next up previous contents
Next: About this document ... Up: Bayesian Field Theory Nonparametric Previous: Density estimation with Gaussian   Contents

Bibliography

1
Aarts, E. & Korts, J. (1989) Simulated Annealing and Boltzmann Machines. New York: Wiley.

2
Abu-Mostafa, Y. (1990) Learning from Hints in Neural Networks. Journal of Complexity 6, 192-198.

3
Abu-Mostafa, Y. (1993) Hints and the VC Dimension. Neural Computation 5, 278-288.

4
Abu-Mostafa, Y. (1993b) A method for learning from hints. Advances in Neural Information Processing Systems 5, S. Hanson et al (eds.), 73-80, San Mateo, CA: Morgan Kauffmann.

5
Aida, T. (1999) $\quad$ Field Theoretical Analysis of On-line Learning of Probability Distributions. $\quad$ Phys. Rev. Lett. 83, 3554-3557, arXiv:cond-mat/9911474.

6
Allen, D.M. (1974) The relationship between variable selection and data augmentation and a method of prediction. Technometrics 16, 125.

7
Amari, S., Cichocki, A., & Yang, H.H.(1996) A New Learning Algorithm for Blind Signal Separation. in Advances in Neural Information Processing Systems 8, D.S. Touretzky et al (eds.), 757-763, Cambridge, MA: MIT Press.

8
Ames, W.F. (1977) Numerical Methods for Partial Differential Equations. (2nd. ed.) New York: Academic Press.

9
Balian, R. (1991) From Microphysics to Macrophysics. Vol. I. Berlin: Springer Verlag.

10
Ballard, D.H. (1997) An Introduction to Natural Computation. Cambridge, MA: MIT Press.

11
Bayes, T.R. (1763) An Essay Towards Solving a Problem in the Doctrine of Chances. Phil. Trans. Roy. Soc. London 53, 370. (Reprinted in Biometrika (1958) 45, 293)

12
Bazaraa, M.S., Sherali, H.D., & Shetty, C.M. (1993) Nonlinear Programming. (2nd ed.) New York: Wiley.

13
Beck, C. & Schlögl, F. (1993) Thermodynamics of chaotic systems. Cambridge: Cambridge University Press.

14
Bell, A.J. & Sejnowski, T.J. (1995) Neural Computation 7(6), 1129-1159.

15
Ben-Israel, A. & Greville, T.N.E. (1974) Generalized Inverses: Theory and Applications New York: Wiley.

16
Berger, J.O. (1980) Statistical Decision Theory and Bayesian Analysis. New York: Springer Verlag.

17
Berger, J.O. & Wolpert R. (1988) The Likelihood Principle. (2nd ed.) Hayward, CA: IMS Lecture Notes -- Monograph Series 9.

18
Bernado, J.M. & Smith, A.F. (1994) Bayesian Theory. New York: John Wiley.

19
Bertsekas, D.P. (1995) Nonlinear Programming. Belmont, MA: Athena Scientific.

20
Bialek, W., Callan, C.G., & Strong, S.P. (1996) Field Theories for Learning Probability Distributions. Phys. Rev. Lett. 77, 4693-4697, arXiv:cond-mat/9607180.

21
Binder, K. & Heermann, D.W. (1988) Monte Carlo simulation in statistical physics: An introduction. Berlin: Springer Verlag.

22
Bishop, C.M. (1993) Curvature-driven smoothing: A learning algorithm for feedforward networks. IEEE Transactions on Neural Networks 4(5),882-884.

23
Bishop, C.M. (1995) Training with noise is equivalent to Tikhonov regularization. Neural Computation 7 (1), 108-116.

24
Bishop, C.M. (1995) Neural Networks for Pattern Recognition. Oxford: Oxford University Press.

25
Bishop, E. & Bridges, D. (1985) Constructive Analysis. Grundlehren der Mathematischen Wissenschaften, Vol. 279. Berlin: Springer Verlag.

26
Black, M.J. & Rangarajan, A. (1996) On the Unification of Line Processes, Outlier Rejection, and Robust Statistics With Applications in Early Vision. Int'l J. Computer Vision 19 (1).

27
Blaizot, J.-P. & Ripka, G. (1986) Quantum Theory of Finite Systems. Cambridge, MA: MIT Press.

28
Blake, A. & Zisserman, A. (1987) Visual reconstruction Cambridge, MA: MIT Press.

29
Blanchard, P. & Bruening, E. (1982) Variational Methods in Mathematical Physics. Berlin: Springer Verlag.

30
Bleistein, N. & Handelsman, N. (1986) Asymptotic Expansions of Integrals. (Originally published in 1975 by Holt, Rinehart and Winston, New York) New York: Dover.

