Next: Die Temperatur der Up: Impuls-Null-Potentiale Previous: Störungstheoretische Berechnung

MC-Simulationen zum Impuls-Null-Potential

Erster Schritt für die Berechnung eines Impuls-Null-Potentials mittels einer MC-Simulation wird sein, sich auf eine endliche Anzahl von Kopplungen zu beschränken. Schon die Störungstheorie hat gezeigt, daß die Kopplungskonstanten hin zu höheren Moden schnell kleiner werden. Deshalb soll das Impuls-Null-Potential aus Gleichung () durch die ersten Fugazitäten approximiert werden,

Kennt man die Ableitung

an den Stellen mit , so kann man nach den Sätzen über endliche Fourierreihen die Fugazitäten durch

berechnen. Die Ableitungen des Impuls-Null-Potentials können durch die Messung der -Kerne ermittelt werden, denn

Setzt man , so folgt daraus,

Der -Kern erster Ordnung läßt sich für die Verwendung von Delta-Blockspins nach Gleichung als Erwartungswert

schreiben. Diese Erwartungswerte der Form

können mit Hilfe des Metropolis-Algorithmus aus [PIN92] bestimmt werden. Für GAUSS-Blockspins gibt es nun zwei mögliche Erwartungswerte der Form (), einmal analog zu Gleichung ()

oder nach Gleichung ()

Bei MC-Simulationen zur Berechnung dieser beiden Erwartungswerte mit dem Wärmebad-Algorithmus hat sich gezeigt, daß bei gleicher Rechenzeit die Fehlerbereiche des -Kerns mit der Observable in () ungefähr um den Faktor zwei kleiner waren als nach (). Aus diesem Grund wurden die effektiven Fugazitäten im folgenden mit Hilfe der Gleichung () ermittelt.
Als erstes wurde das effektive Potential, approximiert durch die ersten beiden Fugazitäten , auf einem Gitter der Größe gemessen. Der RG-Schritt ergab sich als GAUSS-Blockspin-Transformation mit bei . Da für die effektive Hamiltonfunktion zu diesem Zeitpunkt noch keine geeignete Parametrisierung existierte, wurden anstelle der iterativen Schritte mit Blocklänge ein Schritt mit Blocklänge bei einem modifizierten Parameter

ausgeführt. Die Starttheorie war eine Hamiltonfunktion der Gestalt () mit den Fugazitäten und einer Bilinearform , die der lokalen Version der Fixpunktwechselwirkung einer freien, masselosen Theorie für diese RG-Transformation entspricht , d. h.

Ab der Blocklänge tritt spürbar der Effekt des ``critical slowing down'' auf, für den lokale Updater, wie der benutzte Wärmebad-Algorithmus, besonders anfällig sind. Aus diesen Gründen wurden keine Simulationen mit Blöcken größer als durchgeführt.

In Tabelle sind die effektiven Fugazitäten für die Blocklängen eingetragen. Die ``Kleinerzeichen'' drücken aus, daß der Fehler größer als der Betrag der Meßgröße war. Die Zahl gibt dann eine Abschätzung für den Betrag an. Die effektiven Fugazitäten für Temperaturen treiben mit dem RG-Fluß schnell gegen Null, während die Fugazität für die Temperatur zwar erst abfällt, um dann aber wieder anzusteigen. Begibt man sich mit in die Nähe der vermuteten kritischen Linie, so wird die Änderung der Fugazitäten pro RG-Schritt klein. Das Verhalten der effektiven Fugazitäten der Impuls-Null-Potentiale entspricht damit bei den untersuchten Temperaturen qualitativ der im Kapitel 1 geschilderten Fugazität des Kosterlitz-Thouless-Szenarios.
Vergleicht man die MC-Werte mit den Ergebnissen der Störungstheorie in Tabelle , so zeigt sich eine gute Übereinstimmung der effektiven Fugazitäten. Man beachte, daß für die Fugazität ab einer Blockgröße von wieder ansteigt; im KT-Bild würde man dementsprechend den Punkt der gebrochenen Phase zuordnen.


Mit Hilfe von MC-Simulationen kann man ebenfalls die Größenordnung der effektiven Fugazitäten zu höheren Moden abschätzen. Dazu wurde für die Temperaturen und die Ableitung des Impuls-Null-Potentials an den neun Stellen gemessen. Um den Verlauf des Potentials zu berechnen, wurden die Ableitungen zwischen den Meßwerten durch kubische Splines interpoliert, die anschließend über integriert werden konnten. Dabei ist die Integrationskonstante so gewählt worden, daß ist. Um die Fehlertoleranzen zu bestimmen, wurden die Meßwerte in 100 Gruppen unterteilt. Das Potential ist dann für jede Gruppe berechnet worden; die in den Abbildungen eingetragenen Punkte bzw. Fehler ergaben sich als Mittelwert bzw. Standardabweichung der so berechneten Potentiale an den Stützstellen. Zusätzlich wurden noch die Symmetrien

ausgenutzt.
Wie Abbildung zeigt, ist bei für große Skalenänderungen das effektive Potential nicht mehr durch die niedrigste Mode darstellbar, weicht also signifikant von der Form einer reinen Cosinus-Funktion ab. Hingegen ist es nach Abbildung bei ausreichend, das effektive Potential durch die niedrigste Mode anzunähern, bis schließlich für der Verlauf durch das Rauschen verwischt wird. Dieses wird bestätigt, wenn man jeweils die Fugazitäten anhand der gemessenen Ableitungen der Potentiale berechnet (vergl. Anhang B Tabellen bzw. ).



Next: Die Temperatur der Up: Impuls-Null-Potentiale Previous: Störungstheoretische Berechnung


spander@
Dienstag, 6. September 1994, 17:45:39 Uhr MES