Research Areas
- Applied Geophysics
- Electromagnetic Methods
- Magnetotellurics
Education
- Dr. rer. nat. (Geophysics)
- Diplom in Geosciences (Applied Geophysics)
Projects
- Deep electromagnetic exploration ( – )
Individual Granted Project: DFG - Heisenberg professorship | Project Number: BE 5149/7-1 - EXIST-Gründerstipendium "ASDRO Solution" ( – )
Individual Granted Project: BMWK - EXIST Business Start-up Grant | Project Number: 03EGSNW634 - Die Dynamik der Liposphäre unterhalb des Hangai-Gebirges in der westlichen Mongolei: dreidimensionale magnetotellurische Untersuchungen und vierdimensionale thermomechanische Modellierung ( – )
Individual Granted Project: DFG - Joint Proposal Submission with Austria and Switzerland (D-A-CH) | Project Number: BE 5149/6-1 - DESMEX – r4 - wirtschaftsstrategische Rohstoffe, Verbundvorhaben: DESMEX: Elektromagnetische Tiefensondierung für die Lagerstättenerkundung, Teilvorhaben 1: Experimental design eines semi-airborne Explorationssystems, Signalverarbeitung und Datenauswertung ( – )
participations in bmbf-joint project: Federal Ministry of Education and Research | Project Number: 033R130A - PipelineEM – Utilizing impressed cathodic corrosion protection currents to determine the electrical conductivity in the upper few kilometers of the earth ( – )
Individual Granted Project: DFG - Individual Grants Programme | Project Number: BE 5149/2-1 - Electromagnetic Imaging using Fields emitted by Railway Lines ( – )
Individual Granted Project: Shell Global Solutions International BV | Project Number: PT39618 - Elektrische und elektromagnetische Verfahren zur geophysikalischen Erkundung des tieferen Untergrundes in der Nordschweiz ( – )
Individual Granted Project: Nationale Genossenschaft für die Lagerung radioaktiver Abfälle | Project Number: 12'543
- Deep electromagnetic exploration ( – )
Publications
- . . ‘Evidence for partial melting and alkaline-rich fluids in the crust from a 3-D electrical resistivity model in the vicinity of the Coqen region, western Lhasa terrane.’ Earth and Planetary Science Letters 619. doi: 10.1016/j.epsl.2023.118316.
- . . ‘Images of a continental intraplate volcanic system: from surface to mantle source.’ Earth and Planetary Science Letters 578: 117307. doi: 10.1016/j.epsl.2021.117307.
- 10.1029/2022JB024318. . ‘Relationship of the crustal structure, rheology, and tectonic dynamics beneath the Lhasa-Gangdese terrane (southern Tibet) based on a 3-D electrical model.’ Journal of Geophysical Research 127, No. 11. doi:
- . . ‘Imaging the whole-lithosphere structure of a mineral system — Geophysical signatures of the sources and pathways of ore-forming fluids.’ Geochemistry, Geophysics, Geosystems 23, No. 8: e2022GC010379. doi: 10.1029/2022GC010379.
- . ‘Joint inversion of gravity and electromagnetic data — New constraints on the 3-D structure of the lithosphere beneath Central Mongolia.’ contributed to the EGU General Assembly 2022, Vienna, . doi: 10.5194/egusphere-egu22-12704.
- 10.1016/j.oregeorev.2022.104881. . ‘Controls on the metallogenesis of the Lhasa–Mozugongka district, Gangdese Belt, Tibetan Plateau: Constraints on melt distribution and viscosity from the 3-D electrical structure of the lithosphere.’ Ore Geology Reviews 145: 104881. doi:
- 10.1029/2021JB022827. . ‘Evidence for the superposition of tectonic systems in the northern Songliao Block, NE China, revealed by a 3-D electrical resistivity model.’ Journal of Geophysical Research 127, No. 4. doi:
- . . ‘Numerical study on the style of lithospheric delamination.’ Tectonophysics 827: 229276. doi: 10.1016/j.tecto.2022.229276.
