Datenbanken

Hier können einige Datenbanken gefunden werden, die in unserer Forschung verwendet werden.

  • Muenster BarcodeDB

    Download

    Die Muenster BarcodeDB ist eine Sammlung von über 1000 Fotos von Barcodes auf verschiedenen Objekten. Bitte beachten Sie die Datei readme.html, wenn Sie diese Daten verwenden möchten.

  • PedestrianLights

    Download

    PedestrianLights ist eine Sammlung von Videos zur Erkennung von Fußgängerampeln im Straßenverkehr. Bitte beachten Sie die Datei index.html, wenn Sie diese Daten verwenden möchten.

     

  • LCD2A

    Download

    Die Kollisionsdatenbank (genannt Larvae Collision Dataset 2 Animals; oder LCD2A) beinhaltet 1352 Bildsequenzen mit ca. 159300 Einzelbildern, welche zwei kollidierende Drosophila melanogaster Larven zeigen. Die Bilder wurden mit dem FIM2c System aufgenommen. Für weitere Informationen siehe:

    • Enthaltene Datei "readme.txt"
    • Risse B., Otto N., Berh D., Jiang X., Kiel M., Klambt C. 2017. "FIM2c: Multicolor, Multipurpose Imaging System to Manipulate and Analyze Animal Behavior." IEEE Transactions on Biomedical Engineering 64, Nr. 3:610-620
    • Otto N, Risse B, Berh D, Bittern J, Jiang X, Klämbt C. 2016. "Interactions among Drosophila larvae before and during collision." Scientific Reports 11, Nr. 6: 31564
  • LCD2t3

    Download

    Diese Datenbank (genannt "Larvae Collision Dataset 2 to 3" oder LCD2t3) stellt eine verfeinerte Version der Kollisionsdatenbank LCD2A dar. Die Bilder wurden mit dem FIM2c System aufgenommen. Für weitere Informationen siehe

    • Enthaltene Datei "readme.txt"
    • Michels T, Berh D, Jiang X. 2018. "An RJMCMC-based method for tracking and resolving collisions of Drosophila Larvae." IEEE/ACM Transactions on Computational Biology and Bioinformatics 2018 [Akzeptiert].
  • LCDseg

    Download

    This dataset (called : Larvae Collision Dataset with Segmentation) represents a collection of colliding Drosophila larvae sequences from the LCD2t3 dataset, where ten 2-larvae collision videos are randomly selected with 1-10, 11-20, . . . , 41-50, and >50 frames, together with nine 3-larvae collision sequences. In total, this dataset contains 69 videos and 2336 frames. All larvae in these frames were manually segmented. For further information please refer to

    • The "readme.txt" file included in the archive
    • Bian A, Jiang X, Berh D, Risse B (2021) Resolving colliding larvae by fitting ASM to random walker-based pre-segmentations. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18 (3), p. 1184-1194.
  • Heartbeat

    Download

    Die Heartbeat-Datenbank beinhaltet 39 Bildsequenzen mit ca. 52700 Einzelbildern, welche den (arrhythmischen) Herzschlag von Drosophila melanogaster Pupen zeigen. Die Bilder wurden mit dem FIM System aufgenommen. Für weitere Informationen siehe

    • Enthaltene Datei "readme.txt"
    • Berh D, Scherzinger A, Otto N, Jiang X, Klämbt C, Risse B. 2018. "Automatic non-invasive heartbeat quantification of Drosophila pupae." Computers in Biology and Medicine 93: 189-199.

Voreen

Voreen is an open source rapid application development framework for the interactive visualization and analysis of multi-modal volumetric data sets. It provides GPU-based volume rendering and data analysis techniques and offers high flexibility when developing new analysis workflows in collaboration with domain experts. The Voreen framework consists of a multi-platform C++ library, which can be easily integrated into existing applications, and a Qt-based stand-alone application. It is licensed under the terms of the GNU General Public License. More...

