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1 Introduction

The goal of this Oberseminar is to get some insight into the recent development in the Kudla
program for function fields [FYZ21a, FYZ21b, FYZ23]. Kudla’s original program is formulated
for Shimura varieties and special cycles on them whose intersection numbers are (conjecturally)
expressed as derivatives of Eisenstein series.

1.1 Why should we learn [FYZ21a] ?

Classically, remarkable relations between Eisenstein series and theta series lead to deep results
in number theory. For example the equality θ(τ)2 = E(τ) of the square of the Jacobi theta series

θ(τ) :=
∑
n∈Z

qn
2

with q := e2πiτ for τ ∈ C, ℑ(τ) > 0

with the Eisenstein series for the non-trivial Dirichlet character χ : (Z/4Z)× → {±1}

E(τ) := 1 + c1 ·
∑
n≥1

( ∑
odd d|n

χ(d)
)
qn,

yields c1 = 4 and Jacobi’s formula for the representation number of n as a sum of two squares

#
{
(x, y) ∈ Z2 : n = x2 + y2

}
= 4

∑
odd d|n

χ(d),

because θ(τ)2 =
∑

(x,y)∈Z2 qx
2+y2 . This was vastly generalized, first by Siegel and Weil, followed

by contributions of many authors. In particular, Kudla [Kud97] discovered1 a relation between
an “arithmetic theta function” — a generating series of arithmetic cycles on an integral model
of a Shimura curve — and the first central derivative of a Siegel–Eisenstein series on Sp4. The
Kudla program was further developed by Kudla, Rapoport and others. It is an exciting success
story in arithmetic geometry.

Equally exciting is the recent formulation of its function field analog by Feng, Yun and
Zhang [FYZ21a, FYZ21b, FYZ23]. In the seminar we will study the first of the three articles,
where special cycles on moduli stacks of unitary shtukas are constructed and their degree is ex-
pressed as the derivative of a Fourier coefficient of a Siegel-Eisenstein series. In the Oberseminar
from last semester we already wandered through the world of function field shtukas. We will now
discover another fascinating area in this world.

1Cited from [FYZ21a, page 1] where more on the history of the Kudla program can be found.
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1.2 The main result

Let X be a proper, smooth, geometrically connected curve over a finite field Fq with q elements
and characteristic ̸= 2. Let X ′ → X be an étale cover of degree 2 with non-trivial automorphism
σ ∈ AutX(X ′). Let F and F ′ be the function fields of X and X ′, respectively.

On the arithmetic side, the stack ShtrU(n) of “Hermitian shtukas” of rank n with r legs pa-
rameterizes chains of vector bundles with σ-Hermitian forms

F0
f0 // F1

f1 // . . .
fr−1 // Fr

∼ // τF0 (1.1)

where the dashed arrows are isomorphisms of Hermitian vector bundles outside the graph of the
corresponding leg, and τF0 denotes the Frobenius pullback of F0. Feng, Yun, Zhang [FYZ21a]
define special cycles Zr

E(a) on ShtrU(n) indexed by a vector bundle E of rank m ∈ {1, . . . , n} and
a Hermitian map a : E → σ∗E∨ satisfying σ∗a∨ = a, where E∨ := HomX′(E , ωX′) and ωX′ is
the sheaf of differential forms on X ′. More precisely, Zr

E(a) classifies shtukas (1.1) together with
maps ti : E → Fi compatible with the isomorphisms fi such that a is induced from the Hermitian
forms on the Fi. Forgetting E and the ti defines a morphism Zr

E(a) → ShtrU(n). When m = 1
these cycles are analogous to the Kudla-Rapoport cycles on unitary Shimura varieties. When
m = n and a is injective, [FYZ21a] prove that Zr

E(a) is proper over Fq and defines a zero cycle
[Zr

E(a)] ∈ Ch0(Zr
E(a)) whose degree is a well defined number deg[Zr

E(a)] ∈ Q. The main result of
[FYZ21a] expresses deg[Zr

E(a)] as the r-th derivative of a Fourier coefficient of a Siegel-Eisenstein
series, which we introduce next.

