Westfälische Wilhelms-Universität Münster: Forschungsbericht 2003-2004 - Institut für Botanik und Botanischer Garten

Forschen

Druckkopf Universität Münster
Logo Universität Münster
A–Z Suchen
 
Startseite Universität Münster

Forschungsbericht
2003 - 2004

 

 
Inhaltsverzeichnis
 
Evangelisch-Theologische Fakultät
Katholisch-Theologische Fakultät
Rechtswissenschaftliche Fakultät
Wirtschafts- wissenschaftliche Fakultät
Medizinische Fakultät
Erziehungswissenschaft und Sozialwissenschaften
Psychologie und Sportwissenschaft
Geschichte / Philosophie
Philologie
Mathematik und Informatik
Physik
Chemie und Pharmazie

Biologie

Geowissenschaften
Forschungszentren
Sonderforschungsbereiche
Graduiertenkollegs
Forschergruppen
Zentrale Betriebseinheiten
 

Startseite

Kontakt

Impressum

 

Institut für Botanik und
Botanischer Garten

Tel. (0251) 83-23810
Fax: (0251) 83-23823
e-mail: botinst@uni-muenster.de
www: www.uni-muenster.de/biologie/botanik
Schlossgarten 3
48143 Münster
Direktor: Prof. Dr. Engelbert Weis

Forschungsschwerpunkte 2003 - 2004  
 zurück    weiter

Prof. Dr. E. Bornberg-Bauer
Principles of molecular evolution and genotypic variation

 
Simplified biophysical models of biopolymers (such as lattice proteins or the RNA secondary structure model), are a computationally tractable method to investigate principles of molecular evolution. Although representing a highly idealised world, many important features of real-world biopolymers, such as databases searches with profiles or consensus sequences, organisation of families as networks (dense clusters) in sequence space, structural robustness against mutations, the dominance of a few folds or the domain-like arrangement of families, can be explained in terms of neutral evolution, punctuated equilibrium and recombination events. As a key feature we find that genotypes (sequences) which encode a structure uniquely arrange in neutral networks, i.e. all genotypes are connected by paths comprising minimal mutational steps such as the hamming distance of 1 (point mutation). These networks arrange around a prototype sequence, which is the sequence which allows for the largest number of neutral mutations within the neutral net and for which the ground state structure is not only unique but also maximally stable. With increasing mutational distance from the prototype sequence, stability decreases and degeneracy becomes more likely. Most strikingly, this gradient of stability - which we term superfunnel - is not confined to the neutral net but spans all geneotype space such that at any given point in genotype space it requires only a few mutations to find a "direction" in which evolution must proceed in order to select for any structure related fitness criterion. We have exploited this feature to design an algorithm which, in combination with a novel constraint programming algorithm (designed by Backofen and Will, Univ. of Jena), enables the fast and reliable location of unique and stable structures from starting anywhere in sequence space. Here we use unconstrained structure representations and the optimal solution is guaranteed to be found within less than a second for sequences of length up to 30 and a four-letter alphabet. We find that many claims about the validity of certain models are wrong (e.g. the statement that no unique structures exist in 3D for the HP model) and that such an evolutionary optimisation strategy should be applicable for the rational design of biopolymers with certain features. An important side aspect are investigations on the choice of the algorithm which appears to be of minor importance compared to the choice of the biophysical model as far as evolutionary issues and principles are concerned. Our results have already successfully guided experimentalists for the rational design of proteins with desired functions (bistable structures) and further experimental confirmation for the design of proteins has been suggested. Another important point in our research is to explain how genotypic diversity is maintained during evolution although, intuitively, fitness optimisation should narrow down variation. We do this by investigating the impact of multiple fitness criteria on biopolymer evolution and looking how rapid adaptation is facilitated when evolution generates only marginally stable structures.

Beteiligte Wissenschaftler:

Richard Wroe, Prof. Dr. Erich Bornberg-Bauer, David Vernazobres

Kooperationen:

Hue Sun Chan (Univ. of Toronto), Wing Hung Wong (Harvard), Tetsuya Yomo (Univ. of Osaka), Rolf Backofen (Univ. of Jena)

Veröffentlichungen:

Cui Y., W.H. Wong, E. Bornberg-Bauer, and H.S. Chan*: Recombinatoric exploration of novel folded structures: A heteropolymer-based model of protein evolutionary landscapes Proc. Natl. Acad. Sci., USA, 99: 809-814, (2002).

Bornberg-Bauer E. and H.S. Chan*: Modeling Evolutionary Landscapes: Mutational Stability, Topology and Superfunnels in Sequence Space; Proc. Natl. Acad. Sci., USA, 96(19): 10689-10694, (1999).

Bornberg-Bauer E.: How are model protein structures distributed in sequence space?; Biophys.J., 73(5): 2393-2403, (1997).

Chan H.S. and E. Bornberg-Bauer: Perspectives on Protein Evolution from simple exact models (Review)Applied Bioinformatics; 1: 121-144; (2002).

Wroe R, E. Bornberg-Bauer and H.S. Chan: Comparing Folding Codes in Simple Heteropolymer Models of Protein Evolutionary Landscapes: Robustness of the Superfunnel Paradigm Biophys.J., 88: in press, (2005).

 

Zurückblättern

 Diese Seite:  :: Seite drucken   :: Seite empfehlen   :: Seite kommentieren

© 2005 Universität Münster - Dezernat 6.3. + Forschungsberichte

   :: Seitenanfang Seitenanfang

© Universität Münster
Schlossplatz 2 · 48149 Münster
Tel.: +49 251 83-0 · Fax: +49 (251) 83-3 20 90
E-Mail: verwaltung@uni-muenster.de