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1 Vorbemerkungen

Der Physiologe Emil du Bois—Reymond hielt 1872 auf der 45. Jahresversamm-
lung der Gesellschaft Deutscher Naturforscher und Arzte eine Rede mit dem Titel
"Uber die Grenzen des Naturerkennens”, in der er die These vertrat, dass der
Erkenntnisfihigkeit der Wissenschaften prinzipielle Grenzen gesetzt sind. Zitat:
Gegeniiber den Rdithseln der Korperwelt ist der Naturforscher ldngst gewohnt,
mit mdnnlicher Entsagung sein “Ignoramus” auszusprechen. Im Riickblick auf
die durchlaufene siegreiche Bahn trdgt ihn dabei das stille Bewusstsein, dass, wo
er jetzt nicht weiss, er wenigstens unter Umstdnden wissen konnte, und dereinst
vielleicht wissen wird. Gegeniiber dem Rdithsel aber, was Materie und Kraft seien,
und wie sie zu denken vermogen, muss er ein fiir allemal zu dem viel schwerer
abzugebenden Wahrspruch sich entschliessen: “Ignorabimus”

Hier stellt du Bois—Reymond dem eher positiv konnotierten “ignoramus’ (wir
wissen [noch] nicht) das “ignorabimus” gegeniiber, dass ich hier iiberspitzt mit
“wir werden [niemals] wissen” iibersetzen mochte. Damit startete der Begriff des
Ignorabimus seine Karriere in der Welt der Diskussionen unter Gelehrten. Mit
langer Wirkung.

David Hilbert, einer der einflussreichsten, wenn nicht gar der einflussreichste
Mathematiker des 20. Jahrhunderts, stellt fast dreilig Jahre spiter seinen berithmt
gewordenen 23 ungeldsten mathematischen Problemen, die er 1900 auf dem inter-
nationalen Mathematikerkongress in Paris vorstellte, folgende Worte voran: “Die
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Uberzeugung von der Losbarkeit eines jeden mathematischen Problems ist uns ein
krdftiger Ansporn wdhrend der Arbeit; wir horen in uns den steten Zuruf: Da ist
ein Problem, suche die Losung. Du kannst sie durch reines Denken finden; denn
in der Mathematik gibt es kein ignorabimus.”

Wieder dreilig Jahre spiter, in einem Vortrag gehalten 1930 in Konigsberg
und als Radiosendung aufgezeichnet, greift er dieses Thema wieder auf und endet
mit dem Satz “Wir miissen wissen, wir werden wissen”. Dieser Satz, der auch auf
seinem Grabstein steht, wirkt bis heute, wie ich jlingst auf einer Tagung erfahren
habe. Es ist ja heute modern geworden, sich Tatoos stechen zu lassen. Ein Kollege
erzihlte mir dort, dass einer der jlingeren Mitarbeiter auf seinem linken Arm den
Spruch “Wir miissen wissen” eintdtowiert hat. Sie diirfen raten, was auf seinem
rechten Arm steht.

Bevor wir uns der Frage zuwenden konnen, ob vielleicht in der Mathematik
das Ignorabimus doch gelten konnte, miissen wir kldren was Wissen in der Mathe-
matik iiberhaupt bedeutet. Natiirlich glauben wir alle zu wissen, dass “Eins plus
Eins gleich Zwei” sei. Aber wissen wir das wirklich? Wenn Sie dies gegeniiber ei-
nem mathematischen Erstsemester behaupten, kann es Ihnen durchaus passieren,
dass Sie naseweis (das “naseweis” sein legt sich in hoheren Semestern) dariiber
belehrt werden, dass Eins plus Eins genausogut Null sein kann. Und sie oder er
hat damit gar nicht einmal Unrecht. Warum glauben wir aber dennoch zu wis-
sen, dass “Eins plus Eins gleich Zwei” ist? Aus Erfahrung? Doch Erfahrung ist
dem Selbstverstiandnis der Mathematik nach keine zuldssige Erkenntnismethode.
Mathematiker wissen erst dann, dass 1 + 1 = 2 ist, wenn sie das auch bewei-
sen konnen. Mathematik ist eine “beweisende Disziplin”, wie es die Soziologin
Bettina Heintz im Untertitel ihrer Habilschrift “Das Innenleben der Mathematik™
festhilt. Das “Wissen” der Mathematik besteht also in ihren bewiesenen Sitzen.

