Programmierpraktikum NPDGL I
Öffentliche Attribute

ODESolver::StorageParams Klassenreferenz

Parameter class for DestinationOutput. Mehr ...

#include <odesolver.hh>

Aufstellung aller Elemente

Öffentliche Attribute

int storeSteps
 Defines how frequently time steps are skipped for addition the set \( {\cal S}_s \) (Default: -3)
double storeInterval
 Defines how often time instances are skipped for addition to the set \( {\cal S}_s \) (Default: -3.0)
int outputSteps
 Defines how frequently time steps are skipped for addition the set \( {\cal S}_o \) (Default: -2)
double outputInterval
 Defines how often time instances are skipped for addition to the set \( {\cal S}_o \) (Default: -2.0)

Ausführliche Beschreibung

Parameter class for DestinationOutput.

An object of this class defines the sets \( {\cal S}_{o/s} \) as explained in the class description of DestinationOutput.


Dokumentation der Datenelemente

Defines how often time instances are skipped for addition to the set \( {\cal S}_o \) (Default: -2.0)

  • If positive, \({\cal S}_{o,2}\) is chosen such that the difference between two subsequent time instances \( t^{k-1} \) and \( t^{k} \) is at least of size outputInterval and minimal under this constraint.
  • If -1, \({\cal S}_{o,2} = \{ 0, K \}\).
  • If -2, \({\cal S}_{o,2} = \{ K \} \).
  • If -3, \({\cal S}_{o,2} = \{ \} \).

The final set is given by \({\cal S}_o = {\cal S}_{o,1} \cup {\cal S}_{o,2}\) with \({\cal S}_{o,1}\) defined by outputSteps.

Defines how frequently time steps are skipped for addition the set \( {\cal S}_o \) (Default: -2)

  • If positive, \({\cal S}_{o,1} = \{ 0, \mbox{outputSteps}, 2\cdot\mbox{outputSteps}, \ldots, K \}\).
  • If -1, \({\cal S}_{o,1} = \{ 0, K \}\).
  • If -2, \({\cal S}_{o,1} = \{ K \} \).
  • If -3, \({\cal S}_{o,1} = \{ \} \).

The final set is given by \({\cal S}_o = {\cal S}_{o,1} \cup {\cal S}_{o,2}\) with \({\cal S}_{o,2}\) defined by outputInterval.

Defines how often time instances are skipped for addition to the set \( {\cal S}_s \) (Default: -3.0)

  • If positive, \({\cal S}_{s,2}\) is chosen such that the difference between two subsequent time instances \( t^{k-1} \) and \( t^{k} \) is at least of size storeInterval and minimal under this constraint.
  • If -1, \({\cal S}_{s,2} = \{ 0, K \}\).
  • If -2, \({\cal S}_{s,2} = \{ K \} \).
  • If -3, \({\cal S}_{s,2} = \{ \} \).

The final set is given by \({\cal S}_s = {\cal S}_{s,1} \cup {\cal S}_{s,2}\) with \({\cal S}_{s,1}\) defined by storeSteps.

Defines how frequently time steps are skipped for addition the set \( {\cal S}_s \) (Default: -3)

  • If positive, \({\cal S}_{s,1} = \{ 0, \mbox{storeSteps}, 2\cdot\mbox{storeSteps}, \ldots, K \}\).
  • If -1, \({\cal S}_{s,1} = \{ 0, K \}\).
  • If -2, \({\cal S}_{s,1} = \{ K \} \).
  • If -3, \({\cal S}_{s,1} = \{ \} \).

The final set is given by \({\cal S}_s = {\cal S}_{s,1} \cup {\cal S}_{s,2}\) with \({\cal S}_{s,2}\) defined by storeInterval.


Die Dokumentation für diese Klasse wurde erzeugt aufgrund der Datei: