Example 2.

Solve Eq. (2.17) with the same boundary conditions. Assume now, that initial distributions of position and velocity are

$\displaystyle u(x,0)=f(x)=0$   and$\displaystyle \quad u_t(x,0)=g(x)=\begin{cases}
0,\quad x\in[0,\, x_1];\\
g_0,\quad x\in[x_1,\,x_2];\\
0,\quad x\in[x_2,\,L].
\end{cases}$

Other parameters are:
Initial nonzero velocity $ g_0$ =0.5
Initial space intervals $ x_1=L/4$ , $ x_2=3L/4$
Space interval $ L$ =10
Space discretization step $ \triangle x=0.1$
Time discretization step $ \triangle t=0.05$
Amount of time steps $ T=400$
Numerical solution of the problem is shown on Fig. (2.1.3).
Figure 2.5: Space-time evolution of the initial distribution $ u(x,0)=0$ , $ u_t(x,0)=g(x)$ .
\begin{figure}\centering
\epsfig{file=wave_example2.eps, width=8cm}
\end{figure}



Gurevich_Svetlana 2008-11-12