rbmatlab 0.10.01
|
descr = thermalblock_model; dmodel = gen_detailed_model(descr); model_data = gen_model_data(dmodel); sim_data = dmodel.detailed_simulation(model_data); plot_sim_data(dmodel, model_data, sim_data); rmodel = gen_reduced_model(dmodel); detailed_data = gen_detailed_data(rmodel, model_data); reduced_data = gen_reduced_data(rmodel, detailed_data); rb_sim_data = rb_simulation(rmodel, reduced_data); rb_sim_data = rb_reconstruction(rmodel, detailed_data, rb_sim_data); plot_sim_data(rmodel, model_data, rb_sim_data);
params.model_size = 'small'; descr = newton_oo_model(params); descr.verbose = 10; dmodel = gen_detailed_model(descr); sg = SnapshotsGenerator.Trajectories(dmodel, 'rb'); model_data = gen_model_data(dmodel); U = sg.generate(dmodel, model_data); U = sg.generate(dmodel, model_data); descr.xnumintervals = 80; dmodel = gen_detailed_model(descr); sg = SnapshotsGenerator.Trajectories(dmodel, 'rb'); model_data = gen_model_data(dmodel); U = sg.generate(dmodel, model_data); op_gen = SnapshotsGenerator.SpaceOpEvals(dmodel, 'implicit', sg, descr.L_I_local_ptr); LU = op_gen.generate(dmodel, model_data);
descr = minimal_ei_model bg_descr.rb_problem_type = 'Test'; bg_descr.detailed_data_constructor = @Test.DetailedData; bg_descr.reduced_data_constructor = @Test.ReducedData; dmodel = Test.DetailedModel(descr); M_train = ParameterSampling.Random(5); rb_generator = SnapshotsGenerator.Random(dmodel); ei_gen1 = SnapshotsGenerator.SpaceOpEvals(dmodel, 'implicit', rb_generator, descr.L_I_local_ptr); ei_plugin = Greedy.Plugin.EI(ei_gen1); ei_plugin.stop_Mmax = 200; ei_greedy = Greedy.Algorithm(ei_plugin, M_train); bg_descr.bg_algorithm = ei_greedy; rmodel = Test.ReducedModel(dmodel, bg_descr); model_data = gen_model_data(dmodel); detailed_data = gen_detailed_data(rmodel, model_data); ei_gen2 = SnapshotsGenerator.SpaceOpEvals(dmodel, 'explicit', rb_generator, descr.L_I_local_ptr); ei_gen_sum = ei_gen1 + ei_gen2; ei_plugin_sum = Greedy.Plugin.EI(ei_gen_sum); ei_plugin_sum.stop_Mmax = 200; ei_greedy_sum = Greedy.Algorithm(ei_plugin_sum, M_train); bg_descr.bg_algorithm = ei_greedy_sum; rmodel2 = Test.ReducedModel(dmodel, bg_descr); detailed_data2 = gen_detailed_data(rmodel2, model_data);