Lehre im Wintersemester 2024/25
Algebraische Zahlentheorie
Übungen zur Vorlesung Algebraische Zahlentheorie
Zeit: Mo, Do 10:00 - 12:00 Uhr
Ort: M 3
The lecture course will provide an introduction to Algebraic Number Theory and will cover Algebraic numbers, Dedekind rings and their extensions, Cyclotomic fields, Completions and local fields, Adeles and Ideles.Literatur:J. W. S. Cassels and A. Fröhlich, editors. Algebraic number theory. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1986. Reprint of the 1967 original.
Jürgen Neukirch. Algebraic number theory, volume 322 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer- Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder.
Semi-simple Lie-Algebras and their representations
Semi-simple Lie-Algebras and their representations
Time: Di 14:00 - 16:00 Uhr
Place: SR 1C
Organizational meeting: Tuesday 24.9.24, 14h SR 1C
Lie algebras are ubiquitous in algebra, but also in many other areas of mathe- matic. They usually arise as linearization (i.e. as the tangent space) of Lie groups or algebraic groups, but can also be studied as objects of intrinsic interest. By def- inition they are given by a vector space g over a field k together with a Lie bracket [−, −] : g×g → g that behaves like the commutator XY −Y X on gln = Matn×n(k). In the first part of the seminar we will study Lie algebras and in particular semi- simple Lie algebras. It turns out that these objects admit a beautiful classification in terms of root systems.
In the second part of the seminar we will study representations of semi-simple Lie algebras. The category of finite dimensional representations turns out to be semi- simple and there is a complete classification of the irreducible representations. The last three talks will present an introduction to further and more advanced topics about certain infinite dimensional representations.
Literatur:
J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics 9, Springer, 1974.
J.E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category O, Graduate Studies in Mathematics 94, AMS 2008.Kolloquium der Reinen und Angewandten Mathematik
Mittagsseminar zur Arithmetik
Zeit: Dienstag, 10 - 12 Uhr
Ort: SRZ 216/217
Learnweb-Link:
Eine Liste der Vorträge finden Sie hier.
Oberseminar "p-adische Arithmetik"
Oberseminar "p-adische Arithmetik"
Zeit: Montag, 12 - 14 Uhr
Ort: SRZ 216/217
Thema: Vector bundles in the v-topology and Sen theory
Eine Liste der Vorträge finden Sie hier.