Distance-preserving vector space embedding for generalized median based consensus learning

Learning a consensus object from a set of given objects is a core problem in machine learning and pattern recognition. One example is text recognition, where the use of different algorithms or parameters result in different recognized texts. Consensus learning would result in one text which hopefully includes less errors than each single result.

One method to calculate this result is generlized median calculation. The generalized median of a set of objects is a new object which has the smallest sum of distances to all objects in the set. The calculation of the generalized median is often NP-Hard, for example using strings with the string edit distance. Therfore, approximative solutions are needed. More...

Barista - A Graphical Tool for Designing and Training Deep Neural Networks

Barista is an open-source graphical high-level interface for the Caffe deep learning framework written in Python. While Caffe is one of the most popular frameworks for training DNNs, editing prototxt files in order to specify the net architecture and hyper parameters can become a cumbersome and error-prone task. Instead, Barista offers a fully graphical user interface with a graph-based net topology editor. More...

Vampire - Variational Algorithm for Mass-Preserving Image REgistration

Vampire is a mass-preserving image registration approach. Our main area of application is motion correction in gated positron emission tomography (PET) of the human heart. Intensity modulations caused by the highly non-rigid cardiac motion are considered by means of a mass-preserving transformation model. Vampire is highly robust against noise due to hyperelastic regularization and leads to accurate and realistic motion estimates. More...

Ultracept

This primary objective of this EU-funded project is to develop a trustworthy multi-modal vehicle collision detection system inspired by animals’ visual brain via trans-institutional collaboration. More...

Projekte und Publikationen

 

