mathematics teaching. International Journal of Science and Mathematics Education, 2025 online • Wiehe, Katharina; Beckschulte, Catharina; Schukajlow, Stanislaw Pre-service teachers' judgments of students' solutions to open modeling problems: How important is it to make assumptions?. , 2025 online • Volbers, G.; Schukajlow, S.; Greefrath, G.; Krawitz, J. Skizzenbezogene Blickmuster bei der Lösung nicht linearer Geometrieprobleme. Beiträge zum Mathematikunterricht 2025, 2025 online • Wiehe, K.; Schukajlow, S.; Krawitz, J.; Rakoczy, K. The OModA Project: Designing a Teaching Method to Help Students Dealing with Openness in Modelling Problems. Researching Mathematical Modelling Education in Disruptive TimesInternational Perspectives on the Teaching and Learning of Mathematical Modelling, 2024 online • Schukajlow, S.; Krawitz, J.; Wiehe, K.; Rakoczy, K. Effect of teaching students to solve open modelling problems on utility, intrinsic, and attainment value. Proceedings of the 47th Conference of theInternational Group for the Psychology of Mathematics Education Vol. 4, 2024 online • Wiehe, Katharina; Schukajlow, Stanislaw Messung der Diagnosekompetenz von angehenden Lehrkräften im Kontext von offenen Modellierungsaufgaben. Beiträge zum Mathematikunterricht 2024. 57. Jahrestagung der Gesellschaft für Didaktik der Mathematik , 2024 online • Back, A.; Greefrath, G.; Schukajlow, S. DGS-Einführung mit oder ohne Kontext? - GeoGebra als Grundlage für digitale Modellierungskompetenzen. Beiträge zum Mathematikunterricht 2024, 2024 online • Volbers, G.; Schukajlow, S.; Greefrath, G.; Krawitz, J. Skizzennutzung im Lösungsprozess nicht linearer Geometrieprobleme—Eine Eyetrackingstudie. Beiträge zum Mathematikunterricht 2024, 2024 online |
| Current Projects | • Open modelling problems in mathematics teaching oriented towards self-regulation – open goal state Open problems that can be solved by using different solution methods are an important part of the school curriculum in mathematics and science. One important type of open problem is related to the real world. Open real-world problems can be solved by constructing mathematical models and are known as open modelling problems. Prior research analyzed open problems that did not include all information that is essential for solving the problems. In this type of open problem, the initial state is open. In this grant application, we are going to analyze problems with open goal state. While solving the problems with an open goal state, different factors (e.g., temporal, and financial) can be considered to answer the question. In the project we will investigate the effects (1) of instruction that is focused on important barriers in solving problems with open goal state and (2) how the teaching of problems with open goal state affects students’ cognitive and motivational learning outcomes. We will carry out an experimental study to investigate the impact of instructions in a) how to identify solution-related factors in the goal state, b) how to set up a mathematical model, and c) how to interpret and validate mathematical results on students' solutions. Further, we will contrast two treatment programs in a quasi-experimental study and analyze the effects on interest and performance. In the first teaching program, students will solve modelling problems with an open goal state, and in the second teaching program, they will solve real-world problems with a closed goal state. The main aim of this application is to investigate students’ cognitive barriers while they solve modelling problems with an open goal state and to analyze the effects of interventions (instruction and teaching program) for problems with open goals state on students' performance. Further, we will analyze, how interventions in solving modelling problems with an open goal state will affect students’ cognitive and motivational development. This research will contribute to the overarching aim of getting new insights about dealing with open problems in instructional settings that are oriented toward self-regulation. online• Visualizations while Solving Modelling Problems 2 Empirical findings on the effectiveness of drawing instructions to promote students’ modelling competencies in the field of geometry are mixed and indicate that drawing-specific strategy knowledge (strategic knowledge about drawing, SKD) plays an important role. Results from the first phase of funding ("ViMo 1") have confirmed that declarative SKD (i.e., knowledge about the characteristics of a good drawing) is a necessary but not sufficient precondition for producing drawings with a high level of accuracy and for finding a solution to a modeling problem. The overarching goal of the follow-up project "ViMo 2" is therefore to investigate what role procedural SKD (i.e., knowledge of how to construct and use a drawing in the modeling process) plays in the effective use of drawings and in modeling performance by students in the field of geometry. In addition to procedural SKD, we are also taking into account declarative SKD as well as cognitive, metacognitive, and motivational factors. Within the framework of the follow-up project, theoretical, empirical, and practice-relevant findings can be expected in the following areas: First, the project will provide findings on the potential of strategy training for promoting mathematical modelling competencies in the field of geometry. Second, the project will contribute to research on self-generated drawings. Compared with the first phase of funding, the recording and analysis of eye movements promises additional insights into the mechanisms behind instruction in drawing at the level of strategy execution. The use of EMME (Eye Movement Modeling Examples) also promises insights into the potential of this innovative form of instruction for mathematics and science learning. Third, the project will contribute to learning strategy research. We expect to confirm and expand relationships postulated in Borkowski et al.’s (2000) theoretical model by distinguishing between declarative and procedural parts of SKD. Forth, regarding practical implications, the learning environment that we are developing in the project can be used in mathematics instruction. • Prozesse beim Problem Posing und die Verbindung zum Modellieren online • Unterstützung zum Studienanfang Das Projekt Unterstützung zum Studienanfang (UNS) bietet eine bedarfsorientierte Unterstützung der Studierenden des Lehramtstudiums Mathematik für Haupt-, Real- und Gesamtschulen, die potentiell von einem Studienabbruch bedroht sind. Die Unterstützung zielt auf die Überwindung motivationaler, fachlicher und strategischer Schwierigkeiten ab. Das Projekt umfasst die folgenden Maßnahmen: Digitale Selbstdiagnosetests am Anfang des Semesters und nach Abschluss jedes Themenblocks aus der Vorlesung, Einrichten von Präsenzzeiten zur gemeinsamen Bearbeitung von Übungszetteln („Offener Treff“) unter der Leitung einer geschulten Hilfskraft und die Durchführung einer Begleitveranstaltung („Unterstützungskurs“) mit fachlichen (Sicherung fachlicher Grundlagen), fachdidaktischen (Verknüpfung fachlicher Inhalte der Vorlesungen mit fachdidaktischen Anforderungen im Lehrerberuf) und strategischen (Problemlösestrategien und allgemeine Lernstrategie im Mathe-Studium) Schwerpunkten. online | schukajlow@uni-muenster.de |
| Phone | +49 251 83-33802 |
| Room | 21, Henriette-Son-Str. 19 |
| Secretary | Sekretariat Auffenberg Frau Stephanie Auffenberg Telefon +49 251 83-39378 Zimmer 1, Henriette-Son-Str. 19 Sekretariat Hamsen Frau Anja Hamsen Telefon +49 251 83-33788 Fax +49 251 83- Zimmer s. Sprechst. |
| Address | Prof. Dr. Stanislaw Schukajlow-Wasjutinski Institut für Didaktik der Mathematik und Informatik Fachbereich Mathematik und Informatik der Universität Münster Henriette Son-Straße (ehem. Apffelstaedtstraße) 19 48149 Münster |
| Diese Seite editieren |