Wann aber ist ein Satz bewiesen? Offenbar erst dann, wenn wir thn aus schon
bewiesenen Sitzen logisch folgern kénnen (wobei ich in diesem Vortrag darauf
verzichte(n muss), den Begriff der logischen Folgerung genauer zu fassen, was
aber mathematisch exakt moglich ist). Das darf aber keinen “regressus ad infini-
tum” bedeuten. Irgendwann kommen wir zu Sétzen, die sich nicht mehr beweisen
lassen, sondern als giiltig angenommen werden miissen. Diese Sitze sind unsere
Axiome.

Wann aber kann man einen Satz als Axiom akzeptieren? Das hingt von der
mathematischen Theorie ab, die wir betrachten. Es ist jedoch schwierig abstrakt
zu beschreiben, was ein Wissensgebiet zu einer mathematischen Theorie macht.
Wir erkennen zwar immer, wann ein Wissensgebiet der Mathematik zuzurechnen



ist, dies allgemein zu definieren ist jedoch, wie gesagt, unglaublich schwierig. Ich
glaube aber, nicht zu sehr zu liigen, wenn ich behaupte, dass sich Mathematik in
erster Linie mit der Untersuchung abstrakter Strukturen beschéftigt.

Um nicht ins Ungefédhre abzugleiten, mochte ich die Axiomenfindung am Bei-
spiel der elementaren aber grundlegenden Struktur der natiirlichen Zahlen erldutern.

2 Die Struktur der natiirlichen Zahlen

Wir alle kennen die natiirlichen Zahlen. Sie entstehen beim Prozess des Zihlens.
Die natiirlichen Zahlen bilden den Tréager der Struktur der natiirlichen Zahlen. Ne-
ben der Identititsrelation auf den natiirlichen Zahlen haben wir gewisse Operatio-
nen, die wir mit natiirlichen Zahlen vornehmen konnen. Wir konnen sie addieren
und multiplizieren. (Alle anderen Grundrechenarten lassen sich aus diesen beiden
ableiten.)

Unser Ziel ist es nun, die Struktur der natiirlichen Zahlen durch Axiome zu
beschreiben zu versuchen.

Um die Menge der natiirlichen Zahlen zu beschreiben, also Namen fiir natiir-
liche Zahlen einzufiihren, bedienen wir uns der “Bierdeckelmethode”. Wir begin-
nen mit dem leeren Deckel, als Namen fiir die 0, und fiigen bei jedem weiteren Ge-
trank einfach einen Strich hinzu und erhalten so einen neuen Deckel. Wir nennen
den Deckel, bei dem ein Strich hinzugefiigt wurde, den Nachfolger des vorherge-
henden Deckels. So erhalten wir eine Folge von Deckeln 0, 0/, 0”, ... als Namen
fiir natiirliche Zahlen (im “wirklichen alltéiglichen Leben” benutzen wir die Dezi-
malschreibweise als Namen fiir natiirliche Zahlen, was wesentlich 6konomischer
ist. Hier aber geht es um das Prinzip, was in weniger 6konomischer Schreibweise
oft besser zu erkennen ist). Damit erhalten wir unsere ersten Axiome.

Ontologische Axiome

(A1) Jede natiirliche Zahl ist entweder O (der leere Deckel) oder Nachfolger einer
natiirlichen Zahl (des vorhergehenden Deckel).

(A2) Jede natiirliche Zahl hat genau einen Nachfolger.

Nun miissen wir noch die Operationen beschreiben, die wir auf den natiirliche
Zahlen ausfiihren konnen. Dazu wollen wir ruhig schon die mathematischen Sym-
bole + fiir Addition und - fiir die Multiplikation verwenden. Wir haben also zu
beschreiben, was diese Operationen machen.



Axiome der Addition
(A3) a+0=aund
(A4) a+n' = (a+n)
Axiome der Multiplikation
(A5) a-0=0und
(A6) a-n'=(a-n)+a

Diese Axiome reichen bereits aus, unseren naseweisen Studenten zu widerlegen
und zu zeigen, dass in der Struktur der natiirlichen Zahlen 1 + 1 = 2 gilt. Wir
rechnen einfach
1+1=0+0% 0 +0y 20 =2

Ein wichtiges Axiom fehlt aber noch. Wie konnen wir nachweisen, dass eine Ei-
genschaft allen natiirlichen Zahlen zukommt? Das wird sicher der Fall sein, wenn
diese Eigenschaft auf die O zutrifft und sich stets auf den Nachfolger vererbt. Die-
se Tatsache ldsst sich im Prinzip der vollstindigen Induktion formulieren.

