Solution of the initial value problem

Consider now an initial value problem for Eq. (2.2):
$\displaystyle u_{tt}$ $\displaystyle =$ $\displaystyle c^2u_{xx}, \quad t\geq 0$  
$\displaystyle u(x,0)$ $\displaystyle =$ $\displaystyle f(x),$ (2.7)
$\displaystyle u_t(x,0)$ $\displaystyle =$ $\displaystyle g(x).$  

To write down the general solution of the initial value problem for (2.2) one needs to exspress the arbitrary function $ F$ and $ G$ in terms of initial data $ f$ and $ g$ . Using the relation

$\displaystyle \frac{\partial}{\partial t} F(x-ct)=-cF'(x-ct),$   where$\displaystyle \quad F'(x-ct):=\frac{\partial}{\partial \xi} F(\xi)
$

one becomes:
$\displaystyle u(x,0)$ $\displaystyle =$ $\displaystyle F(x)+G(x)=f(x);$  
$\displaystyle u_t(x,0)$ $\displaystyle =$ $\displaystyle c(-F'(x)+G'(x))=g(x).$  

After differentiation of the first equation with respect to $ x$ one can solve the system in terms of $ F'(x)$ and $ G'(x)$ , i.e.,

$\displaystyle F'(x)=\frac{1}{2} \bigl(f'(x)-\frac{1}{c}g(x)\bigr),\qquad G'(x)=\frac{1}{2} \bigl(f'(x)+\frac{1}{c}g(x)\bigr).
$

Hence

$\displaystyle F(x)=\frac{1}{2}f(x)-\frac{1}{2c}\int_0^x g(y)dy+C,\quad G(x)=\frac{1}{2}f(x)+\frac{1}{2c}\int_0^x g(y)dy-C,
$

where the integration constant $ C$ is chosen in such a way that the initial condition $ F(x)+G(x)=f(x)$ is fullfield. Alltogether one obtains:

$\displaystyle \boxed{ u(x,t)=\frac{1}{2}\bigl(f(x-ct)+f(x+ct)\bigr)+\frac{1}{2c}\int_{x-ct}^{x+ct} g(y)dy}$ (2.8)

Gurevich_Svetlana 2008-11-12