Publications

  • Maxim Laurentiu, Saito Morihiko, Schürmann Jörg. . ‘Thom–Sebastiani Theorems for Filtered D-Modules and for Multiplier Ideals.’ International Mathematics Research Notices 2020, No. 1: 91-111. doi: 10.1093/imrn/rny032.

  • Schürmann Jörg, Woolf Jon. . ‘Witt groups of abelian categories and perverse sheaves.’ Annals of K-Theory 2019, No. 4: 621-670. doi: 10.2140/akt.2019.4.621.

  • Maxim Laurentiu, Schürmann Jörg. . ‘Characteristic classes of mixed Hodge modules and applications.’ In Schubert varieties, equivariant cohomology and characteristic classes - Impanga 15, edited by Buczynski Jaroslaw, Michalek Mateusz, Postighel Elisa, 159-202. doi: 10.4171/182-1/8.

  • Cappell Sylvain, Maxim Laurentiu, Schürmann Jörg, Shaneson Julius, Yokura Shoji. . ‘Characteristic classes of symmetric products of complex quasi-projective varieties.’ J. Reine Angew. Math. 2017. doi: 10.1515/crelle-2014-0114.
  • Maxim Laurenţiu, Schürmann Jörg. . ‘Equivariant characteristic classes of external and symmetric products of varieties.’ Geometry and Topology 22: 471-515. doi: 10.2140/gt.2018.22.471.
  • Schürmann, Jörg. . ‘Chern Classes and Transversality for Singular Spaces.’ Contributed to the Singularities in Geometry, Topology, Foliations and Dynamics, Merida. doi: 10.1007/978-3-319-39339-1.

  • Maxim Laurentiu, Saito Morihiko, Schürmann Jörg. . ‘Hirzebruch–Milnor Classes and Steenbrink Spectra of Certain Projective Hypersurfaces.’ Contributed to the Arbeitstagung Bonn 2013, Bonn. doi: 10.1007/978-3-319-43648-7_9.
  • Brasselet Jean-Paul, Schürmann Jörg, Yokura Shoji. . ‘Motivic and derived motivic Hirzebruch classes.’ Homology Homotopy Appl. 2016. doi: 10.4310/HHA.2016.v18.n2.a16.

  • Maxim Laurentiu, Schürmann Jörg. . ‘Characteristic Classes of Singular Toric Varieties.’ Communications on Pure and Applied Mathematics 2015. doi: 10.1002/cpa.21553.
  • Davison Ben, Maulik Davesh, Schürmann Jörg, Szendrői Balázs. . ‘Purity for graded potentials and quantum cluster positivity.’ Compositio Mathematica 2015. doi: 10.1112/S0010437X15007332.

  • Schürmann Jörg, Yokura Shoji. . ‘Motivic bivariant characteristic classes.’ Adv. Math. 250: 611-649. doi: 10.1016/j.aim.2013.09.024.

  • Cappell Sylvain, Maxim Laurentiu, Ohmoto Toru, Schürmann Jörg, Yokura Shoji. . ‘Characteristic classes of Hilbert schemes of points via symmetric products.’ Geom. Topol. 17: 1165-1198. doi: 10.2140/gt.2013.17.1165.
  • Maxim Laurentiu, Schürmann Jörg. . ‘Characteristic classes of singular toric varieties.’ Electron. Res. Announc. Math. sci. 20: 109-120.
  • Maxim Laurentiu, Saito Morihiko, Schürmann Jörg. . ‘Hirzebruch-Milnor classes of complete intersections.’ Adv. Math. 241: 220-245. doi: 10.1016/j.aim.2013.04.001.

  • Schürmann Jörg. . ‘Nearby cycles and characteristic classes of singular spaces.’ In Singularities in geometry and topology, 181-205. doi: 10.4171/118.
  • Cappell sylvain, maxim Laurentiu, Schürmann Jörg, Shaneson Julius. . ‘Equivariant characteristic classes of singular complex algebraic varieties.’ Comm. Pure Appl. Math. 65: 1722-1769. doi: 10.1002/cpa.21427.
  • Schürmann Jörg, Yokura Shoji. . ‘Grothendieck groups and categorification of additive invariants.’ Internat. J. Math. 23: 1250057-1-37. doi: 10.1142/S0129167X12500577.
  • Schürmann Jörg, Yokura Shoji. . ‘Motivic bivariant characteristic classes and related topics.’ J. Singularities 5: 124-152. doi: 10.5427/jsing.2012.5j.
  • Maxim Laurentiu, Schürmann Jörg. . ‘twisted genera of symmetric products.’ Selecta Math. new series 18: 283-317. doi: 10.1007/s00029-011-0072-0.

