Forschungsschwerpunkte
- Geologische Entwicklung der terrestrischen Planeten und Monde
- Planetare Prozesse
Vita
Akademische Ausbildung
- Promotion
- Studium der Geologie, Ludwig-Maximilians-Universität München
Beruflicher Werdegang
- Visiting Professor, Dept. of Geological Sciences, Brown University, Rhode Island, USA
- Professor für Geologische Planetologie
- Senior Research Associate, Dept. of Geological Sciences, Brown University, Rhode Island, USA
- Assistant Professor, Department of Physics and Earth Sciences, Central Connecticut State University, USA
- Research Associate, Dept. of Geological Sciences, Brown University, Rhode Island, USA
- Wissenschaftlicher Angestellter, Freie Universität Berlin
- Visiting Researcher, Dept. of Geological Sciences, Brown University, Rhode Island, USA
- Wissenschaftlicher Angestellter, Deutsches Zentrum für Luft- und Raumfahrt, Berlin
- Wissenschaftlicher Angestellter, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen
Preise
- Angioletta Coradini Mid-Career Award – NASA’s Solar System Exploration Research Virtual Institute (SSERVI)
- ESA Group Achievement Award – Europäische Weltraumorganisation
- ESA Group Achievement Award – Europäische Weltraumorganisation
- Namenspatronat für Asteroid – Internationale Astronomische Union
- NASA Group Achievement Award (GAA) – National Aeronautics and Space Administration (NASA)
- NASA Group Achievement Award (GAA) – National Aeronautics and Space Administration (NASA)
- Teaching Honor Role – Central Connecticut State University, USA
Mitgliedschaften und Aktivitäten in Gremien
- Mitglied American Geophysical Union
- Mitglied Geologic Society of America
- Mitglied European Geophysical Union
Projekte
- BC MERTIS: Cruise Phase Teil 2 - Teilvorhaben Labormessung und Missionsunterstützung ( – )
participations in other joint project: Bundesministerium für Wirtschaft und Klimaschutz | Förderkennzeichen: 50QW2201A - MUTED – Künstliche Intelligenz (KI) - gesteuerte Datenprozessierung und -auswertung mit der Multitemporalen Datenbank ( – )
Gefördertes Einzelprojekt: Bundesministerium für Wirtschaft und Klimaschutz | Förderkennzeichen: 50OO2102 - SFB TRR 170 - A02: Das Alter des South Pole-Aitken Beckens und der Umgebung der Landestellen auf dem Mond - Implikationen für die Chronologie des Mondes ( – )
Teilprojekt in DFG-Verbund koordiniert an der Universität Münster: DFG - Sonderforschungsbereich | Förderkennzeichen: TRR 170/2 - SFB TRR 170 - A06: Vergleich der Morphologie, Auswurfdecken und Alter von Einschlagsbecken auf dem Mond und Merkur ( – )
Teilprojekt in DFG-Verbund koordiniert an der Universität Münster: DFG - Sonderforschungsbereich | Förderkennzeichen: TRR 170/2 - Missionsunterstützende und wissenschaftliche Arbeiten mit Daten der Lunar Reconnaissance Orbiter Camera (LROC) und Vorbereitung zukünftiger Mondmissionen ( – )
Gefördertes Einzelprojekt: Bundesministerium für Wirtschaft und Klimaschutz | Förderkennzeichen: 50OW2001 - Europlanet 2024 Research Infrastructure ( – )
EU-Projekt koordiniert außerhalb der Universität Münster: EU H2020 - Research and innovation actions | Förderkennzeichen: 871149 - Chinesisch-Deutsches Mobilitätsprogramm: Lunar Science und Exploration Consortium ( – )
Gefördertes Einzelprojekt: Chinesisch-Deutsches Zentrum für Wissenschaftsförderung | Förderkennzeichen: M-0016 - BC MERTIS: Systemtests, Start, Inbetriebnahme, Cruise-Phase Teil 1 ( – )
participations in other joint project: Bundesministerium für Wirtschaft und Klimaschutz | Förderkennzeichen: 50QW1701 - Missionsunterstützende Arbeiten und Untersuchung der Geologie des Asteroiden Ceres ( – )
Gefördertes Einzelprojekt: Bundesministerium für Wirtschaft und Klimaschutz | Förderkennzeichen: 50OW1802 - PLANMAP – PLANMAP - Planetary Mapping ( – )
EU-Projekt koordiniert außerhalb der Universität Münster: EU H2020 - Research and innovation actions | Förderkennzeichen: 776276 - Missionsunterstützende Arbeiten und geologische Untersuchungen der lunaren Oberfläche mit Daten der Lunar Reconnaissance Orbiter Camera (LROC) ( – )
Gefördertes Einzelprojekt: Bundesministerium für Wirtschaft und Klimaschutz | Förderkennzeichen: 50OW1504 - SFB TRR 170 - A02: Das Alter des South Pole-Aitken Beckens und der Umgebung der Landestellen auf dem Mond ( – )
Teilprojekt in DFG-Verbund koordiniert außerhalb der Universität Münster: DFG - Sonderforschungsbereich | Förderkennzeichen: TRR 170/1 - Commercial ISRU Mission Preparation Phase ( – )
Gefördertes Einzelprojekt: OHB Italia SpA | Förderkennzeichen: 2306/18/02 - SPP 1833 - Teilprojekt: Modellierung der Akkretion und der Differenzierung der Proto-Erde und ihrer Bausteine ( – )
Teilprojekt in DFG-Verbund koordiniert außerhalb der Universität Münster: DFG - Schwerpunktprogramm | Förderkennzeichen: NE 2055/1-1 - Untersuchungen von Oberflächenaltern und der Geologie des Asteroiden Ceres ( – )
Gefördertes Einzelprojekt: Bundesministerium für Wirtschaft und Klimaschutz | Förderkennzeichen: 50OW1502 - HRSC III – Die multi-temporale High Resolution Stereo Camera (HRSC) Bilddatenbank - Weiterentwicklung basierend auf Anfragen des HRSC PI, des HRSC Teams und der internationalen wissenschaftlichen Gemeinschaft ( – )
Gefördertes Einzelprojekt: Bundesministerium für Wirtschaft und Klimaschutz | Förderkennzeichen: 50QM1501 - Das Apollo Becken auf dem Mond: Untersuchung der stratigraphischen Position, der absoluten Modellalter und des Zusammenhangs mit vulkanischer Aktivität auf der erdabgewandten Mondseite ( – )
Gefördertes Einzelprojekt: DFG - Sachbeihilfe/Einzelförderung | Förderkennzeichen: HI 1410/12-1 - New Views of the Moon 2 - Europe; 04.05. - 05.05.2017 in Münster ( – )
Wissenschaftliche Veranstaltung: Teilnahmebeiträge/Tagungsgebühren - The European Lunar Symposium 2017, Münster, 02.05. - 03.05.2017 ( – )
Wissenschaftliche Veranstaltung: Teilnahmebeiträge/Tagungsgebühren - MERTIS – Mercury Radiometer & Thermal Infrared Spectrometer, Phase E/F1 ( – )