31
Breiman, L. (1993) Hinging hyperplanes for regression, classification, and function approximation. IEEE Trans. Inform. Theory 39(3), 999-1013.

32
Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1993) Classification and Regression Trees., New York: Chapman & Hall.

33
Bretthorst, G.L. (1988) Bayesian spectrum analysis and parameter estimation. Lecture Notes in Statistics, Vol. 48. Berlin: Springer Verlag.
(Available at http://bayes.wustl.edu/glb/book.pdf)

34
Cardy, J. (1996) Scaling and Renormalization in Statistical Physics. Cambridge: Cambridge University Press.

35
Carlin, B.P. & Louis T.A. (1996) Bayes and Empirical Bayes Methods for Data Analysis. Boca Raton: Chapman & Hall/CRC.

36
Choquet-Bruhat Y., DeWitt-Morette, C., & Dillard-Bleick, M. (1982) Analysis, Manifolds, and Physics. Part I. Amsterdam: North-Holland.

37
Collins, J. (1984) Renormalization. Cambridge: Cambridge University Press.

38
Cox, D.R. & Hinkley, D.V. (1974) Theoretical Statistics. London: Chapman & Hall.

39
Craven, P. & Wahba, G. (1979) Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 31, 377-403.

40
Cressie, N.A.C. (1993) Statistics for Spatial Data. New York, Wiley.

41
Creutz, M. (1983) Quarks, gluons and lattices. Cambridge: Cambridge University Press.

42
D'Agostini, G. (1999) Bayesian Reasoning in High Energy Physics. -- Principles and Applications -- CERN Yellow Report 99-03 (Available at http://www-zeus.roma1.infn.it/${}^\sim$agostini/prob+stat.html)

43
Davis, L. (ed.) (1987) Genetic Algorithms and Simulated Annealing. San Mateo, CA: Morgan Kaufmann.

44
Davis, L. (ed.) (1991) Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold.

45
De Bruijn, N.G. (1981) Asymptotic Methods in Analysis. (Originally published in 1958 by the North-Holland Publishing Co., Amsterdam) New York: Dover.

46
Deco, G. & Obradovic, D. (1996) An Information-Theoretic Approach to Neural Computing. New York: Springer Verlag.

47
Devroye, L., Györfi, L., & Lugosi, G. (1996) A Probabilistic Theory of Pattern recognition. New York: Springer Verlag.

48
Di Castro, C. & Jona-Lasinio, G. (1976) The Renormalization Group Approach to Critical Phenomena. In: Domb, C. & Green M.S. (eds.) Phase Transitions and Critical Phenomena. London: Academic Press.

49
Dietrich, R., Opper, M., & Sompolinsky, H. (1999) Statistical Mechanics of Support Vector Networks. Physical Review Letters 82(14), 2975-2978.

50
Donoho, D.L. & Johnstone, I.M. (1989) Projection-based approximation and a duality with kernel methods. Ann. Statist. 17(1),58-106.

51
Doob, J.L. (1953) Stochastic Processes. (New edition 1990) New York: Wiley.

52
Dudley, R.M. (1984) A course on empirical processes. Lecture Notes in Mathematics 1097,2-142.

53
Ebeling, W., Freund, J., & Schweitzer, F. (1998) Komplexe Strukturen: Entropie und Information. Stuttgart: Teubner.

54
Efron, B. & Tibshirani R.J. (1993) An Introduction to the Bootstrap. New York: Chapman & Hall.

55
Eisenberg, J. & Greiner, W. (1972) Microscopic Theory of the Nucleus. North-Holland, Amsterdam.

56
Fernández, R., Fröhlich, J., & Sokal, A.D. (1992) Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory. Berlin: Springer Verlag.

57
Fletcher, R. (1987) Practical Methods of Optimization. New York: Wiley.

58
Fredholm I. (1903) Acta Math. 27.

59
Friedman, J.H. & Tukey, J.W. (1974) A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comput. 24, 1000-1006.

60
Friedman, J.H. & Stuetzle, W. (1981) Projection pursuit regression. J. Am. Statist. Assoc. 76(376), 817-823.

61
Fukunaga, K. (1990) Statistical Pattern Recognition. Boston: Academic Press.

62
Gardiner, C.W. (1990) Handbook of Stochastic Methods. (2nd ed.) Berlin: Springer Verlag.

63
Gardner, E. (1987) Maximum Storage Capacity in Neural Networks. Europhysics Letters 4 481-485.

64
Gardner, E. (1988) The Space of Interactions in Neural Network Models. Journal of Physics A 21 257-270.

65
Gardner, E. & Derrida B. (1988) Optimal Storage Properties of Neural Network Models. Journal of Physics A 21 271-284.

66
Geiger, D. & Girosi, F. (1991) Parallel and Deterministic Algortihms for MRFs: Surface Reconstruction. IEEE Trans. on Pattern Analysis and Machine Intelligence 13 (5), 401-412.

