next up previous
Next: The Dirichlet - to Up: A constructive solution to Previous: Introduction

The NSU method

An essential ingredient of the Nachmann - Sylvester - Uhlmann method is a certain - non-physical - solution tex2html_wrap_inline247 of (1) depending on the parameter tex2html_wrap_inline249 .

Proposition 1: Let tex2html_wrap_inline251 , tex2html_wrap_inline253 and tex2html_wrap_inline255 . Then there is a unique solution tex2html_wrap_inline247 of (1) such that

displaymath259

where tex2html_wrap_inline261 and

displaymath263

Proof: With tex2html_wrap_inline265 , (1) assumes the form

displaymath267

In [2] it is shown that for a sufficiently large and tex2html_wrap_inline269 there is a constant tex2html_wrap_inline271 such that for tex2html_wrap_inline253 and tex2html_wrap_inline275

displaymath277

has a unique solution for each tex2html_wrap_inline279 , and

  equation61

It follows that tex2html_wrap_inline281 satisfies

displaymath283

For tex2html_wrap_inline285 the estimate on tex2html_wrap_inline281 follows. tex2html_wrap_inline289

The NSU method starts out from Green`s formula

eqnarray83

With tex2html_wrap_inline291 , this reads

displaymath293

where

displaymath295

Making use of Proposition 1 we get

displaymath297

As an immediate consequence we obtain

  theorem102

We are left with the problem of determining t.



Frank Wuebbeling
Mon Oct 12 08:09:00 MET DST 1998