participations in bmbf-joint project: Bundesministerium für Bildung und Forschung | Förderkennzeichen: 50QW1302 - Laboruntersuchungen im Spektralbereich UV, VIS, IR zur Charakterisierung der mineralogischen Zusammensetzung von Fe-armen Oberflächen, von space weathering Prozessen an Fe-armen Körpern sowie um Reflektanzspektren von organischen Analoga für die Interpretation der VIRTIS/Rosetta-Spektren von 67p/ Churyumov-Gerasimenko für den Aufbau einer Datenbank zur Verfügung zu stellen ( – )
Gefördertes Einzelprojekt: Deutsches Zentrum für Luft- und Raumfahrt e.V. - Thumbprint Terrain in den nördlichen Tiefländern des Mars: Bildungsmechanismen und die Beziehung zu einem nördlichen Ozean ( – )
Gefördertes Einzelprojekt: DFG - Sachbeihilfe/Einzelförderung | Förderkennzeichen: HI 1410/11-1 - Geologie einer Region an der Grenze zwischen der untere und der oberen Vastita Borealis Formation: Untersuchung der Hesperischen hydrologischen Aktivität und langwelliger Topographieveränderungen auf dem Mars ( – )
Gefördertes Einzelprojekt: DFG - Sachbeihilfe/Einzelförderung | Förderkennzeichen: HI 1410/10-1 - LROC – LROC-Betriebsunterstützung ( – )
participations in bmbf-joint project: Bundesministerium für Bildung und Forschung | Förderkennzeichen: 50OW0901 - Crater Studies and the Dating of Planetary Surfaces ( – )
Gefördertes Einzelprojekt: Barringer Crater Company - HRSC II – Entwicklung einer multi-temporalen Datenbank basierend auf Bildern der High Resolution Stereo Camera (HRSC) ( – )
participations in bmbf-joint project: Bundesministerium für Bildung und Forschung | Förderkennzeichen: 50QM1101 - Geologie und Topographie der Randgebiete der Vastitas Borealis Formation: Implikationen für einen Hesperischen Ozean auf dem Mars ( – )
Gefördertes Einzelprojekt: DFG - Sachbeihilfe/Einzelförderung | Förderkennzeichen: HI 1410/9-1 - Alter, Mineralogie und Volumen lunarer Basalte im Mare Crisium und auf der Mondrückseite ( – )
Gefördertes Einzelprojekt: DFG - Sachbeihilfe/Einzelförderung | Förderkennzeichen: HI 1410/3-1 - Algorithmische Verbesserung einer Multi-Spektrum-Retrievalmethode ( – )
Gefördertes Einzelprojekt: Wirtschaft - Bestimmung von Oberflächenaltern und Zusammensetzung des Asteroiden 4 Vesta ( – )
participations in bmbf-joint project: Bundesministerium für Bildung und Forschung | Förderkennzeichen: 50OW1102 - Schlammvulkanismus in Acidalia Planitia (Mars): Implikationen für einen Ozean im Hesperian ( – )
Gefördertes Einzelprojekt: DFG - Sachbeihilfe/Einzelförderung | Förderkennzeichen: HI 1410/8-1 - Planetary evolution and life ( – )
Gefördertes Einzelprojekt: Deutsches Zentrum für Luft- und Raumfahrt e.V. | Förderkennzeichen: HA-203 - MERTIS – Mercury Radiometer & Thermal Infrared Spectrometer, Phase D/C2 ( – )
participations in bmbf-joint project: Bundesministerium für Bildung und Forschung | Förderkennzeichen: 50QW0901 - Thumbprint Terrain on Mars: Utopia and Isidis Comparison ( – )
Gefördertes Einzelprojekt: DFG - Internationale Kooperationsanbahnung | Förderkennzeichen: HI 1410/5-1 - Mud volcanism in Utopia Planitia ( – )
Gefördertes Einzelprojekt: DFG - Internationale Kooperationsanbahnung | Förderkennzeichen: HI 1410/7-1; 598589 - Einfluss lateraler Oberflächenbedingungen auf die Manteldynamik terrestrischer Planeten ( – )
Gefördertes Einzelprojekt: Deutsches Zentrum für Luft- und Raumfahrt e.V. | Förderkennzeichen: D/957/67144877 - Auftragsstudie "3D-Konvektionsmodell - Manteldynamik und Plattentektonik terrestrischer Planeten" ( – )
Gefördertes Einzelprojekt: Deutsches Zentrum für Luft- und Raumfahrt e.V. - Virtis-Datenauswertung der Rosetta Vorbeiflüge an den Asteroiden Steins und Lutetia ( – )
Gefördertes Einzelprojekt: Wirtschaft - Auftragsstudie "Untersuchungen zur Entkopplung von Wolkenparametern und Temperaturprofilen der Venus-Troposphäre zur Optimierung der Retrievalalgorithmen für die Bestimmung von Oberflächenemissivitäten auf der Basis von VEX/VIRTIS-Daten" ( – )
Gefördertes Einzelprojekt: Deutsches Zentrum für Luft- und Raumfahrt e.V. | Förderkennzeichen: D/957/67132390 - Auftragsstudie eines 3D Konvektionsprogramms sowie Modellrechnungen für den Mars, Auswertung von Virtis Daten, Thermische Entwicklung von Planetesimalen ( – )
Gefördertes Einzelprojekt: Deutsches Zentrum für Luft- und Raumfahrt e.V. - The formation of thumbprint terrain on Mars ( – )
Gefördertes Einzelprojekt: DFG - Internationale Kooperationsanbahnung | Förderkennzeichen: HI 1410/4-1 - Habitability and Planetary Dynamics - A new Tool for the Determination of zones with extinct or extant life on Mars ( – )
Gefördertes Einzelprojekt: Deutsches Zentrum für Luft- und Raumfahrt e.V., Europäische Weltraumorganisation - Grant Award from The Barringer Family Fund for Meteorite Impact Research ( – )
Gefördertes Einzelprojekt: Barringer Crater Company - HRSC - Geologic Evolution of Mars ( – )
participations in bmbf-joint project: Bundesministerium für Bildung und Forschung | Förderkennzeichen: 50QM0702 - SERTIS Phase A Studie ( – )
Gefördertes Einzelprojekt: Deutsches Zentrum für Luft- und Raumfahrt e.V. - The history of tectonism, volcanism and fluvial activity in the Amenthes Planum region of Mars ( – )
Gefördertes Einzelprojekt: DFG - Internationale Kooperationsanbahnung | Förderkennzeichen: HI 1410/2-1 - MERTIS – Mercury Radiometer & Thermal Infrared Spectrometer, Phase B/C1 ( – )
participations in bmbf-joint project: Bundesministerium für Bildung und Forschung | Förderkennzeichen: 50QW0601 - EUROPLANET – European Planetology Network ( – )
EU-Projekt koordiniert außerhalb der Universität Münster: EU FP 6 - Integrating activities implemented as Coordination Actions | Förderkennzeichen: 1637
- BC MERTIS: Cruise Phase Teil 2 - Teilvorhaben Labormessung und Missionsunterstützung ( – )
Publikationen
- 10.1029/2023JE008039. . ‘Geologic History of Deuteronilus Cavus in the Ismenius Lacus Region, Mars.’ Journal of Geophysical Research: Planets 129, Nr. 2: e2023JE008039. doi:
- . . ‘Laboratory reflectance spectra of enstatite and oldhamite mixtures for comparison with Earth-based reflectance spectra of asteroid 2867 Šteins and Mercury.’ Planetary and Space Science 224: 105887. doi: 10.1016/j.pss.2024.105887.