67
Geiger, D. & Yuille, A.L. (1991) A Common Framework for Image Segmentation. Int'l J. Computer Vision 6 (3), 227-243.

68
Gelfand, S.B. & Mitter, S.K. (1993) On Sampling Methods and Annealing Algorithms. Markov Random Fields - Theory and Applications. New York: Academic Press.

69
Gelman, A., Carlin, J.B., Stern, H.S., & Rubin, D.B. (1995) Bayesian Data Analysis. New York: Chapman & Hall.

70
Geman, S. & Geman, D. (1984) Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. on Pattern Analysis and Machine Intelligence 6, 721-741. Reprinted in Shafer & Pearl (eds.) (1990) Readings in Uncertainty Reasoning. San Mateo, CA: Morgan Kaufmann.

71
Geman, D. & Reynoids, G. (1992) Constraint restoration and the Recover of Discontinuities. IEEE Trans. on Pattern Analysis and Machine Intelligence. 14, 367-383.

72
Giraud, B.G., Lapedes, A., Liu, L.C., & Lemm, J.C. (1995) Lorentzian Neural Nets. Neural Networks 8 (5), 757-767.

73
Girosi, F. (1991) Models of noise and robust estimates. A.I.Memo 1287, Artificial Intelligence Laboratory, Massachusetts Institute of Technology.

74
Girosi, F. (1997) An equivalence between sparse approximation and support vector machines. A.I. Memo No.1606, Artificial Intelligence Laboratory, Massachusetts Institute of Technology.

75
Girosi, F., Poggio, T., & Caprile, B. (1991) Extensions of a theory of networks for approximations and learning: Outliers and negative examples. In Lippmann, R., Moody, J., & Touretzky, D. (eds.) Advances in Neural Information Processing Systems 3, San Mateo, CA: Morgan Kaufmann.

76
Girosi, F., Jones, M., & Poggio, T. (1995) Regularization Theory and Neural Networks Architectures. Neural Computation 7 (2), 219-269.

77
Glimm, J. & Jaffe, A. (1987) Quantum Physics. A Functional Integral Point of View. New York: Springer Verlag.

78
Goeke, K., Cusson, R.Y., Gruemmer, F., Reinhard, P.-G., Reinhardt, H., (1983) Time-Dependent Hartree-Fock and Beyond: A Review. Prog. Theor. Physics [Suppl.] 74 & 75, 33.

79
Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization, and Machine Learning. Redwood City, CA: Addison-Wesley.

80
Golden, R.M. (1996) Mathematical Methods for Neural Network Analysis and Design. Cambridge, MA: MIT Press.

81
Golup, G., Heath, M., & Wahba, G.(1979) Generalized cross validation as a method for choosing a good ridge parameter. Technometrics 21, 215-224.

82
Good, I.J. & Gaskins, R.A. (1971) Nonparametric roughness penalties for probability densities. Biometrika 58, 255-277.

83
Green, P.J. & Silverman, B.W. (1994) Nonparametric Regression and Generalized Linear Models. London: Chapman & Hall.

84
Großman, Ch. & Roos H.-G. (1994) Numerik partieller Differentialgleichungen. Stuttgart: Teubner.

85
Gull, S.F. (1988) Bayesian data analysis - straight line fitting. In Skilling, J., (ed.) Maximum Entropy and Bayesian Methods. Cambridge, 511 -518, Dordrecht: Kluwer.

86
Gull, S.F. (1989) Developments in maximum entropy data analysis. In Skilling, J, (ed.) Maximum Entropy and Bayesian Methods. Cambridge 1988, 53 - 71, Dordrecht: Kluwer.

87
Hackbusch, W. (1985) Multi-grid Methods and Applications. New York: Springer Verlag.

88
Hackbusch, W. (1989) Integralgleichungen. Teubner Studienbücher. Stuttgart: Teubner.

89
Hackbusch, W. (1993) Iterative Lösung großer schwachbesetzter Gleichungssysteme. Teubner Studienbücher. Stuttgart: Teubner.

90
Härdle, W. (1990) Applied nonparametric regression. Cambridge: Cambridge University Press.

91
Hammersley, J.M. & Handscomb, D.C. (1964) Monte Carlo Methods. London: Chapman & Hall.

92
Hastie, T.J. & Tibshirani, R.J. (1986) Generalized Additive Models. Statist. Sci. 1, 297-318.

93
Hastie, T.J. & Tibshirani, R.J. (1987) Generalized Additive Models: Some applications. J. Am. Statist. Assoc. 82,371-386.

