

-
Research Areas
- The impact of parasite diversity on the evolution of immune systems
Doctoral Thesis
The molecular underpinnings of phenotypic plasticity in Tribolium castaneum immune responses
Positions
-
Teaching
- Projektveranstaltung: *+) Animal Evolutionary Ecology [138151]
(in cooperation with Prof. Dr. Joachim Kurtz, Dr. Jaime Anaya-Rojas) - Praktikum: *+) Ecological Immunology and Host-Parasite Coevolution [138153]
(in cooperation with Prof. Dr. Joachim Kurtz, Dr. Jaime Anaya-Rojas)
[n. V. | Dr. Robert Peuß]
- Projektveranstaltung: *+) Animal Evolutionary Ecology [136181]
(in cooperation with Prof. Dr. Joachim Kurtz, Dr. Jaime Anaya-Rojas) - Blockpraktikum: *) Animal Evolutionary Ecology [136266]
(in cooperation with Prof. Dr. Jürgen Gadau, Dr. Lukas Schrader, Prof. Dr. Joachim Kurtz, Dr. Mark Lammers, Dr. Jan Büllesbach, Dr. Francesco Catania) - Praktikum/Seminar: *) Host-Parasite-Coevolution [136263]
(in cooperation with Prof. Dr. Joachim Kurtz, Dr. Jaime Anaya-Rojas) - Praktikum: *+) Ecological Immunology and Host-Parasite Coevolution [136264]
(in cooperation with Prof. Dr. Joachim Kurtz, Dr. Jaime Anaya-Rojas) - Praktikum: *) Laboratory course: Animal evolution and biodiversity [136179]
(in cooperation with Prof. Dr. Jürgen Gadau, Dr. Lukas Schrader, Prof. Dr. Joachim Kurtz, Dr. Jaime Anaya-Rojas, Jürgen Schmitz, Dr. Jan Büllesbach)
- Projektveranstaltung: *+) Animal Evolutionary Ecology [138151]
-
Projects
- NC3 - CRC 212 - A Novel Synthesis of Individualisation across Behaviour, Ecology and Evolution: Niche Choice, Niche Conformance, Niche Construction ( - )
Main DFG-project hosted outside WWU: DFG - Collaborative Research Centre | Project Number: TRR 212/2 - CRC TRR 212 B06 - Genetic and phenotypic characterisation of immunological niche conformance in cavefish ( - )
Subproject in DFG-joint project hosted outside WWU: DFG - Collaborative Research Centre | Project Number: TRR 212/2 - The influence of parasite diversity on the evolution and function of the immune system of the Mexcian Cavefish, Astyanax mexicanus (since )
Own resources project - SPP 1399 - Work package: Coevulution between Tribolium castaneum and Bacillus thuringiensis: On the evolutionary significance of genetic specificity and specific immunity. ( - )
Subproject in DFG-joint project hosted at WWU: DFG - Priority Programme | Project Number: KU 1929/4-1:1
- NC3 - CRC 212 - A Novel Synthesis of Individualisation across Behaviour, Ecology and Evolution: Niche Choice, Niche Conformance, Niche Construction ( - )
-
Publications
- . . ‘Enhanced lipogenesis through Pparγ helps cavefish adapt to food scarcity.’ Current biology . doi: 10.1016/j.cub.2022.03.038.
- . . ‘Genome-wide analysis of cis-regulatory changes underlying metabolic adaptation of cavefish.’ Nature Genetics 54: 684-693. doi: 10.1038/s41588-022-01049-4.
- . . ‘The metabolome of Mexican cavefish shows a convergent signature highlighting sugar, antioxidant, and Ageing-Related metabolites.’ eLife 11, No. e74539. doi: 10.7554/eLife.74539.
- . . ‘Liver-derived cell lines from cavefish Astyanax mexicanus as an in vitro model for studying metabolic adaptation.’ Scientific Reports 12, No. 10115. doi: 10.1038/s41598-022-14507-0.
- . . ‘Image3C, a multimodal image-based and label-independent integrative method for single-cell analysis.’ eLife 10: e65372C1 - eLife 2021;10:e65372DO - 10.7554/eLife.65372-. doi: 10.7554/eLife.65372.
- . . ‘A chromosome-level genome of Astyanax mexicanus surface fish for comparing population-specific genetic differences contributing to trait evolution.’ Nature Communications 12, No. 1: 1447-. doi: 10.1038/s41467-021-21733-zDO-10.1038/s41467-021-21733-z.
- . . ‘Adaptation to low parasite abundance affects immune investment and immunopathological responses of cavefish.’ Nature Ecology and Evolution 2020. doi: 10.1038/s41559-020-1234-2.
- . . ‘Comparative transcriptome analysis of wild and lab populations of Astyanax mexicanus uncovers differential effects of environment and morphotype on gene expression.’ Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 1-10. doi: 10.1002/jez.b.22933.
- . . ‘Experimental evolution of immunological specificity.’ Proceedings of the National Academy of Sciences 116. doi: 10.1073/pnas.1904828116.
- . . ‘An Adult Brain Atlas Reveals Broad Neuroanatomical Changes in Independently Evolved Populations of Mexican Cavefish.’ Frontiers in Neuroanatomy 13: 88-. doi: 10.3389/fnana.2019.00088.
- . . ‘Gamete Collection and In Vitro Fertilization of Astyanax mexicanus.’ Journal of Visualized Experiments 2019, No. 147: e59334.
- . . ‘Stable transgenesis in Astyanax mexicanus using the Tol2 transposase system.’ Developmental Dynamics 248, No. 8: 679-687. doi: 10.1002/dvdy.32.
- . . ‘Early adipogenesis contributes to excess fat accumulation in cave populations of Astyanax mexicanus.’ Developmental Biology 441, No. 2: 297-304. doi: 10.1016/j.ydbio.2018.06.003.
- . . ‘Insulin resistance in cavefish as an adaptation to a nutrient-limited environment.’ Nature 555, No. 7698: 647-651. doi: 10.1038/nature26136.
- . . ‘Oral immune priming with Bacillus thuringiensis induces a shift in the gene expression of Tribolium castaneum larvae.’ BMC Genomics 18, No. 1: 329.
- . . ‘Immune priming in arthropods: an update focusing on the red flour beetle.’ Zoology 119. doi: 10.1016/j.zool.2016.03.006.
- . . ‘Down syndrome cell adhesion molecule 1: testing for a role in insect immunity, behaviour and reproduction.’ Royal Society Open Science 3, No. 4: 160138.
- . . ‘Downregulation of the evolutionary capacitor Hsp90 is mediated by social cues.’ Proceedings of the Royal Society of London B 282. doi: 10.1098/rspb.2015.2041.
- . . ‘Dscam and pancrustacean immune memory - A review of the evidence.’ Developmental and Comparative Immunology 48. doi: 10.1016/j.dci.2014.03.004.
- . . ‘Infection routes matter in population-specific responses of the red flour beetle to the entomopathogen Bacillus thuringiensis.’ BMC Genomics 16, No. 1: 445.
- . . ‘The red flour beetle as a model for bacterial oral infections.’ PLoS ONE 8. doi: 10.1371/journal.pone.0064638.