Stability analysis

The ansatz

$\displaystyle \varepsilon_i^{j+1}=g^{j}e^{ikx_i}
$

leads to the following expression for the amplification factor $ g(k)$ :

$\displaystyle g^2=2(1-\alpha^2)g-1+2\alpha^2g\cos(k\triangle x),
$

which after some transformations becomes just a quadratic equation for $ g$ :

$\displaystyle g^2-2\beta g+1=0,$ (2.12)

where

$\displaystyle \beta=1-2\alpha^2\sin^2\bigl(\frac{k\triangle x}{2}\bigr).
$

Solutions read

$\displaystyle g_{1,2}=\beta\pm\sqrt{\beta^2-1}.
$

If $ \beta>1$ then at least one of absolute value of $ g_{1,2}$ is bigger that one. Therefor one should desire for $ \beta<1$ , i.e.,

$\displaystyle g_{1,2}=\beta\pm i\sqrt{\beta^2-1}
$

and

$\displaystyle \vert g\vert^2=\beta^2+1-\beta^2=1.
$

In this case the scheme is conditional stable. The stability condition reads
$\displaystyle -1\leq1-2\alpha^2\sin^2\biggl(\frac{k\triangle x}{2}\biggr)\leq1,%\quad \forall k\quad \Leftrightarrow\, \alpha\leq1,\\
$      

what is equivalent to the standart Courant-Friedrichs-Lewy-Condition

$\displaystyle \alpha=\frac{c\triangle t}{\triangle x}\leq 1.
$

The number $ \alpha$ is called the Courant number.



Gurevich_Svetlana 2008-11-12