- . . ‘Micro-FTIR reflectance spectroscopy of Ryugu, CI chondrites and volatile-rich clasts – Comparing spectral features in the Mid-IR (2.5–16.5 μm) region.’ Icarus 420: 116189. doi: https://doi.org/10.1016/j.icarus.2024.116189.
- . . ‘Synthetic analogs for lava flows on the surface of Mercury: A mid-infrared study.’ Icarus 415: 116078. doi: 10.1016/j.icarus.2024.116078.
- . . ‘Slopes along Apollo EVAs: Astronaut experience as input for future mission planning.’ Acta Astronautica 223: 184–196. doi: 10.1016/j.actaastro.2024.07.006.
- . . ‘Geologic History of the Amundsen Crater Region Near the Lunar South Pole: Basis for Future Exploration.’ The Planetary Science Journal 5, Nr. 147. doi: 10.3847/PSJ/ad2c04.
- . . ‘Crystallographic and Mid-Infrared Spectroscopic Properties of the CaS-MgS Solid Solution.’ Journal of Geophysical Research: Planets 129, Nr. 8: e2024JE0–e2024JE008483. doi: 10.1029/2024JE008483.
- 10.1016/j.icarus.2022.115267. . ‘Rheological properties and ages of lava flows on Alba Mons, Mars.’ Icarus 389. doi:
- 10.1016/j.icarus.2022.115344. . ‘Simulation of surface regolith gardening and impact associated melt layer production under ns-pulsed laser ablation.’ Icarus 391. doi:
- 10.1016/j.icarus.2022.115259. . ‘The young resurfacing events at Ceres' Occator crater: Seismic shaking or deposition of cryovolcanic material?’ Icarus 389. doi:
- . . ‘A mid-infrared study of synthetic glass and crystal mixtures analog to the geochemical terranes on mercury.’ Icarus 396: 115498. doi: 10.1016/j.icarus.2023.115498.
- 10.1016/j.pss.2023.105687. . ‘A comparative analysis of global lunar crater catalogs using OpenCraterTool – An open source tool to determine and compare crater size-frequency measurements.’ Planetary and Space Science 231: 105687. doi:
- 10.1016/j.pss.2022.105623. . ‘Possible sites for a Chinese International Lunar Research Station in the Lunar South Polar Region.’ Planetary and Space Science 227. doi:
- 10.1029/2022JE007533. . ‘Timing and Origin of Compressional Tectonism in Mare Tranquillitatis.’ Journal of Geophysical Research: Planets 128, Nr. 2. doi:
- . . ‘Mid-Infrared Spectroscopy of Feldspars From the Bühl Basalt (Northern Hesse, Germany) Formed Under Reducing Conditions as Terrestrial Analogue of Mercury for MERTIS.’ Earth and Space Science 10, Nr. 6: e2023EA002903. doi: https://doi.org/10.1029/2023EA002903.
- . . ‘Geological mapping and chronology of lunar landing sites: Apollo 14.’ Icarus 406. doi: 10.1016/j.icarus.2023.115732.
- . . ‘Mid-IR spectral properties of different surfaces of silicate mixtures before and after excimer laser irradiation.’ Icarus 404: 115683. doi: 10.1016/j.icarus.2023.115683.
- . . ‘Mid-infrared spectroscopy of sulfidation reaction products and implications for sulfur on Mercury.’ Journal of Geophysical Research: Planets 128, Nr. 12: e2023JE0. doi: 10.1029/2023JE007895.
- 10.2138/rmg.2023.89.10. . ‘The Lunar Cratering Chronology.’ Reviews in Mineralogy and Geochemistry 89, Nr. 1: 401–451. doi:
- . . ‘Sulfides and hollows formed on Mercury’s surface by reactions with reducing S-rich gases.’ Earth and Planetary Science Letters 593: 117647. doi: 10.1016/j.epsl.2022.117647.
- 10.1038/s41467-022-28570-8. . ‘Brine residues and organics in the Urvara basin on Ceres.’ Nature Communications 13, Nr. 1: 927. doi:
- . . ‘Studying the global spatial randomness of impact craters on Mercury, Venus, and the Moon with geodesic neighborhood relationships.’ Journal of Geophysical Research 126: e2020JE006693. doi: 10.1029/2020JE006693.
- . . ‘China's Chang'e-5 landing site: Geology, stratigraphy, and provenance of materials.’ Earth and Planetary Science Letters 561: 116855. doi: 10.1016/j.epsl.2021.116855.
- . . ‘Young lunar mare basalts in the Chang'e-5 sample return region, northern Oceanus Procellarum.’ Earth and Planetary Science Letters 555: 116702. doi: 10.1016/j.epsl.2020.116702.
- . . ‘Science-rich sites for in situ resource utilization characterization and end-to-end demonstration missions.’ The Planetary Science Journal 2: 84. doi: 10.3847/PSJ/abedbb.
- . . ‘The Inner Solar System Chronology (ISOCHRON) lunar sample return mission concept: Revealing two billion years of history.’ The Planetary Science Journal 2: 79. doi: 10.3847/PSJ/abe419.
- . . ‘A Next Generation Lunar Orbiter Mission.’ Bulletin of the AAS 53, Nr. 4. doi: 10.3847/25c2cfeb.8f28f012.
- . . ‘NanoSWARM: NanoSatellites for Space Weathering, Surface Water, Solar Wind, and Remnant Magnetism.’ Bulletin of the AAS 53, Nr. 4. doi: 10.3847/25c2cfeb.314447c9.
- . . ‘Mid-infrared reflectance spectroscopy of synthetic glass analogs for mercury surface studies.’ Icarus 361: 114363. doi: 10.1016/j.icarus.2021.114363.
- . . ‘A shock recovery experiment and its implications for Mercury's surface: The effect of high pressure on porous olivine powder as a regolith analog.’ ıcarus 357: 114162. doi: 10.1016/j.icarus.2020.114162.
- . . ‘The effect of excimer laser irradiation on mid-IR spectra of mineral mixtures for remote sensing.’ Earth and Planetary Science Letters 569: 117072. doi: 10.1016/j.epsl.2021.117072.
- . . ‘Mid-Infrared Spectroscopy of Anorthosite Samples From Near Manicouagan Crater, Canada, as Analogue for Remote Sensing of Mercury and Other Terrestrial Solar System Objects.’ Journal of Geophysical Research (Planets) 126, Nr. 8: e06832. doi: 10.1029/2021JE006832.