Axiom der Vollstiandige Induktion

(A7) Sei E(n) eine Eigenschaft, die der natiirlichen Zahl n zukommen kann. Trifft
E auf die 0 zu, d.h. gilt E(0) und vererbt sich die Eigenschaft E von jeder
Zahl n auch auf ihren Nachfolger n/, so haben alle natiirlichen Zahlen die
Eigenschaft E.

Etwas formaler ausgedriickt lautet dies

Gilt E(0) und folgt aus der Annahme, dass E(n) gilt, dass dann auch E(n’)
gilt, so gilt E(z) fiir alle natiirlichen Zahlen z.

So sieht also ein Axiomensystem fiir die Struktur der natiirlichen Zahlen aus. Auf
diesen Axiomen kann man die gesamte elementare Zahlentheorie aufbauen, deren
Lehrbiicher ganze Buchregale fiillen.

Hier ein einfaches Beispiel fiir ein mathematisches Theorem.



1 Satz Addiert man zur Summe zweier natiirlicher Zahlen eine Dritte hinzu, so
erhdlt man das gleiche Ergebnis als wiirde man die erste Zahl zur Summe der
beiden anderen hinzuzdhlen.

Formal ausgedriickt heifst das
(a+b)+c=a+(b+c)

Beweis Sei E(c) die Eigenschaft (a + b) + ¢ = a + (b + ¢). Dann gilt
(43) (43)

(a+b)+0 (a+ D) a+ (b+0), also E(0).
Nun nehmen wir E(c) an, also (a + b) + ¢ = a + (b + ¢). Wir testen E(¢’).

A4 E(c A4 A4
(a+8)+¢ ' (@ +0)+0) T (@t b+0) T (@t b+0) Far b+
also gilt E(c") und mit vollstindiger Induktion erhalten wir den Satz. U

3 Hilberts Programm

Wir wollen nun an Hand der Hilbertschen Liste mathematischer Probleme testen,
in wie weit das “kein ignorabimus” auf die Mathematik zutrifft. Da erweisen sich
bereits die ersten beiden von Hilbert angefiihrten offenen Probleme als kritisch.
Die beiden ersten in Hilberts Liste aufgefiihrten Probleme waren:

1. Cantors Problem von der Michtigkeit des Kontinuums.
2. Die Widerspruchslosigkeit der arithmetischen Axiome.

Das erste Problem will ich noch zuriickstellen. Dazu benétigen wir einen noch
etwas groBeren Begiffsapparat. Vielleicht finde ich am Ende noch die Zeit, etwas
darauf eingehen zu konnen.

Mit dem zweiten Problem konnen wir aber schon etwas anfangen, da wir ein
Axiomensystem der Arithmetik bereits kennengelernt haben.

3.1 Definition Ein Axiomensystem heilit widerspruchsfrei wenn es nicht gleich-
zeitig einen Satz und dessen Negation beweist.

N.B.: Aus logischen Griinden geniigt es zum Nachweis der Widerspruchslosig-
keit schon zu zeigen, dass es einen Satz gibt, der sich nicht aus den Axiomen
beweisen ldsst.



Das “kein ignorabimus” in Hilberts Konigsberger Rede war vielleicht schon
nicht mehr von der gleichen Gewissheit getragen, auf die es sich noch in der
Prdambel seiner Pariser Rede stiitzen konnte. Die feste Zuversicht “Du kannst
sie durch reines Denken finden” der Pariser Rede ist nun durch die Forderung
“Wir miissen wissen” ersetzt. Die Grundlagen der Mathematik waren ndmlich
ins Gerede gekommen. Erste Zweifel an der Tragfahigkeit der mathematischen
Grundlagen traten im Zusammenhang mit der Cantorschen Mengenlehre auf, ins-
besondere mit der Entdeckung der Russellschen Antinomie.

Die Russellsche Antinomie

Sei R die Menge der Mengen, die sich nicht selbst als Element enthalten.
Also R = {s|s ¢ s}. Dann erhalten wir den Widerspruch dass R € R
genau dann gilt, wenn R ¢ R gilt.