- 10.1111/1755-6724.14836. . ‘An Asthenospheric Upwelling Beneath Central Mongolia — Implications for Intraplate Surface Uplift and Volcanism.’ Acta Geologica Sinica (English Edition) 95: 70–72. doi:
- 10.5194/egusphere-egu21-13382. ‘Electrical properties of the lithosphere in the western desert, Egypt, using magnetotelluric sounding.’ contributed to the EGU General Assembly 2021, Vienna, . doi:
- . . ‘Geodynamic Modeling of Lithospheric Removal and Surface Deformation: Application to Intraplate Uplift in Central Mongolia.’ Journal of Geophysical Research 126, No. 5. doi: 10.1029/2020JB021304.
- 10.1186/s40623-021-01400-9. . ‘Crustal architecture of a metallogenic belt and ophiolite belt: Implications for mineral genesis and emplacement from 3-D electrical resistivity models (Bayankhongor area, Mongolia).’ Earth Planets and Space 73: 82. doi:
- . . ‘Compaction-driven fluid localization as an explanation for lower crustal electrical conductors in an intracontinental setting.’ Geophysical Research Letters 47, No. 19: e2020GL088455. doi: 10.1029/2020GL088455.
- 10.1093/gji/ggaa039. . ‘Magnetotelluric multiscale 3-D inversion reveals crustal and upper mantle structure beneath the Hangai and Gobi-Altai region in Mongolia.’ Geophysical Journal International 221, No. 2. doi:
- 10.1186/s40623-020-1131-6. . ‘Evidence for terrane boundaries and suture zones across Southern Mongolia detected with a 2-dimensional magnetotelluric transect.’ Earth Planets and Space 72: 5. doi:
- . . ‘Evidence for fluid and melt generation in response to an asthenospheric upwelling beneath the Hangai Dome, Mongolia.’ Earth and Planetary Science Letters 487: 201–209. doi: 10.1016/j.epsl.2018.02.007.
- . . ‘Evidence for fluid and melt generation in response to an asthenospheric upwelling beneath the Hangai Dome, Mongolia.’ Earth and Planetary Science Letters 487: 201–209. doi: 10.1016/j.epsl.2018.02.007.
- . . ‘Very-high-resolution electrical resistivity imaging of buried foundations of a Roman villa near Nonnweiler, Germany.’ Archaeological Prospection 2018. doi: 10.1002/arp.1703.
- . . ‘Compressive sensing approach for two-dimensional magnetotelluric inversion using wavelet dictionaries.’ Geophysical Prospecting 66, No. 4: 664–672. doi: 10.1111/1365-2478.12605.
- . . ‘Using impressed current cathodic protection systems of pipelines for electromagnetic exploration.’ Geophysics 83, No. 4: B155–B165. doi: 10.1190/geo2017-0651.1.
- . . ‘3D Inversion of the Semi-airborne Electromagnetic Data from Schleiz, Germany .’ Contributed to the Second European Airborne Electromagnetics Conference, Malmö. doi: 10.3997/2214-4609.201702151.
- . . ‘A Novel Semi-airborne EM System for Mineral Exploration - First Results from Combined Fluxgate and Induction Coil Data.’ Contributed to the Second European Airborne Electromagnetics Conference, Malmö. doi: 10.3997/2214-4609.201702154.
- . . ‘New Airborne Methods and Procedures for the Exploration of Mineral Resources - An Overview of BGR Activities.’ Contributed to the Near Surface Geoscience 2016 - 22nd European Meeting of Environmental and Engineering Geophysics, Barcelona. doi: 10.3997/2214-4609.201601939.
- . . ‘Inversion of magnetotelluric data in a sparse model domain.’ Geophysical Journal International 206, No. 2: 1398–1409.
- 10.1016/j.tecto.2015.01.008. . ‘Electrical conductivity structure of north-west Fennoscandia from three-dimensional inversion of magnetotelluric data.’ Tectonophysics 653, No. null: 20–32. doi:
- . ‘Utilizing impressed current cathodic protection as the source for electromagnetic exploration.’ Contributed to the 76th EAGE Conference and Exhibition 2014, Amsterdam, nld.