- 10.1098/rsta.2019.0562. . ‘The lunar surface as a recorder of astrophysical processes: Astronomical events recorded by the Moon.’ Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, Nr. 2188. doi:
- . . ‘Mid-infrared spectroscopy of alkali feldspar samples for space application.’ Mineralogy and Petrology 114: 453–463. doi: 10.1007/s00710-020-00709-9.
- . . ‘Impact melt facies in the Moon's Crisium basin: Identifying, characterizing, and future radiometric dating.’ Journal of Geophysical Research 125: e2019JE006024. doi: 10.1029/2019JE006024.
- . . ‘Degradation of small simple and large complex lunar craters: Not a simple scale dependence.’ Journal of Geophysical Research 125: e2019JE006273. doi: 10.1029/2019JE006273.
- . . ‘Re-examination of the population, stratigraphy, and sequence of mercurian basins: Implications for Mercury´s early impact history and comparison with the Moon.’ Journal of Geophysical Research 125: e2019JE006212. doi: 10.1029/2019JE006212.
- . . ‘Troctolite 76535: A sample of the Moon’s South Pole-Aitken basin?’ Icarus 338: 113430. doi: 10.1016/j.icarus.2019.113430.
- . . ‘Studying the Composition and Mineralogy of the Hermean Surface with the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo Mission: An Update.’ Space Science Reviews 216, Nr. 6: 110. doi: 10.1007/s11214-020-00732-4.
- 10.1111/maps.13568. . ‘Mid-infrerad reflectance spectroscopy of aubrite components.’ Meteoritics & Planetary Science 55: 2080–2096. doi:
- . . ‘Space weathering by simulated micrometeorite bombardment on natural olivine and pyroxene: A coordinated IR and TEM study.’ Earth and Planetary Science Letters 530. doi: 10.1016/j.epsl.2019.115884.
- . . ‘Geological mapping and chronology of lunar landing sites: Apollo 12.’ Icarus 2020: 113991. doi: 10.1016/j.icarus.2020.113991.
- . . ‘Geological mapping and chronology of lunar landing sites: Apollo 11.’ Icarus 333: 528–547. doi: 10.1016/j.icarus.2019.06.020.
- . . ‘Mid-infrared spectroscopy of planetary analogs: A database for planetary remote sensing.’ Icarus 324: 86–103. doi: 10.1016/j.icarus.2019.02.010.
- 10.1016/j.icarus.2019.01.010. . ‘Seasonal Formation Rates of Martian Slope Streaks.’ Icarus 323: 76–86. doi:
- . . ‘Dating very young planetary surfaces from crater statistics: A review of issues and challenges.’ Meteoritics and Planetary Science 53: 554–582. doi: 10.1111/maps.12924.
- . . ‘Crater density differences: Exploring regional resurfacing, secondary crater populations, and crater saturation equilibrium on the Moon.’ Planetary and Space Science 162: 41–51. doi: 10.1016/j.pss.2017.05.006.
- . . ‘A new tool to account for crater obliteration effects in crater size-frequency distribution measurements.’ Earth and Space Science 5. doi: 10.1002/2018ea000383.
- 10.1016/j.icarus.2017.07.023. . ‘Lunar farside volcanism in and around the South Pole–Aitken basin.’ Icarus 299, Nr. null: 538–562. doi:
- 10.1016/j.icarus.2018.01.022. [online first] . ‘Bright carbonate surfaces on Ceres as remnants of salt-rich water fountains.’ Icarus null, Nr. null. doi:
- . . ‘ The age of lunar mare basalts south of the Aristarchus Plateau and effects of secondary craters formed by the Aristarchus event.’ Icarus 309: 45–60. doi: 10.1016/j.icarus.2018.02.030.
- . . ‘Ancient bombardment of the inner Solar System - Reinvestigation of the "fingerprints" of different impactor populations on the lunar surface.’ Journal of Geophysical Research: Planets 123: 748–762. doi: 10.1002/2017JE005451.
- . . ‘How old are lunar lobate scarps? 1. Seismic resetting of crater size-frequency distributions.’ Icarus 306: 225–242. doi: 10.1016/j.icarus.2018.01.019.
- . . ‘Geologic history of the northern portion of the South Pole-Aitken basin on the Moon.’ Journal of Geophysical Research: Planets 123: 2585–2612. doi: 10.1029/2018JE005590.
- . . ‘Lunar farside volcanism in and around the South Pole-Aitken basin.’ Icarus 299: 538–562. doi: 10.1016/j.icarus.2017.07.023.
- 10.1016/j.pss.2018.04.015. . ‘The Multi-Temporal Database of Planetary Image Data (MUTED): A Web-Based Tool for Studying Dynamic Mars.’ Planetary Space and Science 159: 56–65. doi:
- . . ‘Reflectance spectra of synthetic Fe-free ortho-and clinoenstatites in the UV/VIS/IR and implications for remote sensing detection of Fe-free pyroxenes on planetary surfaces.’ Planetary and Space Science 159. doi: 10.1016/j.pss.2018.04.006.
- 10.1016/j.icarus.2017.10.038. . ‘Ceres' Ezinu quadrangle: A heavily cratered region with evidence for localized subsurface water ice and the context of Occator crater.’ Icarus 316: 46–62. doi:
- . . ‘Geology of Ceres’ North Pole quadrangle with Dawn FC imaging data.’ Icarus 316: 14–27. doi: 10.1016/j.icarus.2017.09.036.
- 10.1111/maps.13008. . ‘Geologic constraints on the origin of red organic-rich material on Ceres.’ Meteoritics and Planetary Science 53, Nr. 9: 1983–1998. doi:
- 10.1016/j.icarus.2017.06.015. . ‘Geologic mapping of the Ac-2 Coniraya quadrangle of Ceres from NASA's Dawn mission: Implications for a heterogeneously composed crust.’ Icarus 316: 28–45. doi:
- . . ‘Origin of discrepancies between crater size-frequency distributions of coeval lunar geologic units via target property contrasts.’ Icarus 298: 49–63. doi: 10.1016/j.icarus.2016.11.040.
- . . ‘Evidence for self-secondary cratering of Copernican-age continuous ejecta deposits on the Moon.’ Icarus 298: 64–77. doi: 10.1016/j.icarus.2017.01.030.
- 10.1016/j.icarus.2016.11.030. . ‘Chelyabinsk – a rock with many different (stony) faces: An infrared study.’ Icarus 284, Nr. null: 431–442. doi:
- . . ‘Length-displacement scaling of thrust faults on the Moon and the formation of uphill-facing scarps.’ Icarus 292: 111–124. doi: 10.1016/j.icarus.2016.12.034.