94
Hastie, T.J. & Tibshirani, R.J. (1990) Generalized Additive Models. London: Chapman & Hall.

95
Hastings, W.K. (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97-109.

96
Hertz, J., Krogh, A. & Palmer, R.G. (1991) Introduction to the Theory of Neural Computation. Santa Fe Institute, Lecture Notes Volume I, Addison-Wesley.

97
Hilbert, D. & Courant, R. (1989) Methods of Mathematical Physics. Vol.1&2,(1st German editions 1924,1937, Springer Verlag) New York: Wiley.

98
Holland, J.H. (1975) Adaption in Natural and Artificial Systems. University of Michigan Press. (2nd ed. MIT Press, 1992.)

99
Horst, R., Pardalos, M., & Thoai, N.V. (1995) Introduction to Global Optimization. Dordrecht: Kluwer.

100
Huber, P.J. (1979) Robust Smoothing. In Launer, E. & Wilkinson G. (eds.) Robustness in Statistics New York: Academic Press.

101
Huber, P.J. (1981) Robust Statistics. New York: Wiley.

102
Huber, P.J. (1985) Projection Pursuit. Ann. Statist. 13(2),435-475.

103
Itzkyson, C. & Drouffe, J.-M. (1989) Statistical Field Theory. (Vols. 1 and 2) Cambridge: Cambridge University Press.

104
Jaynes, E.T. (in preparation) Probability Theory: The Logic Of Science. (Available at http://bayes.wustl.edu/etj/prob.html)

105
Jeffrey, R. (1999). Probabilistic Thinking.
(Available at http://www.princeton.edu/${}^\sim$bayesway/)

106
Jeggle, H. (1979) Nichtlineare Funktionalanalysis. Stuttgart: Teubner.

107
Jensen, F.V. (1996) An Introduction to Bayesian Networks. New York: Springer Verlag.

108
Jones, M.C. & Sibson, R. (1987) What is Projection Pursuit? J. Roy. Statist. Soc. A 150, 1-36.

109
Kaku, M. (1993) Quantum Field Theory. Oxford: Oxford University Press.

110
van Kampen, N.G. (1992) Stochastic Processes in Physics and Chemistry. Amsterdam: North-Holland.

111
Kant, I. (1911) Kritik der reinen Vernunft.(2nd ed.) Werke, Vol.3 Berlin: Königliche Akademie der Wissenschaften.

112
Kimmeldorf, G.S. & Wahba, G. (1970) A correspondence between Bayesian estimation on stochastic processes and smoothing splines. Ann. Math. Stat. 41, 495-502.

113
Kimmeldorf, G.S. & Wahba, G. (1970) Spline functions and stochastic processes. Sankhya Ser. A 32, Part 2, 173-180.

114
Kirkpatrick, S., Gelatt Jr., C.D., & Vecchi, M.P. (1983) Optimization by Simulated Annealing. Science 220, 671-680.

115
Kirsch, A. (1996) An Introduction to the Mathematical Theory of Inverse Problems. New York: Springer Verlag.

116
Kitagawa, G., Gersch, W. (1996) Smoothness Priors Analysis of Time Series New York: Springer Verlag.

117
Kleinert, H.(1993) Pfadintegrale. Mannheim: Wissenschaftsverlag.

118
Klir, G.J. & Yuan, B. (1995) Fuzzy Sets and Fuzzy Logic. Prentice Hall.

119
Klir, G.J. & Yuan, B. (eds.) (1996) Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems. World Scientific.

120
Koecher, M. (1985) Lineare Algebra und analytische Geometrie. Berlin: Springer Verlag.

121
Koza, J.R. (1992) Genetic Programming Cambridge, MA: MIT Press.

122
Kullback, S. & Leibler R.A. (1951) On Information and Sufficiency. Ann.Math.Statist. 22, 79-86.

123
Kullback, S. (1951) Information Theory and Statistics. New York: Wiley.

124
Lapedes, A. & Farber, R. (1988) How neural nets work. in Neural Information Processing Systems, D.Z.Anderson, (ed.),442-456. New York: American Institute of Physics.

125
Lauritzen, S.L. (1996) Graphical Models. Oxford: Clarendon Press.

126
Lawson, C. & Hanson, R. (1974) Solving Least Squares Problems. Englewood Cliffs, NJ: Prentice-Hall.

127
Le Bellac, M. (1991) Quantum and Statistical Field Theory. Oxford Science Publications, Oxford: Clarendon Press.

128
Le Cam, L. (1986) Asymptotic Methods in Statistical Decision Theory. New York: Springer Verlag.

129
Leen, T.K. (1995) From Data Distributions to Regularization in Invariant Learning. Neural Computation 7, 974-981.

130
Lemm, J.C. (1995) Inhomogeneous Random Phase Approximation for Nuclear and Atomic Reactions. Annals of Physics 244 (1), 136-200, 1995.