Sie wuchsen sich zur sogenannten Grundlagenkrise aus, als Hermann Weyl in
seiner Schrift “Uber die neue Grundlagenkrise der Mathematik™ (1921) darauf
hinwies, dass die Methoden, die sich in der Cantorschen Mengenlehre als proble-
matisch erwiesen hatten, auch im Bereich der als etabliert geltenden Analysis zur
Anwendung kommen. Um die Mathematik in ihrem vollen Besitzstand wieder-
herzustellen,' entwarf Hilbert ein Programm, das heute unter dem Titel “Hilbert-
sches Programm” firmiert. Grob zusammengefasst lidsst sich Hilberts Programm
auf zwei Schritte reduzieren:

e Formalisiere die gesamte Mathematik!

e Beweise mit finiten Mitteln, dass in dieser formalisierten Mathematik keine
Widerspriiche abgeleitet werden konnen!

Insbesondere auf Grund des ersten Schrittes des Hilbertschen Programmes wird
Hilbert oft als “Formalist” bezeichnet. Ich halte das fiir falsch. Hilbert war sicher-
lich kein Formalist, wie seine reichhaltigen Beitrige zur Entwicklung der moder-
nen Mathematik beweisen. Es war lediglich Hilberts Anliegen, die Mathematik
in ihrem vollen Besitzstand zu erhalten und eine Formalisierung der Mathematik
schien ihm dazu ein geeignetes Mittel zu sein.

! Aus Hilbert: “Neubegriindung der Mathematik” (1922) “/... ]; ich méchte der Mathematik
den alten Ruf der unanfechtbaren Wahrheit, die ihr durch die Paradoxien der Mengenlehre ver-
loren zu gehen scheint, wiederherstellen; aber ich glaube, daf3 dies bei voller Erhaltung ihres
Besitzstandes moglich ist.”



4 Die Godelschen Satze

Ironischerweise hat ein junger Osterreichischer Logiker, Kurt Godel, auf der glei-
chen Tagung in Konigsberg, einen Tag vor (oder nach ?) Hilberts spéter im Ra-
dio gesendeter Rede die Bemerkung gemacht, dass er Aussagen gefunden hat,
die sich innerhalb des Axiomensystems der Zahlentheorie nicht beweisen lassen.
Ein Theorem, das er 1931 unter dem Titel “Uber formal unentscheidbare Sitze
der Principia mathematica und verwandter Systeme” publiziert. Mit diesen Sitzen
stellte er Hilberts Optimismus und sogar sein ganzes Programm in Frage.

Erwihnen mochte ich hier allerdings, dass Kurt Godel bereits ein Jahr friiher
eine Arbeit verdffentlicht hat, die—obwohl weniger spektakuldar—von viel weit-
reichender Bedeutung ist als seine beriihmt gewordenen Unvollstindigkeitssitze.
In dieser Arbeit beweist Godel seinen Vollstindigkeitssatz, dessen wesentliche
Aussage darin besteht, dass sich logisches Schlieen formalisieren lésst. Jeder lo-
gische Schluss lésst sich also durch formale Schlussregeln darstellen. Das ist eine
der Grundlagen unserer heutigen Computertechnologie. Dieser Satz ist weniger
spektakuldr als seine Unvollstdandigkeitssitze, da er in dieser Form erwartbar war.
Schon Aristoteles hatte in seinen Syllogismen versucht, ein Regelwerk fiir das lo-
gische SchlieBen aufzustellen. Die Unvollstidndigkeitssdtze waren hingegen vollig
unerwartet und eher kontraintuitiv.

Ich mochte hier keine Vorlesung iiber die Godelschen Sitze halten, wegen ih-
rer Bedeutung fiir meinen Vortrag aber dennoch versuchen, sie in ihren Grundziigen
darzustellen. Wie Sie sehen werden, sind diese Sitze zwar weitreichend, aber—im
Gegensatz zum Vollstédndigkeitssatz—mathematisch nicht besonders tiefliegend.

Wesentlich fiir die Godelschen Sitze ist Selbstreferenz, d.h. die Fihigkeit eines
Axiomensystems iiber sich selbst sprechen zu konnen. Das von uns eingefiihrte
Axiomensystem besitzt diese Fahigkeit. Um dies einzusehen erinnern wir uns ei-
nes zahlentheoretischen Satzes, den wir alle im Gymnasium kennengelernt haben.
Zur Erinnerung:

4.1 Definition Eine natiirliche Zahl ungleich 0 und 1 ist eine Primzahl, wenn sie
selbst und 1 ihre einzigen Teiler sind.