- 10.1111/maps.12883. . ‘The Stubenberg meteorite—An LL6 chondrite fragmental breccia recovered soon after precise prediction of the strewn field.’ Meteoritics and Planetary Science 52, Nr. 8: 1683–1703. doi:
- 10.1016/j.icarus.2017.08.015. [online first] . ‘The geology of the Kerwan quadrangle of dwarf planet Ceres: Investigating Ceres' oldest, largest impact basin.’ Icarus null, Nr. null. doi:
- 10.1016/j.icarus.2017.10.014. [online first] . ‘The formation and evolution of bright spots on Ceres.’ Icarus null, Nr. null. doi:
- 10.1016/j.icarus.2017.06.013. . ‘Lunar mare TiO2 abundances estimated from UV/Vis reflectance.’ Icarus 296, Nr. null: 216–238. doi:
- 10.1111/maps.12860. . ‘Investigating the shock histories of lunar meteorites Miller Range 090034, 090070, and 090075 using petrography, geochemistry, and micro-FTIR spectroscopy.’ Meteoritics and Planetary Science 52, Nr. 6: 1103–1124. doi:
- 10.1038/ngeo2936. . ‘Geomorphological evidence for ground ice on dwarf planet Ceres.’ Nature Geoscience 10, Nr. 5: 338–343. doi:
- 10.1016/j.icarus.2017.09.036. [online first] . ‘Geology of Ceres' North Pole quadrangle with Dawn FC imaging data.’ Icarus null, Nr. null. doi:
- 10.1016/j.pss.2017.08.004. [online first] . ‘Geological characterization of the three high-priority landing sites for the Luna-Glob mission.’ Planetary and Space Science null, Nr. null. doi:
- 10.1002/jrs.5083. . ‘Laser alteration on iron sulfides under various environmental conditions.’ Journal of Raman Spectroscopy 2017. doi:
- . . ‘Investigation of newly discovered lobate scarps: Implications for the tectonic and thermal evolution of the Moon.’ Icarus 298: 78–88. doi: 10.1016/j.icarus.2017.08.017.
- . . ‘Topography of the Deuteronilus contact on Mars: Evidence for an ancient water/mud ocean and long-wavelength topographic readjustments.’ Planetary and Space Science 144: 49–70. doi: 10.1016/j.pss.2017.05.012.
Forschungsartikel (Zeitschriften)
- 10.1038/ncomms12257. . ‘The missing large impact craters on Ceres.’ Nature Communications 7, Nr. null. doi:
- 10.1016/j.icarus.2015.12.036. . ‘The Lassell massif-A silicic lunar volcano.’ Icarus 273, Nr. null: 248–261. doi:
- 10.1126/science.aaf4332. . ‘The geomorphology of Ceres.’ Science 353, Nr. 6303. doi:
- 10.1016/j.icarus.2015.10.003. . ‘Mid-infrared spectroscopy of impactites from the Nördlinger Ries impact crater.’ Icarus 264, Nr. null: 352–368. doi:
- 10.1016/j.icarus.2016.06.013. . ‘Mid-infrared bi-directional reflectance spectroscopy of impact melt glasses and tektites.’ Icarus 278, Nr. null: 162–179. doi:
- 10.1126/science.aaf4219. . ‘Dawn arrives at Ceres: Exploration of a small, volatile-rich world.’ Science 353, Nr. 6303: 1008–1010. doi:
- 10.1002/2016GL070370. . ‘Cryogenic flow features on Ceres: Implications for crater-related cryovolcanism.’ Geophysical Research Letters 43, Nr. 23: 11,994–12,003. doi:
- 10.1016/j.pss.2016.08.004. . ‘A geologically supervised spectral analysis of 121 globally distributed impact craters as a tool for identifying vertical and horizontal heterogeneities in the composition of the shallow crust of Mercury.’ Planetary and Space Science 132, Nr. null: 32–56. doi:
- . . ‘Composition and structure of the shallow subsurface of Ceres revealed by crater morphology.’ Nature Geoscience 9, Nr. 7: 538+. doi: 10.1038/NGEO2743.
- 10.1126/science.aaf4286. . ‘Cryovolcanism on Ceres.’ Science 353, Nr. 6303. doi:
- 10.1126/science.aaf4759. . ‘Cratering on ceres: Implications for its crust and evolution.’ Science 353, Nr. 6303. doi:
- 10.1111/maps.12586. . ‘Cosmochemical and spectroscopic properties of Northwest Africa 7325-A consortium study.’ Meteoritics and Planetary Science 51, Nr. 1: 3–30. doi:
- 10.1016/j.icarus.2016.03.015. . ‘Crater size-frequency distribution measurements and age of the Compton-Belkovich volcanic complex.’ Icarus 273: 214–223. doi:
- . . ‘Geomorphologic mapping of the lunar crater Tycho and its impact melt deposits.’ Icarus 273: 164–181. doi: 10.1016/j.icarus.2016.02.018.
- . . ‘The Lassell Massif - A silicic lunar volcano.’ Icarus 273: 248–261. doi: 10.1016/j.icarus.2015.12.036.
- . . ‘The Multi-Temporal Database of Planetary Image Data (MUTED): A Database to Support the Identification of Surface Changes and Short-Lived Surface Processes.’ Planetary and Space Science (PSS) 125: 43–61. doi: 10.1016/j.pss.2016.03.002.
- 10.1016/j.icarus.2016.06.013. . ‘Mid-infrared bi-directional reflectance spectroscopy of impact melt glasses and tektites.’ Icarus 278: 162–179. doi:
- . . ‘Mid-infrared spectroscopy of impactites from the Nördlinger Ries impact crater.’ Icarus 264: 352–368. doi: 10.1016/j.icarus.2015.10.003.
- . . ‘Photogeologic mapping and the geologic history of the Hellas basin floor, Mars.’ Icarus 264: 407–442. doi: 10.1016/j.icarus.2015.09.031.
- . . ‘An exceptional grouping of lunar highland smooth plains: Geography, morphology, and possible origins.’ Icarus 273: 121–134. doi: 10.1016/j.icarus.2015.06.028.
- . . ‘The honeycomb terrain on the Hellas basin floor, Mars: A case for salt or ice diapirism.’ Journal of Geophysical Research 121. doi: 10.1002/2016JE005007.
Rezensionen (Zeitschriften)
- 10.1016/j.pss.2016.10.017. . ‘FC colour images of dwarf planet Ceres reveal a complicated geological history.’ Planetary and Space Science 134, Nr. null: 122–127. doi:
Forschungsartikel (Zeitschriften)
- 10.1016/j.icarus.2016.11.040. [online first] . ‘Origin of discrepancies between crater size-frequency distributions of coeval lunar geologic units via target property contrasts.’ Icarus null, Nr. null. doi:
- 10.1111/maps.12408. . ‘The distribution of megablocks in the Ries crater, Germany: Remote sensing, field investigation, and statistical analyses.’ Meteoritics and Planetary Science 50, Nr. 1: 141–171. doi:
- 10.1016/j.pss.2015.10.007. . ‘Shallow crustal composition of Mercury as revealed by spectral properties and geological units of two impact craters.’ Planetary and Space Science 119, Nr. null: 250–263. doi:
- 10.1016/j.icarus.2015.06.034. . ‘Near infrared spectroscopy of HED meteorites: Effects of viewing geometry and compositional variations.’ Icarus 258, Nr. null: 384–401. doi:
- . . ‘Evidence for large reservoirs of water/mud in Utopia and Acidalia Planitiae on Mars.’ Icarus 248: 383–391. doi: 10.1016/j.icarus.2014.11.013.