Let W = (F ′)2n be the standard skew-Hermitian space with the skew-Hermitian form
(v, w) := v⊤ · J · σ(w) for J =

(
0 Idn

− Idn 0

)
. Let Hn = U(W ) be the unitary group of W

over F , which is defined for any F -algebra R by

Hn(R) :=
{
g ∈ GL2n(F

′ ⊗F R) : g⊤ · J · (σ ⊗ idR)(g) = J
}
.

Consider the standard Siegel parabolic subgroup

Pn(R) :=
{
g =

(
α β
0 δ

)
∈ Hn(R) : α ∈ GLn(F

′ ⊗F R), σ(α)⊤ = δ−1, σ(β)⊤ = β
}
.

Let AF be the adèles and OF be the integral adèles of F . Let η : F×\A×
F /O

×
F → {±1} ⊂ C×

be the quadratic character from class field theory and let χ : (F ′)×\A×
F ′/O×

F ′ → C× be such
that χ|A×

F
= ηn. Extend χ and the absolute value | • |F ′ : (F ′)×\A×

F ′/O×
F ′ → C× to functions

Pn(F )\Pn(AF )/Pn(OF ) → C× by setting
(
α β
0 δ

)
7→ χ(detα) and

∣∣( α β
0 δ

)∣∣
F ′ := |detα|F ′ . By the

Iwasawa decomposition we have Hn(AF ) = Pn(AF ) ·Hn(OF ). For s ∈ C let

Φ( • , s) : Hn(AF ) −→ C×, p · k 7−→ Φ(p · k, s) := χ(p) · |p|s+n/2
F ′ ,

where p ∈ Pn(AF ) and k ∈ Hn(OF ). Thus, Φ is unramified and induced from Pn. On the
automorphic side we define the Siegel-Eisenstein series (which depends on the choice of χ) as

E( • , s,Φ): Hn(AF ) −→ C, E(g, s,Φ) :=
∑

γ∈Pn(F )\Hn(F )

Φ(γg, s) , (1.2)

which converges for ℜ(s) ≫ 0. It has a Fourier expansion as follows. An element p =
(
α β
0 δ

)
∈

Pn(F )\Pn(AF )/Pn(OF ) induces by projection onto

α ∈ GLn(F
′)\GLn(AF ′)/GLn(OF ′) = BunGLn,X′(Fq)

a vector bundle E ∈ BunGLn,X′(Fq) of rank n on X ′. Since the function Φ of p · k only depends
on α, we write m(E) for the argument of Φ( • , s), and also of E( • , s,Φ), that is E(m(E), s,Φ).
Then

E(m(E), s,Φ) =
∑

a : E99Kσ∗E∨

Ea(m(E), s,Φ)
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is the expansion into Fourier coefficients Ea(m(E), s,Φ) indexed by Hermitian rational maps
a : E ⊗OX′ F

′ → σ∗E∨ ⊗OX′ F
′ satisfying σ∗a∨ = a. The Fourier coefficient is called regular if

a : E ↪→ σ∗E∨ is defined on all of X ′ and is injective. The main theorem of [FYZ21a] is the
following

Theorem. Let n ≥ 1 and r ≥ 0. Let E be a rank n vector bundle on X ′ and a : E ↪→ σ∗E∨ be an
injective Hermitian map, that is σ∗a∨ = a. Then

1

(log q)r

( d

ds

)r ∣∣∣
s=0

(
qdsẼa(m(E), s,Φ)

)
= deg

[
Zr
E(a)

]
, (1.3)

where d = −deg(E) + n degωX = −χ(X ′, E), and where Ẽa is a suitable normalization of the
regular Fourier coefficient Ea.

For the purpose of introducing the content of the talks of this seminar, let us explain the
strategy of the proof 2. It uses and generalizes the geometrization technique originally developed
by Yun and Zhang [YZ17]. For the left, respectively right side of the equation (1.3) one constructs
a perverse sheaf KEis

d (T ), respectively KInt
d (T ) on the Artin stack Herm2d of Hermitian torsion

sheaves on X ′. The pair (E , a) defines a point Q := coker(a) ∈ Herm2d. Then Ẽa(m(E), s,Φ),
respectively deg[Zr

E(a)] can be computed as the trace of Frobenius at Q on the sheaf KEis
d (T ),

respectively on the r-th derivative of the sheaf qdsKInt
d (T ). In particular, both sides only depend

on Q and not on E . The proof is then completed by identifying these two perverse sheaves using
a Hermitian variant of Springer theory.