131
Lemm, J.C. (1995) Inhomogeneous Random Phase Approximation: A Solvable Model. Annals of Physics 244 (1), 201-238, 1995.

132
Lemm, J.C. (1996) Prior Information and Generalized Questions. A.I.Memo No. 1598, C.B.C.L. Paper No. 141, Massachusetts Institute of Technology. (Available at http://pauli.uni-muenster.de/${}^\sim$lemm)

133
Lemm, J.C. (1998) How to Implement A Priori Information: A Statistical Mechanics Approach. Technical Report MS-TP1-98-12, Münster University, arXiv:cond-mat/9808039.

134
Lemm, J.C. (1998) Fuzzy Interface with Prior Concepts and Non-Convex Regularization. In Wilfried Brauer (Ed.), Proceedings of the 5. International Workshop "Fuzzy-Neuro Systems '98" (FNS '98), March 19-20, 1998, Munich, Germany, Sankt Augustin: Infix.

135
Lemm, J.C. (1998) Quadratic Concepts. In Niklasson L., Bodén, M., & Ziemke, T. (eds.) Proceedings of the 8th International Conference on Artificial Neural Networks. (ICANN98) New York: Springer Verlag.

136
Lemm, J.C. (1998) Fuzzy Rules and Regularization Theory. In ELITE European Laboratory for Intelligent Techniques Engineering (ed.): Proceedings of the 6th European Congress on Intelligent Techniques and Soft Computing (EUFIT '98), Aachen, Germany, September 7-10, 1998, Mainz, Aachen.

137
Lemm, J.C. (1999) Mixtures of Gaussian Process Priors. In Proceedings of the Ninth International Conference on Artificial Neural Networks (ICANN99), IEEE Conference Publication No. 470. London: Institution of Electrical Engineers.

138
Lemm, J.C. (2000) Inverse Time-dependent Quantum Mechanics. Technical Report, MS-TP1-00-1, Münster University, arXiv:quant-ph/0002010.

139
Lemm, J.C., Beiu, V., & Taylor, J.G. (1995) Density Estimation as a Preprocessing Step for Constructive Algorithms. In Kappen B., Gielen, S. (eds.): Proceedings of the 3rd SNN Neural Network Symposium. The Netherlands, Nijmegen, 14-15 September 1995, Berlin, Springer Verlag.

140
Lemm, J.C., Giraud, B.G., & Weiguny, A. (1990) Mean field approximation versus exact treatment of collisions in few-body systems. Z. Phys. A - Atomic Nuclei 336, 179-188.

141
Lemm, J.C., Giraud, B.G., & Weiguny, A. (1994) Beyond the time independent mean field theory for nuclear and atomic reactions: Inclusion of particle-hole correlations in a generalized random phase approximation. Phys. Rev. Lett. 73, 420, arXiv:nucl-th/9911056.

142
Lemm, J.C. & Uhlig, J. (1999) Hartree-Fock Approximation for Inverse Many-Body Problems. Technical Report, MS-TP1-99-10, Münster University, arXiv:nucl-th/9908056.

143
Lemm, J.C., Uhlig J., & Weiguny, A. (2000) Bayesian Approach to Inverse Quantum Statistics. Phys. Rev. Lett. 84, 2068. arXiv:cond-mat/9907013.

144
Lifshits, M.A. (1995) Gaussian Random Functions. Dordrecht: Kluwer.

145
Loredo T. (1990) From Laplace to Supernova SN 1987A: Bayesian Inference in Astrophysics. In Fougère, P.F. (ed.) Maximum-Entropy and Bayesian Methods, Dartmouth, 1989, 81-142. Dordrecht: Kluwer.
(Available at http://bayes.wustl.edu/gregory/gregory.html)

146
Louis, A.K. (1989) Inverse und schlecht gestellte Probleme. Stuttgart: Teubner.

147
MacKay, D.J.C. (1992) The evidence framework applied to classification networks. Neural Computation 4 (5), 720-736.

148
MacKay, D.J.C. (1992) A practical Bayesian framework for backpropagation networks. Neural Computation 4 (3), 448-472.

149
MacKay, D.J.C. (1994) Hyperparameters: optimise or integrate out? In Heidbreder, G. (ed.) Maximum Entropy and Bayesian Methods, Santa Barbara 1993. Dordrecht: Kluwer.

150
MacKay, D.J.C. (1998) Introduction to Gaussian processes. In Bishop, C., (ed.) Neural Networks and Machine Learning. NATO Asi Series. Series F, Computer and Systems Sciences, Vol. 168.

151
Marquardt, D.W. (1970) Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Regression. Technometrics 12, 591-613.

152
Marquardt, D.W. & Snee R.D. (1975) Ridge Regression in Practice The American Statistician 29, 3-20.

153
Marroquin, J.L., Mitter, S., & Poggio, T. (1987) Probabilistic solution of ill-posed problems in computational vision. J. Am. Stat. Assoc. 82, 76-89.