- . . ‘Quantifying Geological Processes on Mars - Results of the High Resolution Stereo Camera (HRSC) on Mars Express.’ Planetary and Space Science (PSS) 112: 53–97. doi: 10.1016/j.pss.2014.11.029.
- . . ‘Present-day Seasonal Gully Activity in a South Polar Pit (Sisyphi Cavi) on Mars.’ Icarus 251: 226–243.
- . . ‘Small-scale lunar farside volcanism.’ Icarus 257: 336–354. doi: 10.1016/j.icarus.2015.04.040.
- 10.1016/j.pss.2015.05.007. . ‘Landing site selection for Luna-Glob mission in crater Boguslawsky.’ Planetary and Space Science 2015, Nr. 117: 45–63. doi:
Forschungsartikel (Buchbeiträge)
- In Volcanism and tectonism across the inner solar system: An overview, edited by , 1–56. London: Geological Society of London. doi: 10.1144/SP401.22. . ‘Volcanism and tectonism across the inner solar system: An overview.’
Forschungsartikel (Zeitschriften)
- 10.1016/j.icarus.2014.07.018. . ‘The Miniature Radio Frequency instrument's (Mini-RF) global observations of Earth's Moon.’ Icarus 243: 173–190. doi:
- . . ‘Mud volcanism and morphology of impact craters in Utopia Planitia on Mars: Evidence for the ancient ocean.’ Icarus 228: 121–140. doi: 10.1016/j.icarus.2013.09.018.
- . . ‘Water and Martian Habitability: Results of an integrative study of water related processes on Mars in context with an interdisciplinary Helmholtz research alliance "Planetary Evolution and Life".’ Planetary and Space Sciences (PSS) 98: 128–145. doi: 10.1016/j.pss.2014.02.013.
- . . ‘Evidence for basaltic volcanism on the Moon within the past 100 millions years.’ Nature Geoscience 12 October. doi: 10.1038/ngeo2252.
- 10.1016/j.pss.2014.06.004. . ‘Estimation of lunar surface temperatures and thermophysical properties: Test of a thermal model in preparation of the MERTIS experiment onboard BepiColombo.’ Planetary and Space Science 101, Nr. null: 27–36. doi:
- . . ‘Modal mineralogy of the surface of Vesta: evidence for ubiquitous olivine and identification of meteorite analogue.’ Icarus in press. [online first]
- . . ‘Detections and geologic context of local enrichments in olivine on Vesta with VIR/Dawn data.’ Journal of Geophysical Research in press. doi: 10.1002/2014JE004625. [online first]
- . ‘Space weathering of silicate regoliths with various FeO contents: New insights from laser irradiation experiments and theoretical spectral simulations. .’ Icarus 235: 187–206.
- 10.1016/j.icarus.2014.03.040. [online first] . ‘Present-day seasonal gully activity in a south polar pit (Sisyphi Cavi) on Mars.’ Icarus null, Nr. null. doi:
- . ‘Geomorphology and structural geology of Saturnalia Fossae and adjacent structures in the northern hemisphere of Vesta .’ Icarus 2014.
- . . ‘Vesta’s north pole quadrangle Av-1 (Albana): Geologic map and the nature of the south polar basin antipodes .’ Icarus 2014. doi: 10.1016/j.icarus.2014.03.007.
- . . ‘The Cratering Record, Chronology and Surface Ages of (4) Vesta in Comparison to Smaller Asteroids and the Ages of HED Meteorites.’ Planetary and Space Science 2014.
- . . ‘Geologic map of the northern hemisphere of Vesta based on Dawn Framing Camera (FC) images.’ Icarus 2014. doi: 10.1016/j.icarus.2014.01.035.
- 10.1016/j.icarus.2014.03.007. [online first] . ‘Vesta's north pole quadrangle Av-1 (Albana): Geologic map and the nature of the south polar basin antipodes.’ Icarus null, Nr. null. doi:
- 10.1016/j.icarus.2014.01.033. [online first] . ‘The geology of the Marcia quadrangle of asteroid Vesta: Assessing the effects of large, young craters.’ Icarus null, Nr. null. doi:
- 10.1016/j.icarus.2014.01.013. [online first] . ‘Geomorphology and structural geology of Saturnalia Fossae and nadjacent structures in the northern hemisphere of Vesta.’ Icarus null, Nr. null. doi:
- 10.1016/j.icarus.2014.01.035. [online first] . ‘Geologic map of the northern hemisphere of Vesta based on Dawn Framing Camera (FC) images.’ Icarus null, Nr. null. doi:
- . . ‘Landscape Formation at the Deuteronilus Contact in Southern Isidis Planitia, Mars: Implications for an Isidis Sea?’ Icarus 242: 329–351. doi: 10.1016/j.icarus.2014.08.015.
Sonstige wissenschaftliche Veröffentlichungen
- . . Landing Site Proposal for the 2018/2020 ExoMars Rover Mission: Southern Isidis Planitia. 1st LSSW, ESAC, Madrid,.
- . . ‘Spectral reflectance properties of HED meteorites+CM2 carbonaceous chondrites: Comparison to HED grain size and compositional variations and implications for the nature of low-albedo features on Asteroid 4 Vesta.’ Icarus 223, Nr. 2: 850–877. doi: 10.1016/j.icarus.2013.02.003.
- . . ‘Lunar sinuous rilles: Distribution, characteristics, and implications for their origin.’ Planetary and Space Science 79-80, Nr. 1: 1–38. doi: 10.1016/j.pss.2012.10.019.
- . . ‘Dawn completes its mission at 4 Vesta.’ Meteoritics and Planetary Science 10.1111/maps.12091. doi: 10.1111/maps.12091.
- 10.1117/12.2024375. . ‘The Developing of MERTIS as an advanced process – From the study up to the flight model.’ Proceedings of SPIE 8867. doi:
- . . ‘Olivine in an unexpected location on Vesta’s surface.’ Nature 504. doi: 10.1038/nature12665.
- 10.1016/j.icarus.2013.04.022. . ‘The 2.5-5.1μm reflectance spectra of HED meteorites and their constituent minerals: Implications for Dawn.’ Icarus 225, Nr. 1: 581–601. doi:
- 10.1038/nature12665. . ‘Olivine in an unexpected location on Vesta's surface.’ Nature 504, Nr. 7478: 122–125. doi:
- . . ‘Putative eskers and new insights into glacio-fluvial depositional settings in southern Argyre Planitia, Mars.’ Planetary and Space Science 85: 261–278. doi: 10.1016/j.pss.2013.06.022.
- . . ‘Vesta's shape and morphology.’ Science 336, Nr. 6082: 687–690. doi: 10.1126/science.1219122.
