|
Heike Harenbrock

Mittagsseminar zur Arithmetik: Siqi Yang (Münster): On the geometric Serre weight conjecture for Hilbert modular forms

Tuesday, 27.01.2026 10:15 im Raum SRZ 216/217

Mathematik und Informatik

Let $\rho: G_\Q \rightarrow \GL_2(\Fpbar)$ be a continuous, odd, irreducible representation. The weight part of Serre's conjecture predicts the minimal weight k ($\geq 2$) such that $\rho$ arises from a modular eigenform of weight $k$ and level prime to $p$. It is refined by Edixhoven to include the weight one forms by viewing mod $p$ modular forms as sections of certain line bundles on the special fibre of a modular curve. An important generalisation of the weight part of Serre's conjecture is formulated by Buzzard, Diamond and Jarvis by considering a totally real field F and Hilbert modular forms. Later, a geometric Serre weight conjecture is formulated by Diamond and Sasaki in the spirit of Edixhoven's refinement. I will discuss the relation between the geometric Serre weight conjecture and the Buzzard-Diamond-Jarvis conjecture.



Angelegt am 26.01.2026 von Heike Harenbrock
Geändert am 26.01.2026 von Heike Harenbrock
[Edit | Vorlage]

Oberseminare und sonstige Vorträge
Sonstige Vorträge
Vorträge des SFB 1442