next up previous contents
Next: Example: Approximate periodicity Up: Covariances and invariances Previous: Approximate symmetries   Contents

Example: Infinitesimal translations

A Laplacian smoothness prior, for example, can be related to an approximate symmetry under infinitesimal translations. Considering the group of $d$-dimensional translations which is generated by the gradient operator $\nabla$, this can be verified by recalling the multidimensional Taylor formula for expansion of $\phi $ at $x$

\begin{displaymath}
{\bf S}(\theta) \phi(x)
= e^{ \sum_i \theta_i \nabla_i } \p...
..._i \theta_i \nabla_i\right)^{k}}{k!} \phi(x)
= \phi(x+\theta).
\end{displaymath} (218)

Up to first order ${\bf S} \approx 1+\sum_i\theta_i \Delta_i$. Hence, for infinitesimal translations, the error measure of Eq. (213) becomes
\begin{displaymath}
\frac{1}{2}\sum_i \left(\frac{\phi -
(1 + \theta_i {\nabla...
..._i^T \nabla_i \phi )
\!=\!-\frac{1}{2}(\phi,\, \Delta \phi )
,
\end{displaymath} (219)

assuming vanishing boundary terms and choosing ${\bf K}_S$ = ${\bf I}$. This is the classical Laplacian smoothness term.



Joerg_Lemm 2001-01-21