- . . ‘The present-day flux of large meteoroids on the lunar surface - A synthesis of models and observational techniques.’ Planetary and Space Science 74, Nr. 1: 179–193. doi: 10.1016/j.pss.2012.10.005.
- . . ‘Phase reddening on near-Earth asteroids: Implications for mineralogical analysis, space weathering and taxonomic classification.’ Icarus 220, Nr. 1: 36–50. doi: 10.1016/j.icarus.2012.04.008.
- . . ‘Geology, geochemistry, and geophysics of the Moon: Status of current understanding.’ Planetary and Space Science 74, Nr. 1: 15–41. doi: 10.1016/j.pss.2012.08.019.
- . . ‘Dark material on Vesta from the infall of carbonaceous volatile-rich material.’ Nature 491, Nr. 7422: 83–86. doi: 10.1038/nature11561.
- . . ‘Gullies and their relationships to the dust-ice mantle in the northwestern Argyre Basin, Mars.’ Icarus 219, Nr. 1: 129–141.
- 10.1016/j.icarus.2012.03.014. . ‘Rheologies and ages of lava flows on Elysium Mons, Mars.’ Icarus 219, Nr. 1: 443–457. doi:
- . . ‘Surface age of the ice-dust mantle deposit in Malea Planum, Mars.’ Planetary and Space Science 60: 199–206.
- . . ‘Major episodes of geologic history of Isidis Planitia on Mars.’ Icarus 218: 24–46. doi: 10.1016/j.icarus.2011.11.029.
- . . ‘Periglacial mass-wasting landforms on Mars suggestive of transient liquid water in the recent past: Insights from solifluction lobes on Svalbard.’ Icarus 218: 489–505.
- . . ‘Compositional investigation of the proposed chloride-bearing materials on Mars using near-infrared orbital data from OMEGA/MEx.’ Journal of Geophysical Research 117, Nr. E00J13. doi: 10.1029/2012JE004108.
- . . ‘Geology of the King crater region: New insights into impact melt dynamics on the Moon.’ Journal of Geophysical Research 117: E00H29. doi: 10.1029/2011JE003990.
- . . ‘Confirmation of sublunarean voids and thin layering in mare deposits.’ Planetary and Space Science 69, Nr. 1: 18–27. doi: 10.1016/j.pss.2012.05.008.
- . . ‘Valleys, Paleolakes and Possible Shorelines at the Libya Montes / Isidis Boundary: Implications for the Hydrologic Evolution of Mars.’ Icarus 2012, Nr. 219: 393–413. doi: 10.1016/j.icarus.2012.03.012.
- . ‘MERTIS - The Thermal Infrared Imaging Spectrometer Onboard of the Mercury Planetary Orbiter.’ Proceedings of ICSO 162.
- 10.1016/j.icarus.2012.03.012. . ‘Valleys, paleolakes and possible shorelines at the Libya Montes/Isidis boundary: Implications for the hydrologic evolution of Mars.’ Icarus 219, Nr. 1: 393–413. doi:
- 10.1029/2011JE004000. . ‘Origin of lunar sinuous rilles: Modeling effects of gravity, surface slope, and lava composition on erosion rates during the formation of Rima Prinz.’ Journal of Geophysical Research 117, Nr. 3. doi:
- . . ‘ Origin of lunar sinuous rilles: Modeling effects of gravity, surface slope, and lava composition on erosion rates during the formation of Rima Prinz.’ Journal of Geophysical Research 117.
- 10.1029/2011JE003935. . ‘How old are young lunar craters?’ Journal of Geophysical Research 117. doi:
Artikel
Forschungsartikel (Zeitschriften)
- . . ‘Non-mare silicic volcanism on the lunar farside at Compton-Belkovich.’ Nature Geoscience 4, Nr. 8: 566–571. doi: 10.1038/ngeo1212.
- . . ‘Terrestrial gullies and debris-flow tracks on Svalbard as planetary analogs for Mars.’ Geological Society of America Special Paper 483: 165–175.
- . . ‘Periglacial landscapes on Svalbard: Terrestrial analogs for cold-climate landforms on Mars.’ Geological Society of America Special Paper 483: 177–201.
- . . ‘Landscape evolution in Martian mid-latitude regions: Insights from analogous periglacial landforms in Svalbard.’ Geological Society London, Special Publications 356: 111–131.
- 10.1016/j.apradiso.2011.05.025. . ‘Evaluation of neutron sources for ISAGE-in-situ-NAA for a future lunar mission.’ Applied Radiation and Isotopes 69, Nr. 11: 1625–1629. doi:
- . ‘Bright dust devil tracks on Earth: Implications for their formation on Mars.’ Icarus 211: 917–920.
- . . ‘The Stratigraphy of the Amenthes Region, Mars: Time limits for the Formation of Fluvial, Volcanic and Tectonic Landforms.’ Icarus 215, Nr. 1: 128–152. doi: 10.1016/j.icarus.2011.06.041.
- . ‘Ages and stratigraphy of lunar mare basalts: A synthesis.’ Geol. Soc. Am. Special Paper 477, Nr. 477: 1–51.
- . . ‘Timing and characteristics of the latest mare eruption on the Moon.’ Earth and Planetary Science Letters 302, Nr. 3-4: 255–266. doi: 10.1016/j.epsl.2010.12.028.
Forschungsartikel (Buchbeiträge)
- In Analogs for Planetary Exploration, edited by , 165–175. N/A: unbekannt / n.a. / unknown. doi: 10.1130/2011.2483(11). . ‘Terrestrial gullies and debris-fl ow tracks on Svalbard as planetary analogs for Mars.’
Sonstige wissenschaftliche Veröffentlichungen
- . . Libya Montes Layered Delta Deposits and Possible Coastal Cliffs, Mars: New Candidate Landing Site Proposal for Potential Future Missions after MSL Curiosity.
Forschungsartikel (Zeitschriften)
- 10.1016/j.epsl.2009.08.008. . ‘Morphologic, stratigraphic and morphometric investigations of valley networks in eastern Libya Montes, Mars: Implications for the Noachian/Hesperian climate change.’ Earth and Planetary Science Letters 294: 291–305. doi:
- 10.1016/j.epsl.2010.04.040. . ‘Mars geology from three - dimensional mapping by the High Resolution Stereo Camera (HRSC) Experiment on Mars Express. An introduction to the special issue of Earth Planetary Science Letters.’ Earth and Planetary Science Letters 294, Nr. null: 183–184. doi:
- . . ‘Evidence for present day gully activity on the Russell crater dune field, Mars.’ Geophysical Research Letters 37, Nr. 6. doi: 10.1029/2009GL042192.
- 10.1029/2010GL044016. . ‘First in‐situ analysis of dust devil tracks on Earth and their comparison with tracks on Mars.’ Geophysical Research Letters 37, Nr. 14. doi:
- . . ‘Evidence of Recent Thrust Faulting on the Moon Revealed by the Lunar Reconnaissance Orbiter Camera.’ Science 329, Nr. 5994: 936–940. doi: 10.1126/science.1189590.