Die Reihe der Primzahlen beginnt mit

2,3, 5, 7, 11, 13, 17, 19,...



2 Satz Jede natiirliche Zahl lisst sich in eindeutiger Weise als Produkt von Prim-
zahlpotenzen darstellen.

zB.20=4-5=2%-50der36=3-12=3-2-6=3-2-2-3=2%.3% etc.

Diese eindeutige Primzahlzerlegung eroffnet die Moglichkeit sprachliche Sétze
durch Zahlen zu kodieren.

Zunidchst ordnen wir allen Buchstaben Zahlen zu

‘A'=0,'B'=1,"C" =2,...
Dann kodieren wir Worter und Wortfolgen durch Produkte von Primzahlpotenzen,
z. B.

"AND' — <FAT’ FNT7 FDT> — QFAj+1 . 3FNj+1 . 5FDj+1 —9l .34 .54 _9.
4782969 - 625 = 5.978.711.350,

wobei wir darauf achten miissen, dass kein Exponent 0 auftritt (daher das +1),
da ja p° = 1 fiir jede Primzahl p gilt und somit die Eindeutigkeit der Kodierung
verloren ginge.

Damit konnen wir jeden sprachlichen Satz und insbesondere auch jede Formel
A in der Sprache der Zahlentheorie durch eine natiirliche Zahl "A" kodieren. "A'
heiBt die Godelnummer von A. Aus der Godelnummer "A' eines Satzes konnen
wir iiber ihre eindeutige Primzahlzerlegung den Satz A zuriickgewinnen. Damit
sind zahlentheoretische Axiomensysteme selbstreferent, d.h. sie konnen Aussagen
ihrer Metasprache (also zahlentheoretische Sétze) durch ihre Grundobjekte (also
Namen fiir natiirliche Zahlen) ausdriicken.

Als eine erste Anwendung der “Godelisierung” erhalten wir ein Pradikat, das
die Beweisbarkeit in einem Axiomensystem ausdriickt. Sei also Ax ein Axio-
mensystem, das unser Axiomensystem der Zahlentheorie umfasst. Ist ein Satz A
in diesem Axiomensystem beweisbar, so erhalten wir mit Hilfe des Godelschen
Vollstindigkeitssatzes eine Folge von Formeln

AOaAl’AQM"vA

so, dass jede der Formeln A; entweder ein Axiom des Axiomensystems Ax ist oder
sich durch einen (formalen) logischen Schluss aus Formeln A; mit Indizes j < i
erschlieBen ldsst. Die Tatsache, dass die Formeln in der Folge Ay,..., A eine
korrekte Beweiskette bilden ist vollig formal nachpriifbar und kann beispielsweise
von einem Computer iiberpriift werden. Nun kodieren wir die Formelfolge in eine
Zahl



a={"Ay,"A;" ..., TA"

und erhalten so eine Formel Bew(a, 'A') in der Sprache der Zahlentheorie, die
ausdriickt, dass a einen Beweis der Formel A kodiert. Die Richtigkeit des Be-
weispradikats ist sehr einfach zu entscheiden. Wir haben lediglich a zu dekodieren
und dann zu iiberpriifen, ob die dekodierte Formelfolge einen korrekten Beweis
von A darstellt. Im Prinzip konnten wir das einem Computer iiberlassen. Insbe-
sondere kann die Uberpriifung schon in unserem zahlentheoretischen Axiomen-
system formalisiert werden.

Die zweite wesentliche Grundlage der Unvollstiandigkeitssitze ist der Fix-
punktsatz fiir selbstreferente Systeme. Dies ist ein grundlegender rein kombina-
torischer Satz, der fiir alle selbstreferenten Systeme gilt und wesentlich fiir viele
Anwendungen in der Informatik ist.> Angewendet auf die Sprache der Zahlen-
theorie lautet er wie folgt.

3 Satz (Fixpunktsatz der Arithmetik) Ist F'(c) eine Formel in der Sprache der
Zahlentheorie, so gibt es eine Formel A in der Sprache der Zahlentheorie mit

A=F("A".

Diesen Fixpunktsatz wenden wir nun auf die Formel —(3z)Bew(z, ¢) an, die be-
sagt, dass es keinen Beweis der Formel mit Kode ¢ gibt. * Dies liefert uns eine
Formel

G = —(3x)Bew(x, 'G")
und damit gilt auch

-G = (3x)Bew(x, 'G").