- 10.1190/GEO2013-0026.1. . ‘Robust processing of noisy land-based controlled-source electromagnetic data.’ Geophysics 78, No. 5. doi:
- 10.1190/GEO2012-0484.1. . ‘Inversion of slingram electromagnetic induction data using a born approximation.’ Geophysics 78, No. 4. doi:
- . . ‘Magnetotelluric Studies at the San Andreas Fault Zone: Implications for the Role of Fluids.’ Surveys in Geophysics 33, No. 1: 65–105. doi: 10.1007/s10712-011-9144-0.
- . . ‘2.5D controlled-source EM modeling with general 3D source geometries.’ Geophysics 76, No. 6: F387–F393. doi: 10.1190/geo2011-0111.1.
- . . ‘Strategies for land-based controlled-source electromagnetic surveying in high-noise regions.’ Leading Edge 30, No. 10: 1174–1181. doi: 10.1190/1.3657078.
- . . ‘Sensitivity of controlled-source electromagnetic fields in planarly layered media.’ Geophysical Journal International 187, No. 2: 705–728. doi: 10.1111/j.1365-246X.2011.05203.x.
- . . ‘Electromagnetic fields generated by finite-length wire sources: Comparison with point dipole solutions.’ Geophysical Prospecting 59, No. 2: 361–374. doi: 10.1111/j.1365-2478.2010.00926.x.
- . . ‘Electromagnetic characterization of CO2 sequestration sites - Feasibility studies and first field results from Ketzin.’ Society of Petroleum Engineers - 73rd European Association of Geoscientists and Engineers Conference and Exhibition 2011 - Incorporating SPE EUROPEC 2011 1: 247–251.
- . . ‘Correlation between deep fluids, tremor and creep along the central San Andreas fault.’ Nature 480, No. 7375: 87–90. doi: 10.1038/nature10609.
- . . ‘Controlled-source electromagnetic modelling studies - Utility of auxiliary potentials for low-frequency stabilization.’ Society of Petroleum Engineers - 72nd European Association of Geoscientists and Engineers Conference and Exhibition 2010 - Incorporating SPE EUROPEC 2010 1: 322–326.
- . . ‘1D sensitivity of land-based CSEM to thin resistive layers.’ SEG Technical Program Expanded Abstracts 29, No. 1: 884–888. doi: 10.1190/1.3513920.
- . . ‘Imaging of CO2 storage sites, geothermal reservoirs, and gas shales using controlled-source magnetotellurics: Modeling studies.’ Chemie der Erde / Geochemistry 70, No. SUPPL. 3: 63–75. doi: 10.1016/j.chemer.2010.05.004.
- . . ‘Anatomy of the dead sea transform from lithospheric to microscopic scale.’ Reviews of Geophysics 47, No. 2. doi: 10.1029/2008RG000264.
- . . ‘Mode separation of magnetotelluric responses in three-dimensional environments.’ Geophysical Journal International 172, No. 1: 67–86. doi: 10.1111/j.1365-246X.2007.03612.x.
- . . ‘A deep crustal fluid channel into the San Andreas Fault system near Parkfield, California.’ Geophysical Journal International 173, No. 2: 718–732. doi: 10.1111/j.1365-246X.2008.03754.x.
- . . ‘Electromagnetic and geoelectric investigation of the Gurinai Structure, Inner Mongolia, NW China.’ Tectonophysics 445, No. 1-2: 26–48. doi: 10.1016/j.tecto.2007.06.008.
- . . ‘Electrical resistivity image of the Jingsutu Graben at the NE margin of the Ejina Basin (NW China) and implications for the basin development.’ Geophysical Research Letters 34, No. 9. doi: 10.1029/2007GL029412.
- . . ‘Equivalent images derived from very-low frequency (VLF) profile data.’ Geophysics 70, No. 3: G43–G50. doi: 10.1190/1.1925742.
- . . ‘An ellipticity criterion in magnetotelluric tensor analysis.’ Geophysical Journal International 159, No. 1: 69–82. doi: 10.1111/j.1365-246X.2004.02376.x.
- . . ‘Transformation of VLF anomaly maps into apparent resistivity and phase.’ Geophysics 68, No. 2: 497–505. doi: 10.1190/1.1567218.