- . . ‘First in-situ analysis of dust devil tracks on Earth and their comparison with tracks on Mars.’ Geophysical Research Letters 37.
- . . ‘Mars geology from three-dimensional mapping by the High Resolution Stereo Camera (HRSC) Experiment on Mars Express An introduction to the special issue of Earth Planetary Science Letters.’ Earth and Planetary Science Letters 294, Nr. 3-4: 183–184. doi: 10.1016/j.epsl.2010.04.040.
- . . ‘Dike indicators in the Hadriaca Patera-Promethei Terra region, Mars.’ Earth and Planetary Science Letters 294, Nr. 3-4: 466–478. doi: 10.1016/j.epsl.2009.06.038.
- . . ‘Distribution and evolution of scalloped terrain in the southern hemisphere, Mars.’ Icarus 206, Nr. 2: 691–706. doi: 10.1016/j.icarus.2009.09.010.
- . . ‘Ages and stratigraphy of lunar mare basalts in Mare Frigoris and other nearside maria based on crater size-frequency distribution measurements.’ Journal of Geophysical Research 115.
- . . ‘The Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo mission.’ Planetary and Space Science 58, Nr. 1-2: 144–165. doi: 10.1016/j.pss.2008.09.019.
- . . ‘Mercury's surface and composition to be studied by BepiColombo.’ Planetary and Space Science 58, Nr. 1-2: 21–39. doi: 10.1016/j.pss.2008.09.001.
- . . ‘Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview.’ Space Science Reviews 150, Nr. 1-4: 81–124. doi: 10.1007/s11214-010-9634-2.
Nicht-wissenschaftliche Beiträge (Zeitschriften)
- . „Die thermische Entwicklung und das Innere der Planeten - Erde und Mond.“ Astronomie und Raumfahrt im Unterricht 47, Nr. 115: 4–7.
- . „Die thermische Entwicklung und das Innere der Planeten - Die erdähnlichen Planeten.“ Astronomie und Raumfahrt im Unterricht 47, Nr. 116: 34–36.
- . „Die thermische Entwicklung und das Innere der Planeten - Die jupiterähnlichen Planeten.“ Astronomie und Raumfahrt im Unterricht 47, Nr. 117/118: 65–69.
- . . ‘Possible lunar lava tube skylight observed by SELENE cameras.’ Geophysical Research Letters 36. doi: 10.1029/2009GL040635.
- . ‘Regional differences in gully occurrence on Mars: A comparison between the Hale and Bond craters.’ Planetary and Space Science 57: 958–974.
- . . ‘Duration and extent of lunar volcanism: Comparison of 3D convection models to mare basalt ages.’ Planetary and Space Science 57, Nr. 7: 784–796. doi: 10.1016/j.pss.2009.02.002.
- . . ‘Mercury radiometer and thermal infrared spectrometer-a novel thermal imaging spectrometer for the exploration of Mercury.’ Journal of Applied Remote Sensing 2.
- . . ‘Identification of a new outflow channel on Mars in Syrtis Major Planum using HRSC/MEx data.’ Planetary and Space Science 56, Nr. 7: 1030–1042. doi: 10.1016/j.pss.2008.01.011.
- 10.1029/2006JE002717. . ‘Young lava flows on the eastern flank of Ascaraeus Mons: Rheological properties derived from High Resolution Stereo Camera(HRSC) images and Mars Orbiter Laser Altimeter(MOLA) data.’ Journal of Geophysical Research 112, Nr. 5. doi:
- . . ‘Young lava flows on the eastern flank of Ascraeus Mons: Rheological properties derived from High Resolution Stereo Camera (HRSC) images and Mars Orbiter Laser Altimeter (MOLA) data.’ Journal of Geophysical Research 112, Nr. E5.
- . . ‘New views of lunar geoscience: An introduction and overview.’ In New Views of the Moon, edited by , 1.
- . . ‘Are there active glaciers on Mars? Reply.’ Nature 438, Nr. 7069: E10E10.
- 10.1029/2005GL023415. . ‘Interior channels in Martian valleys: Constraints on fluvial erosion by measurements of the Mars Express High Resolution Stereo Camera.’ Geophysical Research Letters 32, Nr. 16. doi:
- . . ‘Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars.’ Nature 434, Nr. 7031: 346–351. doi: 10.1038/nature03359.
- . . ‘Scientific objectives and selection of targets for the SMART-1 Infrared Spectrometer (SIR).’ Planetary and Space Science 52, Nr. 14: 1261–1285. doi: 10.1016/j.pss.2004.09.002.
- . . ‘The Syrtis Major volcanic province, Mars: Synthesis from Mars Global Surveyor data.’ Journal of Geophysical Research 109, Nr. E1.
- . . ‘Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum.’ Journal of Geophysical Research 108, Nr. E7.
- . . ‘Topography and morphology of the Argyre Basin, Mars: implications for its geologic and hydrologic history.’ Planetary and Space Science 50, Nr. 10-11: 939–981. doi: 10.1016/S0032-0633(02)00054-5.
- . . ‘Lunar mare basalt flow units: Thicknesses determined from crater size-frequency distributions.’ Geophysical Research Letters 29, Nr. 8: –1248.
Forschungsartikel (Zeitschriften)
- . . ‘Ages of mare basalts on the lunar nearside.’ Journal of Geophysical Research 105, Nr. E12: 29239–29275. doi: 10.1029/2000JE001244.
- . . ‘Characteristics and origin of polygonal terrain in southern Utopia Planitia, Mars: Results from Mars Orbiter Laser Altimeter and Mars Orbiter Camera Data.’ Journal of Geophysical Research 105, Nr. E5: 11999–12022. doi: 10.1029/1999JE001193.
Forschungsartikel (Buchbeiträge)
- In Environmental Effects on Volcanic Eruptions: From Deep Oceans to Deep Space, edited by , 143–178. Dordrecht: Kluwer Academic. . ‘Moon and Mercury: Volcanism in early planetary history.’
Nicht-wissenschaftliche Beiträge (Zeitschriften)
- . „Vulkanismus auf der Venus.“ Astronomie und Raumfahrt im Unterricht 37, Nr. 3: 16–21.
- . „Vulkanismus auf dem Mond.“ Astronomie und Raumfahrt im Unterricht 37, Nr. 3: 9–15.
- 10.1126/science.286.5447.2134. . ‘Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data.’ Science 286: 2134–2137. doi:
- . ‘Structural wavelengths of Ganymede grooved terrain determined from Fourier analysis of Galileo images.’ J. Geophys. Res. 104, Nr. E10: 24057–24074.
- . ‘Oceans in the past history of Mars: Tests for their presence using Mars Orbiter Laser Altimeter (MOLA) data.’ Geophys. Res. Lett. 25, Nr. 4: 4401–4404.
- . „Multispektrale und photogrammetrische Auswertung von Clementine-Daten des Erdmondes.“ DLR-Nachrichten 83, Nr. 83: 17–27.