154
McCullagh, P. & Nelder, J.A. (1989) Generalized Linear Models London: Chapman & Hall.

155
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., & Teller, E. (1953) Equation of state calculations by fast computing machines. Journal of Chemical Physics 21, 1087-1092.

156
Mezard, M., Parisi, G., & Virasoro, M.A. (1987) Spin Glass Theory and Beyond. Singapore: World Scientific.

157
Michalewicz, Z. (1992) Genetic Algorithms + Data Structures = Evolution Programs. Berlin: Springer Verlag.

158
Michie, D., Spiegelhalter, D.J., & Taylor, C.C. (Eds.) (1994) Machine Learning, Neural and Statistical Classification. New York: Ellis Horwood.

159
Minski, M.L. & Papert, S.A. (1990) Perceptrons. (Expanded Edition, Original edition, 1969) Cambridge, MA: MIT Press.

160
Mitchell, M. (1996) An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press.

161
Mitchell, A.R. & Griffiths, D.F. (1980) The Finite Difference Method in Partial Differential Equations. New York: Wiley.

162
Molgedey, L. & Schuster, H.G. (1994) Separation of a mixture of independent signals using time delayed correlations. Phys. Rev. Lett. 72(23), 3634-3637.

163
Montvay, I. & Münster, G. (1994) Quantum Fields on a Lattice. Cambridge: Cambridge University Press.

164
On the Reciprocal of the General Algebraic Matrix. Moore, E.H. (1920) Bull.Amer.Math.Soc. 26, 394-395.

165
Morozov, V.A. (1984) Methods for Solving Incorrectly Posed problems. New York: Springer Verlag.

166
Mosteller, F. & Wallace, D. (1963) Inference in an authorship problem. A comparative study of discrimination methods applied to authorships of the disputed Federalist papers. J. Amer. Statist. Assoc. 58, 275-309.

167
Müller, B. & Reinhardt, J. (1991) Neural Networks. (2nd printing) Berlin, Springer Verlag.

168
Mumford, D. & Shah, J. (1989) Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems. Comm. Pure Applied Math. 42, 577-684.

169
Nadaraya, E.A. (1965) On nonparametric estimates of density functions and regression curves. Theor.Prob.Appl. 10,186-190.

170
Neal, R.M. (1996) Bayesian Learning for Neural Networks. New York: Springer Verlag.

171
Neal, R.M. (1997) Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification. Technical Report No. 9702, Dept. of Statistics, Univ. of Toronto, Canada.

172
Negele, J.W. & Orland, H. (1988) Quantum Many-Particle Systems. Frontiers In Physics Series (Vol. 68), Redwood City, CA: Addison-Wesley.

173
Nitzberg, M. & Shiota T. (1992) Nonlinear Image Filtering With Edge and Corner Enhancement. IEEE Trans. on Pattern Analysis and Machine Intelligence. 14, (8) 862-833.

174
O'Hagen, A. (1994) Kendall's advanced theory of statistics, Vol. 2B: Bayesian inference. London: Edward Arnold.

175
Olshausen, B.A. & Field, D.J. (1995) Natural Image Statistics and Efficient Coding. Workshop on Information Theory and the Brain, Sept. 4-5, 1995, University of Stirling. Proceedings published in Network 7, 333-339.

176
Olshausen, B.A. & Field, D.J. (1996) Emergence of simple-cell receptive field properties by learning a spares code for natural images. Nature 381, 607-609.

177
Opper, M. (1999) Gaussian Processes for Classification: Mean Field Algorithms. Tech Report NCRG/1999/030, Neural Computing Research Group at Aston University, UK.

178
Opper, M. & Kinzel, W. (1996) Statistical Mechanics of Generalization. In Domany, E., van Hemmen, J.L., & Schulten, K. (eds.) Models of Neural Networks III. New York: Springer Verlag.

179
Opper, M., & Winther, O. (1999) Mean field methods for classification with Gaussian processes. In Kearns, M.S., Solla, S.S., & Cohn D.A. (eds.) Advances in Neural Information Processing Systems 11, 309-315, Cambridge, MA: MIT Press.

180
Ó Ruanaidh, J.J.K. & Fitzgerald W.J. (1996) Numerical Bayesian Methods Applied to Signal Processing. New York: Springer Verlag.

181
Parzen, E. (1962) An approach to time series analysis.
Ann.Math.Statist. 32, 951-989.

182
Parzen, E. (1962) On the estimation of a probability function and mode. Ann.Math.Statist. 33(3).

183
Parzen, E. (1963) Probability density functionals and reproducing kernel Hilbert spaces. In Rosenblatt, M.(ed.) Proc. Symposium on Time Series Analysis, 155-169, New York: Wiley.

