next up previous
Next: About this document ... Up: Hartree-Fock approximation for inverse Previous: Hartree-Fock approximation for inverse

Bibliography

1
R. Newton, Inverse Schrödinger Scattering in Three Dimensions (Springer Verlag, Berlin, 1989).

2
K. Chadan, D. Colton, L. Päivärinta, and W. Rundell, An Introduction to Inverse Scattering and Inverse Spectral Problems (SIAM, Philadelphia, 1997).

3
A. Tikhonov and V. Arsenin, Solution of Ill-posed Problems (Wiley, New York, 1977).

4
D. Sivia, Data Analysis: A Bayesian Tutorial (Oxford University Press, Oxford, 1996).

5
Introductions to Bayesian statistics can be found at: http://bayes.wustl.edu/.

6
J. Lemm, J. Uhlig, and A. Weiguny, cond-mat/9907013, submitted to PRL.

7
J. Eisenberg and W. Greiner, Microscopic Theory of the Nucleus (North-Holland, Amsterdam, 1972).

8
P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer Verlag, New York, 1980).

9
K. Goeke, R. Cusson, F. Grümmer, P.-G. Reinhard, and H. Reinhardt, Prog. Theor. Phys. (Suppl.) 74 & 75, 33 (1983).

10
J.-P. Blaizot and G. Ripka, Quantum Theory of Finite Systems (The MIT Press, Cambridge, MA, 1986).

11
C. K. I. Williams and C. E. Rasmussen, in Advances in Neural Information Processing Systems 8, edited by D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo (The MIT Press, Cambridge, MA, 1996), pp. 514-520.

12
C. Williams and D. Barber, IEEE Trans. on Pattern Analysis and Machine Intelligence 20, 1342 (1998).

13
J. Lemm, Technical Report No. MS-TP1-99-1, Univ. of Münster.

14
J. C. Lemm, Annals of Physics 244, 136 (1995).



Joerg_Lemm 1999-12-21