Examples

Solve Eq. (2.18) on the interval $ [-L,\,L]$ using the following parameters:
Space interval $ L$ =20
Space discretization step $ \triangle x=0.1$
Time discretization step $ \triangle t=0.05$
Amount of time steps $ T=1800$
Velocity of the kink $ c=0.2$
Initial conditions are
a)
Kink solution:
$\displaystyle f(x)$ $\displaystyle =$ $\displaystyle 4\arctan\biggl(\exp\bigl(\frac{x}{\sqrt{1-c^2}}\bigr)\biggr),$  
$\displaystyle g(x)$ $\displaystyle =$ $\displaystyle -2\frac{c}{\sqrt{1-c^2}}$sech$\displaystyle (\frac{x}{\sqrt{1-c^2}}).$  

Figure 2.11: Space-time plot of the kink, moving with the velocity $ c=0.2$
\begin{figure}\centering
\epsfig{file=kink_trace.eps, width=8cm}
\end{figure}
b)
Antikink solution:
$\displaystyle f(x)$ $\displaystyle =$ $\displaystyle 4\arctan\biggl(\exp\bigl(-\frac{x}{\sqrt{1-c^2}}\bigr)\biggr),$  
$\displaystyle g(x)$ $\displaystyle =$ $\displaystyle -2\frac{c}{\sqrt{1-c^2}}$sech$\displaystyle (\frac{x}{\sqrt{1-c^2}}).$  

Figure 2.12: Space-time plot of the antikink, moving with the velocity $ c=0.2$
\begin{figure}\centering
\epsfig{file=antikink_trace.eps, width=8cm}
\end{figure}
c)
Kink-kink colision:
$\displaystyle f(x)$ $\displaystyle =$ $\displaystyle 4\arctan\biggl(\exp\bigl(\frac{x+L/2}{\sqrt{1-c^2}}\bigr)\biggr)+4\arctan\biggl(\exp\bigl(\frac{x-L/2}{\sqrt{1-c^2}}\bigr)\biggr),$  
$\displaystyle g(x)$ $\displaystyle =$ $\displaystyle -2\frac{c}{\sqrt{1-c^2}}$sech$\displaystyle (\frac{x+L/2}{\sqrt{1-c^2}})+2\frac{c}{\sqrt{1-c^2}}$sech$\displaystyle (\frac{x-L/2}{\sqrt{1-c^2}}).$  

Figure 2.13: Space-time representation of kink-kink collision
\begin{figure}\centering
\epsfig{file=kink_kink_trace.eps, width=8cm}
\end{figure}
d)
Kink-antikink colision:
$\displaystyle f(x)$ $\displaystyle =$ $\displaystyle 4\arctan\biggl(\exp\bigl(\frac{x+L/2}{\sqrt{1-c^2}}\bigr)\biggr)+4\arctan\biggl(\exp\bigl(-\frac{x-L/2}{\sqrt{1-c^2}}\bigr)\biggr),$  
$\displaystyle g(x)$ $\displaystyle =$ $\displaystyle -2\frac{c}{\sqrt{1-c^2}}$sech$\displaystyle (\frac{x+L/2}{\sqrt{1-c^2}})-2\frac{c}{\sqrt{1-c^2}}$sech$\displaystyle (\frac{x-L/2}{\sqrt{1-c^2}}).$  

Figure 2.14: Space-time representation of kink-antikink collision
\begin{figure}\centering
\epsfig{file=kink_antikink_trace.eps, width=8cm}
\end{figure}
e)
Breather solution:
$\displaystyle f(x)$ $\displaystyle =$ $\displaystyle 0,$  
$\displaystyle g(x)$ $\displaystyle =$ $\displaystyle 4\sqrt{1-c^2}$sech$\displaystyle (x\sqrt{1-c^2})$  

Figure 2.15: The breather solution, oscillating with the frequency $ \omega =0.2$
\begin{figure}\centering
\epsfig{file=breather_trace.eps, width=8cm}
\end{figure}

Gurevich_Svetlana 2008-11-12