184
Parzen, E. (1970) Statistical inference on time series by rkhs methods. In Pyke, R.(ed.) Proc. 12th Biennal Seminar, 1-37, Montreal, Canada: Canadian Mathematical Congress.

185
Pearl, J. (1988) Probabilistic Reasoning in Intelligent Systems. San Mateo, CA: Morgan Kauffmann.

186
Penrose, R., (1955) A generalized inverse for matrices. Proc. Cambridge Philos. Soc. 51, 406-413.

187
Penrose, R., (1956) On Best Approximate Solutions of Linear Matrix Equations. Proc. Cambridge Philos. Soc. 52, 17-19.

188
Perona, P. & Malik J. (1990) Scale-Space and Edge Detection Using Anisotropic Diffusion. IEEE Trans. on Pattern Analysis and Machine Intelligence. 12(7), 629-639.

189
Perskin, M.E. & Schroeder, D.V. (1995) An Introduction to Quantum Field Theory. Reading, MA, Addison-Wesley.

190
Pierre, D.A. (1986) Optimization Theory with Applications. New York: Dover. (Original edition Wiley, 1969).

191
Poggio, T. & Girosi, F. (1990) Networks for Approximation and Learning. Proceedings of the IEEE, Vol 78, No. 9.

192
Poggio, T., Torre, V., & Koch, C. (1985) Computational vision and regularization theory. Nature 317, 314-319.

193
Polak, E. (1997) Optimization. New York: Springer Verlag.

194
Pollard, D. (1984) Convergence of Stochastic Processes. New York: Springer Verlag.

195
Pordt, A. (1998) Random Walks in Field Theory In Meyer-Ortmanns, H, Klümper A. (eds.) (1998) Field Theoretical Tools for Polymer and Particle Physics. Berlin: Springer Verlag.

196
Press, W.H., Teukolsky, S.A., Vetterling, W.T., & Flannery, B.P. (1992) Numerical Recipes in C. Cambridge: Cambridge University Press.

197
Ring, P., & Schuck, P. (1980) The Nuclear Many-Body Problem. New York: Springer Verlag.

198
Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical Society series B 39, 172-212.

199
Ripley, B.D. (1987) Stochastic Simulation. New York: Wiley.

200
Ripley, B.D. (1996) Pattern Recognition and Neural Networks. Cambridge: Cambridge University Press.

201
Robert, C.P. (1994) The Bayesian Choice. New York: Springer Verlag.

202
Rodriguez, C.C. (1997) Cross validated Non Parametric Bayesianism by Markov Chain Monte Carlo. arXiv:physics/9712041.

203
Rose, K., Gurewitz, E., & Fox, G.C. (1990) Statistical mechanics and phase transitions in clustering. Phys. Rev. Lett. 65, 945-948.

204
Rothe, H.J. (1992) Lattice Gauge Theories. Singapore: World Scientific.

205
Rumelhart, D.E., McClelland, J.L., and the PDP Research Group (1986) Parallel Distributed Processing, vol.1& 2, Cambridge, MA: MIT Press.

206
Ryder, L.H. (1996) Quantum Field Theory. Cambridge: Cambridge University Press.

207
Schervish, M.J. (1995) Theory of Statistics. New York: Springer Verlag.

208
Schölkopf, B., Burges C., & Smola, A. (1998) Advances in Kernel Methods: Support Vector Machines. Cambridge, MA: MIT Press.

209
Schwefel, H.-P. (1995) Evolution and Optimum Seeking. New York: Wiley.

210
Silverman, B.W. (1984) Spline smoothing: The equivalent variable kernel method. Ann. Statist. 12, 898-916.

211
Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. London: Chapman & Hall.

212
Sivia, D.S. (1996) Data Analysis: A Bayesian Tutorial. Oxford: Oxford University Press.

213
Skilling, J. (1991) On parameter estimation and quantified MaxEnt. In Grandy, W.T. & Schick, L.H. (eds.) Maximum Entropy and Bayesian Methods. Laramie, 1990, 267 -273, Dordrecht: Kluwer.

214
Smola, A.J. & Schölkopf, B., (1998) From regularization operators to support vector kernels. In: Jordan, M.I., Kearns, M.J., & Solla S.A. (Eds.): Advances in Neural Information Processing Systems 10. Cambridge, MA: MIT Press.

215
Smola, A.J., Schölkopf, B., & Müller, K-R. (1998) The connection between regularization operators and support vector kernels. Neural Networks 11, 637-649.

216
Stone, M. (1974) Cross-validation choice and assessment of statistical predictions. Journal of the Royal Statistical Society B 36, 111-147.