 
  • Projekte

    Laufend
    • InterKI – Interdisziplinäres Lehrprogramm zu maschinellem Lernen und künstlicher Intelligenz ()
      Gefördertes Einzelprojekt: Bundesministerium für Bildung und Forschung | Förderkennzeichen: 16DHBKI049
    • EXFP-MML – SPP 2363 - Teilprojekt: Fingerprints entschlüsseln - Auf dem Weg zu einem ganzheitlichen Erklärungsinstrumentarium für molekulares maschinelles Lernen ()
      Teilprojekt in DFG-Verbund koordiniert an der Universität Münster: DFG - Schwerpunktprogramm | Förderkennzeichen: GL 349/15-1; JI 104/10-1
    • Al-based Medical Image Analysis and AR-based Surgical Navigation for Craniomaxillofacial Surgery ()
      Gefördertes Einzelprojekt: Chinesisch-Deutsches Zentrum für Wissenschaftsförderung | Förderkennzeichen: M-0019
    • SFB 1450 Z01 - Interaktive und rechnergestützte Analyse von großen multiskalen Bildgebungsdaten ()
      Teilprojekt in DFG-Verbund koordiniert an der Universität Münster: DFG - Sonderforschungsbereich | Förderkennzeichen: SFB 1450/1, Z01
    Abgeschlossen
    • ULTRACEPT – Ultra-layered perception with brain-inspired information processing for vehicle collision avoidance ()
      EU-Projekt koordiniert außerhalb der Universität Münster: EU H2020 - Marie Skłodowska-Curie Actions - Research and Innovation Staff Exchange | Förderkennzeichen: 778062
    • DAAD Programm des projektbezogenen Personenaustausches Taiwan 2021-2023 ()
      Gefördertes Einzelprojekt: DAAD - Programm des projektbezogenen Personenaustauschs mit verschiedenen Partnerländern | Förderkennzeichen: 57560795
    • Projektbezogener Personenaustausch Indien DST 2020 ()
      Gefördertes Einzelprojekt: DAAD - Programm des projektbezogenen Personenaustauschs mit verschiedenen Partnerländern | Förderkennzeichen: 57520543
    • AutoML-Methoden und Tools für die praktische Anwendung von Deep Learning ()
      Gefördertes Einzelprojekt: Förderkreis der Angewandten Informatik an der Universität Münster e. V.
    • Computer-assisted 3D analysis of OCT angiography for AMD patients ()
      Gefördertes Einzelprojekt: Dr. Werner Jackstädt-Stiftung
    • EXIST-Gründerstipendium: ApoFunk ()
      Gefördertes Einzelprojekt: BMWK - EXIST-Gründerstipendium | Förderkennzeichen: 03EGSNW580
    • EXC 1003 C5 - Ganzkörper-Bildgebung nicht-narkotisierter Organismen ()
      Teilprojekt in DFG-Verbund koordiniert an der Universität Münster: DFG - Exzellenzcluster | Förderkennzeichen: EXC1003/1
    • EXC 1003 A6 - Analyse von Bewegung in Zellsysytemen ()
      Teilprojekt in DFG-Verbund koordiniert an der Universität Münster: DFG - Exzellenzcluster | Förderkennzeichen: EXC1003/1
    • EXC 1003 FF-2016-06 - FIM4D: Automated FIM-based in-vial activity monitoring and tracking for locomotion analysis of Drosophila larvae ()
      Teilprojekt in DFG-Verbund koordiniert an der Universität Münster: DFG - Exzellenzcluster
    • INEMAS – Verbundprojekt: Grundlagen Interaktions- und emotionssensitiver Assistenzsysteme - Teilvorhaben: Videobasierte Erkennung von Emotionen und sozialer Interaktion für Fahrerassistenzsysteme ()
      participations in bmbf-joint project: Bundesministerium für Bildung und Forschung | Förderkennzeichen: 16SV7236
    • SFB 656 B03 - Quantifizierung in der hochauflösenden dynamischen PET-MR-Bildgebung zur Analyse kleiner Strukturen ()
      Teilprojekt in DFG-Verbund koordiniert an der Universität Münster: DFG - Sonderforschungsbereich | Förderkennzeichen: INST211/324-1
    • HAZCEPT – Towards Zero Road Accidents - Nature Inspired Hazard Perception ()
      EU-Projekt koordiniert außerhalb der Universität Münster: EU FP 7 - Marie Curie Actions - Internationaler Forschungspersonalaustausch | Förderkennzeichen: 318907
    • EXC 1003 FF-2013-03 - Identifizierung neuer Aktin-Regulatoren der Zellform, Zellmigration und Zellpolarität in Drosophila-Blutzellen ()
      Teilprojekt in DFG-Verbund koordiniert an der Universität Münster: DFG - Exzellenzcluster
    • EXC 1003 FF-2013-16 - PET-Bildgebung von nicht-narkotisierten, freilaufenden Mäusen ()
      Teilprojekt in DFG-Verbund koordiniert an der Universität Münster: DFG - Exzellenzcluster
    • Positronen-Emissions-Tomographie von nicht-narkotisierten, freilaufenden Mäusen ()
      Gefördertes Einzelprojekt: DFG - Sachbeihilfe/Einzelförderung | Förderkennzeichen: DA 1064/3-1
    • Quantitative Untersuchungen der nachhaltigen Gewinnentwicklung der Village-Banken mithilfe von Mustererkennungstechniken ()
      Gefördertes Einzelprojekt: DFG - Internationale Kooperationsanbahnung | Förderkennzeichen: JI 104/5-1
    • An Assistive System for Diagnosing Cardiovascular Diseases ()
      participations in other joint project: Deutscher Akademischer Austauschdienst | Förderkennzeichen: 56233789
    • GCPR – 36th German Conference on Pattern Recognition ()
      Wissenschaftliche Veranstaltung: Deutsche Arbeitsgemeinschaft für Mustererkennung e.V.
    • SFB 656 C03 – SFB 656 C03 - Ultraschall-basierte molekulare Bildgebung ()
      Teilprojekt in DFG-Verbund koordiniert an der Universität Münster: DFG - Sonderforschungsbereich
    • IRTG-SIGI – IGRK 1498 - Semantische Integration raumbezogener Information ()
      DFG-Hauptprojekt koordiniert an der Universität Münster: DFG - Internationales Graduiertenkolleg | Förderkennzeichen: GRK 1498/1
    • DAAD Austauschprogramm: PPP Taiwan - Design of Clinical Decision System for Diagnosis of Glaucoma ()
      participations in other joint project: Deutscher Akademischer Austauschdienst | Förderkennzeichen: 50751752
    • Erstellung einer Software zur Untersuchung der dreidimensionalen Wahrnehmungsfähigkeit von Kindern ()
      Gefördertes Einzelprojekt: Kantonsspital St. Gallen, Schweiz
    • Beitrag zur Initiierung und Intensivierung einer bilateralen Kooperation im Rahmen einer Vereinbarung zwischen der DFG ()
      Gefördertes Einzelprojekt: DFG - Sachbeihilfe/Einzelförderung | Förderkennzeichen: 567919
    • Tagung CAIP 2009 in Münster (02. - 04.09.2009) ()
      Wissenschaftliche Veranstaltung: Teilnahmebeiträge/Tagungsgebühren
    • Projektbezogener Personenaustausch mit Hongkong ()
      participations in other joint project: Deutscher Akademischer Austauschdienst | Förderkennzeichen: D/09/00805
  • Publikationen

