Winter Semester 2025/26
Fundamentals of Optical Spectroscopy: Theory and Experiment
hislsf: 112321
Basic data:
Together with Daniel Groll
Mondays 10-12 in IG1 - 718Description:
This lecture introduces the fundamentals of optical spectroscopy, covering theoretical basics and experimental techniques. Optical spectroscopy is crucial in current research, enabling analysis of light-matter interactions and material properties. In addition to the discussion of various relevant spectroscopy methods, we will provide examples of current and on-going research at the University of Münster within the field of optical spectroscopy of solid state nanosystems.
Examples of discussed techniques:
Photoluminescence
Absorption spectroscopy
Raman spectroscopy
Coherent control
Heterodyne four-wave mixing
Near-field spectroscopy
Photon correlation experiments (Hanbury-Brown-Twiss)Aspects of the theory that is covered:
Quantization of the light field
Light-matter interaction
Basics of open quantum systems
Detector theory and correlation functions
Physik für Mediziner, Zahnmediziner, Pharmazeuten, Landschaftsökologen und Biowissenschaftler
hislsf: 112054
Basic data:
Montags, Diesntags, Donnerstags und Freitags 09:15 im IG1 - HS 1
Integriertes Seminar zu aktuellen Problemen der Physik von Festkörper-Nanosystemen
hislsf: 112308
Topic: Nanoscale resolved mapping of the dipole emission of hBN color centers with a scattering-type scanning near-field optical microscope
Seminar zur Struktur der Materie: Festkörper-Nanosysteme
hislsf: 112037
Topics: - Rasterkraftmikroskopie
- Farbzentren in Diamant
Seminar: Photonik und Datenkommunikation
hislsf: 112441
Topic: Near-field spectroscopy - Optical resolution beyond the diffraction limit
Summer Semester 2025
Physik für Mediziner, Zahnmediziner und Pharmazeuten
hislsf: 110118
Basic data:
Montags-Freitags 09:15 im IG1 - HS 1
Integriertes Seminar zu aktuellen Problemen der Physik von Festkörper-Nanosystemen
hislsf: 110231
Topic: Mapping charge carrier densities in 2D materials on the nanoscale
Seminar: Photonik und Datenkommunikation
hislsf: 110462
Topic: Near-field spectroscopy - Optical resolution beyond the diffraction limit
Winter Semester 2024/25
Nanophotonic and near-field optics
hislsf: 118055
Basic data:
2 SWS - 2 credit points
Mondays 10 c.t. in IG1 - SR 85
The lecture is part of the Master Physics programDescription:
This lecture deals with light matter interaction on the nanoscale.
We will learn how light can be focused beyond the diffraction limit to achieve nanoscale resolution. We will focus on near-field techniques like scattering type scanning near-field optical microscopy (s-SNOM), nanoscale fourier transform infrared spectroscopy (nano-FTIR), as well as tip-enhanced Raman (TERS) and photoluminescence (TEPL). These techniques are based on light scattering at an atomic force microscope tip and can be used to investigate a wide range of materials (from 2D semiconductors and polymers over molecules to soft biological matter) on the nanoscale.
After understanding these techniques we will discuss recent applications focusing on 2D materials.
Integriertes Seminar zu aktuellen Problemen der Physik von Festkörper-Nanosystemen
hislsf: 118272
Topic: Mapping charge carrier densities in 2D materials on the nanoscale
Seminar zur Struktur der Materie: Festkörper-Nanosysteme
hislsf: 118009
Topics: Rasterkraftmikroskopie
Farbzentren in Diamant
Seminar: Photonik und Datenkommunikation
hislsf: 118412
Topic: Near-field spectroscopy - Optical resolution beyond the diffraction limit
Summer Semester 2024
Nanophotonic and near-field optics
hislsf: 116030
Basic data:
2 SWS - 2 credit points
Wednesdays 14 c.t. in IG1 - SR 87
The lecture is part of the Master Physics programDescription:
This lecture deals with light matter interaction on the nanoscale.
We will learn how light can be focused beyond the diffraction limit to achieve nanoscale resolution. We will focus on near-field techniques like scattering type scanning near-field optical microscopy (s-SNOM), nanoscale fourier transform infrared spectroscopy (nano-FTIR), as well as tip-enhanced Raman (TERS) and photoluminescence (TEPL). These techniques are based on light scattering at an atomic force microscope tip and can be used to investigate a wide range of materials (from 2D semiconductors and polymers over molecules to soft biological matter) on the nanoscale.
After understanding these techniques we will discuss recent applications focusing on 2D materials.