More precisely, on the arithmetic side, the connection between Zr
E(a) and Hermitian Springer

theory comes via the geometry of a “Hitchin” fibration. The degree of [Zr
E(a)] is essentially an

intersection number of cycles on ShtrU(n). The ambient space ShtrU(n) can itself be realized as an
intersection of a Hecke correspondence with the graph of the Frobenius endomorphism on the
stack BunU(n) of σ-Hermitian vector bundles of rank n on X ′. The authors use this to “unfold” all
the intersections, and then redo them in a different order, performing the linear intersections (i.e.,
those not involving the Frobenius map) first, and leaving the Frobenius semi-linear intersection
till the last step. In this process, a Hitchin-type moduli stack Md appears naturally as they
perform the linear intersections. The degree of the special cycle [Zr

E(a)] can be expressed as a
weighted counting of Fq-points on the fiber of the “Hitchin” fibration fd : Md → Ad over the
point (E , a) ∈ Ad(Fq).

The cokernel Q = coker(a) is a torsion sheaf on X ′ with a Hermitian structure inherited
from a. This motivates the introduction of the moduli stack Herm2d that parameterizes torsion
coherent sheaves on X ′ of length 2d together with a Hermitian structure, so that Q is an Fq-point
of Herm2d. One shows that the fiber of fd : Md → Ad over (E , a) depends only on Q = coker(a),
and hence the degree of [Zr

E(a)] depends only on the point Q of Herm2d. There is a smooth map
Ad → Herm2d, and the direct image complex Rfd,∗Qℓ on Ad descends to a perverse sheaf KInt

d

on Herm2d.
On the automorphic side, the Fourier coefficients Ẽa(m(E), s,Φ) of the Eisenstein series

E(g, s,Φ) are expressed by local density formulas for Hermitian lattices of Cho-Yamauchi. The
Eisenstein series (1.2) can be written as a product of local terms, which are representation density
functions for Hermitian lattices. These density functions again only depend on the torsion sheaf
Q ∈ Herm2d together with its Hermitian structure. They can be computed with Hermitian
Springer theory. Classically, starting with a reductive Lie algebra g, Springer theory outputs
a perverse sheaf Sprg on g, defined as the direct image complex of the Grothendieck-Springer
resolution πg : g̃ → g. This was globalized by Laumon, who developed a version of Springer
theory for the moduli stack Cohd of torsion coherent sheaves of length d on X. In the article,

2The following paragraphs are quoted from [FYZ21a, § 1.2].
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Herm2d plays the role of g. It has a Springer resolution πHerm
2d : H̃erm2d → Herm2d that gives rise

to the Hermitian Springer sheaf SprHerm
2d := RπHerm

2d,∗ Qℓ. Both sheaves KEis
d and KInt

d are linear
combinations of direct summands of SprHerm

2d . The two versions of Springer theory for Herm2d

and Cohd are used throughout the article.

2 Program

All unexplained references are to [FYZ21a].

0. Overview (October 16). The organizer will handle this.

1. Background on algebraic stacks (October 23).
Goals: Give an introduction to Artin and Deligne-Mumford stacks and to smooth and proper
morphisms of Artin stacks.

2. Fourier coefficients of Eisenstein series (October 30). Cover all of Section 2, except
for the proof Theorem 2.2.
Goals: Expand the Siegel-Eisenstein series E(g, s,Φ) into Fourier coefficients Ea(m(E), s,Φ) and
express the latter by local density functions for Hermitian lattices.

3. Springer theory for torsion coherent sheaves (November 6). Cover all of Section 3.
Goals: Introduce the stack Cohd of torsion coherent sheaves and explain Springer theory for
it, consisting of the Springer resolution πCoh

d : C̃ohd → Cohd and the induced perverse sheaf
Sprd := RπCoh

d,∗ Qℓ on X. All of Section 3 will be needed in Sections 4 and 5.