217
Stone, M. (1977) An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion. Journal of the Royal Statistical Society B 39, 44.

218
Stone, C.J. (1985) Additive regression and other nonparametric models. Ann. Statist. 13,689-705.

219
Tierney, L. (1994) Markov chains for exploring posterior distributions (with discussion). Annals of Statistics 22, 1701-1762.

220
Tikhonov, A.N. (1963) Solution of incorrectly formulated problems and the regularization method. Soviet Math. Dokl. 4, 1035-1038.

221
Tikhonov, A.N. & Arsenin, V.Y. (1977) Solution of Ill-posed Problems. Washington, DC: W.H.Winston.

222
Uhlig, J. (2000) PhD Thesis, Münster University.

223
Uhlig, J., Lemm, J., & Weiguny, A. (1998) Mean field methods for atomic and nuclear reactions: The link between time-dependent and time-independent approaches. Eur. Phys. A 2, 343-354.

224
Vapnik, V.N. (1982) Estimation of dependencies based on empirical data. New York: Springer Verlag.

225
Vapnik, V.N. (1995) The Nature of Statistical Learning Theory. New York: Springer Verlag.

226
Vapnik, V.N. (1998) Statistical Learning Theory. New York: Wiley.

227
Vico, G. (1858, original 1710) De antiquissima Italorum sapientia Naples: Stamperia de' Classici Latini.

228
Wahba, G. (1990) Spline Models for Observational Data. Philadelphia: SIAM.

229
Wahba, G. (1997) Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV. Technical Report 984, University of Wisconsin.

230
Wahba, G. & Wold, S. 1975) A completely automatic French curve. Commun. Statist. 4, 1-17.

231
Watkin, T.L.H., Rau, A., & Biehl, M. (1993) The statistical mechanics of learning a rule. Rev. Mod. Phys. 65, 499-556.

232
Watzlawick, P. (ed.) (1984) The Invented Reality. New York: Norton.

233
Weinstein, S. (1995) The Quantum Theory of Fields. Vol.1 Cambridge: Cambridge University Press.

234
Weinstein, S. (1996) The Quantum Theory of Fields. Vol.2 Cambridge: Cambridge University Press.

235
West, M. & Harrison, J. (1997) Bayesian Forecasting and Dynamic Models. New York, Springer Verlag.

236
Williams, C.K.I. & Barber, D. (1998) Bayesian Classification With Gaussian Processes IEEE Trans. on Pattern Analysis and Machine Intelligence. 20(12), 1342-1351.

237
Williams, C.K.I. & Rasmussen, C.E. (1996) Gaussian Processes for Regression. in Advances in Neural Information Processing Systems 8, D.S. Touretzky et al (eds.), 515-520, Cambridge, MA: MIT Press.

238
Winkler, G. (1995) Image Analysis, Random Fields and Dynamic Monte Carlo Methods. Berlin: Springer Verlag.

239
Wolpert, D.H. (ed.) (1995) The Mathematics of Generalization. The Proceedings of the SFI/CNLS Workshop on Formal Approaches to Supervised Learning. Santa Fe Institute, Studies in the Sciences of Complexity. Reading, MA: Addison-Wesley.

240
Wolpert, D.H. (1996) The Lack of A Priori Distinctions between Learning Algorithms. Neural Computation 8 (7), 1341-1390.

241
Wolpert, D.H. (1996) The Existence of A Priori Distinctions between Learning Algorithms. Neural Computation 8 (7), 1391-1420.

242
Yakowitz, S.J. & Szidarovsky, F. (1985) A Comparison of Kriging With Nonparametric Regression Methods. J.Multivariate Analysis. 16, 21-53.

243
Yuille, A.L., (1990) Generalized deformable models, statistical physics and matching problems. Neural Computation, 2, (1) 1-24.

244
Yuille, A.L. & Kosowski, J.J. (1994) Statistical Physics Algorithm That Converge. Neural Computation 6 (3), 341-356.

245
Yuille, A.L., Stolorz, P., & Utans, J. (1994) Statistical Physics, Mixtures of Distributions, and EM Algorithm. Neural Computation, 6 (2), 334-340.

246
Zhu, S.C. & Mumford, D. (1997) Prior Learning and Gibbs Reaction-Diffusion. IEEE Trans. on Pattern Analysis and Machine Intelligence 19 (11), 1236-1250.

247
Zhu, S.C. & Yuille, A.L. (1996) Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 18 (9), 884-900.

248
Zhu, S.C., Wu, Y.N., & Mumford, D. (1997) Minimax Entropy principle and Its Application to Texture Modeling. Neural Computation, 9 (8).

249
Zinn-Justin, J. (1989) Quantum Field Theory and Critical Phenomena. Oxford: Oxford Science Publications.

just for the URZ Printer



Joerg_Lemm 2001-01-21