  • Schürmann, Jörg. . ‘Characteristic classes of mixed Hodges modules.’ In Topology of stratified spaces, 419-470.
  • Maxim Laurentiu, Saito Morihiko, Schürmann Jörg. . ‘Symmetric products of mixed Hodges modules.’ J. Math. Pures Appl. 96: 462-483. doi: 10.1016/j.matpur.2011.04.003.
  • Maxim Laurentiu, Schürmann Jörg. . ‘Hirzebruch invariants of symmetric products.’ Contributed to the Topology of Algebraic Varieties and Singularities, Jaca, Spanien. doi: 10.1090/conm/538.

  • Brasselet J, Schürmann J, Yokura S. . ‘Hirzebruch classes and motivic Chern classes for singular spaces.’ J. Topol. Anal. 2, No. 1: 1--55. doi: 10.1142/S1793525310000239.
  • Schürmann J, Tib{\ua}}r M. . ‘Index formula for MacPherson cycles of affine algebraic varieties.’ Tohoku Math. J. (2) 62, No. 1: 29--44. doi: 10.2748/tmj/1270041025.
  • Cappell SE, Maxim L, Schürmann J, Shaneson JL. . ‘Characteristic classes of complex hypersurfaces.’ Adv. Math. 225, No. 5: 2616--2647. doi: 10.1016/j.aim.2010.05.007.

  • Maxim L, Schürmann J. . ‘Hodge-theoretic Atiyah-Meyer formulae and the stratified multiplicative property.’ In Singularities I, 145--166. Providence, RI: Amer. Math. Soc.

  • Brasselet J, Schürmann J, Yokura S. . ‘On Grothendieck transformations in Fulton-MacPherson's bivariant theory.’ J. Pure Appl. Algebra 211, No. 3: 665--684. doi: 10.1016/j.jpaa.2007.03.004.
  • Brasselet J, Schürmann J, Yokura S. . ‘On the uniqueness of bivariant Chern class and bivariant Riemann-Roch transformations.’ Adv. Math. 210, No. 2: 797--812. doi: 10.1016/j.aim.2006.07.014.
  • Schürmann J, Yokura S. . ‘A survey of characteristic classes of singular spaces.’ In Singularity theory, 865--952. World Sci. Publ., Hackensack, NJ. doi: 10.1142/9789812707499_0037.

  • Brasselet J, Schürmann J, Yokura S. . ‘Classes de Hirzebruch et classes de Chern motiviques.’ C. R. Math. Acad. Sci. Paris 342, No. 5: 325--328. doi: 10.1016/j.crma.2005.12.022.
  • Schürmann J. . ‘On the dimension formula for the hyperfunction solutions of some holonomic {$D$}-modules.’ Publ. Res. Inst. Math. Sci. 42, No. 1: 1--8. doi: 10.2977/prims/1166642055.

  • Schürmann J. . ‘Lectures on characteristic classes of constructible functions.’ In Topics in cohomological studies of algebraic varieties, 175--201. Basel: Birkhäuser. doi: 10.1007/3-7643-7342-3_7.

  • Schürmann J. . ‘A general intersection formula for Lagrangian cycles.’ Compos. Math. 140, No. 4: 1037--1052. doi: 10.1112/S0010437X04000272.

  • Schürmann Jörg. . Topology of singular spaces and constructible sheaves. Basel: Birkhäuser Verlag. doi: 10.1007/978-3-0348-8061-9.

  • Schürmann J. . ‘Embeddings of Stein spaces into affine spaces of minimal dimension.’ Math. Ann. 307, No. 3: 381--399. doi: 10.1007/s002080050040.

  • Schürmann J. . ‘Endlichkeits- und Verschwindungssätze für (schwach-) konstruierbare Garbenkomplexe auf komplexen Räumen.’ J. Reine Angew. Math. 466: 27--43. doi: 10.1515/crll.1995.466.27.

  • Schürmann J. . Einbettungen Steinscher Räume in affine Räume minimaler Dimension. Münster: Universität Münster Mathematisches Institut.