4.(a) Springer theory for Hermitian torsion sheaves (November 13). Cover §§ 4.1–4.4
of Section 4.
Goals: Introduce the stack Herm2d of Hermitian torsion sheaves on X ′ and explain Springer
theory for it. The goal is Proposition 4.13 in the next Talk 4.(b).

4.(b) Springer theory for Hermitian torsion sheaves (November 20). Cover §§ 4.5, 4.6
of Section 4.
Goals: Proposition 4.13 which compares the stalks and the action of Frobenius on Sprd and
HSprd. The latter is defined as a suitable subsheaf of SprHerm

2d . This comparison will allow to
express the Frobenius trace on HSprd and KEis

d (T ) in terms of local densities in the next talk.

5. Geometrization of local densities (November 27). Cover Section 5.
Goals: Theorem 5.3, which expresses the local densities as trace of Frobenius on the perverse sheaf
KEis

d (T ). Together with Theorem 2.7 it gives a formula for the Fourier coefficient Ea(m(E), s,Φ)
in terms of the trace of Frobenius on KEis

d (q−2s) at the point Q = coker a.

6. Moduli of Hermitian shtukas and special cycles (December 4). Cover all of Section 6
and §§ 7.1, 7.2 including all proofs except for Lemma 6.8.
Goals: Define the stacks BunU(n) of Hermitian bundles, Hkru(n) of Hermitian Hecke data with r
legs and modifications of length 1, and ShtrU(n) of Hermitian shtukas, and prove their properties
in § 6.4. Define the special cycles Zr

E(a).

7.(a) Special cycles: basic properties (December 11). Cover §§ 7.3–7.6 of Section 7.
Goals: Prove that Zr

E(a) → ShtrU(n) is finite and prove the functoriality properties of Zr
E(a) with

respect to E . Mention the results about rk E = 1 and rk E = n from §§ 7.5, 7.6.
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9. Special cycles of corank 1 (December 18). Cover all of Section 9 including all proofs,
maybe except of Lemma 9.3 and in § 9.2.
Goals: For m = 1 construct a stratification of the cycle Zr

L(a) and compute its dimension. This
will be used in the next talk to show that [Zr

E(a)] ∈ Ch0(Zr
E(a)) when E = L1 ⊕ . . . ⊕ Ln is a

direct sum of line bundles.

7.(b) Intersection theory on stacks (January 8). Cover §§ 7.7–7.9 of Section 7.
Goals: Explain intersection theory on Deligne-Mumford stacks and apply it to Zr

E(a) in order
to define the class [Zr

E(a)] ∈ Ch0(Zr
E(a)) when E is a direct sum of line bundles. More precisely,

define the Chow group Chc,i(X) of proper cycles on an Artin stack X, Gysin maps for l.c.i.
morphisms, the intersection product, see [Kre99, Ful98], and the degree map deg : Chc,0(X) → Q
of a Deligne-Mumford stack X, see [YZ17, Appendix A] and [Kre99, § 3.3].

8. Hitchin type moduli spaces (January 15). Cover all of Section 8 including all proofs.
Goals: Introduce the Hitchin stack Md, base Ad and fibration fd : Md → Ad, and in the special
case m = n also Hecke and Shtuka stacks for Hitchin spaces. Prove properties of the Hitchin
fibration fd and of the map Ad → Herm2d. Define the 0-cycle class [ShtrMd

] (Def. 8.16).

11. Local intersection number and trace formula (January 22). Cover §§ 11.1–11.3 from
Section 11 in the case that E is a direct sum of line bundles.
Goals: Show that [Zr

E(a)] only depends on the Hermitian torsion sheaf Q = coker(a) and prove
a formula which relates its degree to the r-th derivative at s = 0 of the Frobenius trace of
KInt

d (q−2s) at Q. Avoid Theorem 10.1 by taking E = ⊕iLi and use Proposition 10.9 as a black
box.

12. Matching of sheaves (January 29). Cover all of Section 12.
Goals: Finish the proof of the higher Siegel–Weil formula by proving that KEis

d (T ) = KInt
d (T ).
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