    • Tistarelli, M., Dubey, S., Singh, S. und Jiang, X. Hrsg., . Computer Vision and Machine Intelligence. Berlin: Springer Nature.

    • Fink, G., Frintrop, S. und Jiang, X. Hrsg., . LNCS Volume 11824: Pattern Recognition. Düsseldorf: Springer VDI Verlag.

    • El-Baz, A., Jiang, X. und Suri, J. Hrsg., . Biomedical Image Segmentation: Advances and Trends. Boca Raton, FL: CRC Press.
    • Martinez-Trinidad, J., Carrasco-Ochoa, J., Ayala, R.V., Olvera-Lopez, J. und Jiang, X. Hrsg., . Pattern Recognition. Düsseldorf: Springer VDI Verlag.

    • Jiang, X., Hornegger, J. und Koch, a.R. Hrsg., . Pattern Recognition. Düsseldorf: Springer VDI Verlag.
    • Tham, T., Ichikawa, K., Oyama-Higa, M., Coomans, D. und Jiang, X. Hrsg., . Biomedical Informatics and Technology. Düsseldorf: Springer VDI Verlag.

    • Kropatsch, W., Artner, N., Haxhimusa, Y. und Jiang, a.X. Hrsg., . Graph-Based Representations in Pattern Recognition. Düsseldorf: Springer VDI Verlag.
    • Jiang, X., Bellon, O., Goldgof, D. und Oishi, a.T. Hrsg., . LNCS: Advances in Depth Image Analysis and Applications. Düsseldorf: Springer VDI Verlag.

    • Dawood, M., Jiang, X. und Schäfers, K. Hrsg., . Correction Techniques in Emission Tomographic Imaging. Boca Raton, FL: CRC Press.

    • Jiang, X., Ferrer, M. und Torsello, A. Hrsg., . LNCS, Band 6658: Graph-Based Representations in Pattern Recognition. Düsseldorf: Springer VDI Verlag.
    • Pham, T., Zhou, X., Tanaka, H., Oyama-Higa, M., Jiang, X., Sun, C., Kowalski, J. und Jia, a.X. Hrsg., . Proc. of Int. Symposium on Computational Models for Life Sciences. N/A: Selbstverlag / Eigenverlag.

    • Jiang, X., Ma, M. und Chen, C. Hrsg., . Multimedia Processing: Fundamentals, Methods, and Applications. Düsseldorf: Springer VDI Verlag.

    • Jiang, X. und Petkov, N. Hrsg., . LNCS, Band 5702: Computer Analysis of Images and Patterns. Düsseldorf: Springer VDI Verlag.

    • Zheng, N., X., J.X. und and, L.X. Hrsg., . LNCS, Band 4153: Advances in Machine Vision, Image Processing, and Pattern Analysis. Düsseldorf: Springer VDI Verlag.