4 Satz (Erster Godelscher Unvollstindigkeitssatz) Ist Ax ein widerspruchsfreies
Axiomensystem, das das Axiomensystem der Zahlentheorie umfasst, so gilt weder
Ax + G noch Ax - —-G.*

Beweis >Wire G in Ax beweisbar, so erhielten wir einen formalen Beweis

2 Auch Computer (oder deren Idealisierungen als Turing— oder Registermaschinen) sind selbst-
referente Systeme. Jedes Programm kann durch eine Zahl kodiert werden.

3Der Quantor () ist zu lesen als “es gibt eine Zahl x”

4Mit dem Zeichen I~ notieren wir formale Beweisbarkeit.

>Der Beweis ist hier natiirlich nur eine Skizze



Ao, Ay, ... .G

Den kodieren wir in eine Zahla = ("Ay', ..., 'G"). Dann erhalten wir - Bew(a, 'G")
und damit - (32)Bew(x, 'G"), d.h. - =G, denn die Zahl a ist ja ein Beispiel fiir
x. Widerspruch.

Wiire andererseits =G’ beweisbar, so wire =G also (3z)Bew(x, 'G") in der
Struktur der natiirlichen Zahlen wahr. Damit gébe es aber eine natiirliche Zahl
a mit Bew(a, 'G"). Dekodieren wir diese Zahl, so erhalten wir eine Folge Ao,
Ajq,..., G von Formeln, die einen formalen Beweis von G bilden. Widerspruch.
Damit miisste das Axiomensystem Ax, im Gegensatz zu unserer Voraussetzung,
widerspruchsvoll sein. U

Durch “genaueres Hinsehen™ ldsst sich nun feststellen, dass fiir den Godelsatz, der
ja durch

G = —(3z)Bew(,'G")
definiert war, sogar
G = —(3z)Bew(z, 0=1") (1)

gilt, und diese Aquivalenz schon im Axiomensystem der Zahlentheorie beweisbar
ist. Damit ist G’ zu der Aussage dquivalent, dass es eine Formel gibt, ndmlich die
Formel (0 = 1), die im Axiomensystem Ax nicht beweisbar ist. Das ist aber die
Aussage, dass das Axiomensystem Ax widerspruchsfrei ist, wie wir es im N.B. zur
Definition der Widerspruchsfreiheit festgehalten haben. Da Ax das Axiomensys-
tem der Zahlentheorie umfassen soll, ist die Aquivalenz (1) auch in Ax beweisbar.
Wir erhalten somit den zweiten Godelschen Unvollstindigkeitssatz.

5 Satz (Zweiter Godelscher Unvollstiandigkeitssatz) Ist Ax ein widerspruchsfrei-
es Axiomensystem, das die Zahlentheorie umfasst, so gilt

Ax F G = —(3z)Bew(z, 0 =1").

Zusammen mit dem ersten Unvollstdandigkeitssatz erhalten wir damit, dass kein
widerspruchsfreies Axiomensystem, das die Zahlentheorie umfasst, seine eigene
Widerspruchsfreiheit beweisen kann.

Wir lernen also aus den Godelschen Sétzen, dass sich die Widerspruchsfreiheit ei-
nes Axiomensystems nicht im Axiomensystem selbst nachweisen ldsst. Damit er-
halten wir eine hierarchische Ordnung von Axiomensystemen wie in Abbildung 1
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dargestellt. Dabei beweist das hoherstehende Axiomensystem die Widerspruchs-
freiheit aller darunterstehenden Axiomensysteme. Nur die Konsistenz der endli-
chen Kombinatorik ldsst sich mit finiten Mitteln zeigen. Das bedeutet aber einen

‘ ZF(C) plus groBere Kardinalzahlen

‘ ZF(C) plus groBe Kardinalzahlen
‘ ZF(C) (Mengenlehre)

@ PA (Zahlentheorie)

‘ PRA (endliche Kombinatorik)
Abbildung 1: Die Godel Hierarchie der Axiomensysteme

“progressus ad infinitum”. Die Widerspruchsfreiheit der Axiomensysteme ober-
halb von PRA kann daher niemals zum gesicherten (d.h. beweisbaren) Wissen der
Mathematik gehoren. Damit haben wir ein “ignorabimus” in der Mathematik. Es
ist sogar noch weitergehend: Die Mathematik ist in der Lage ihr eigenes “igno-
rabimus” beweisen zu konnen.

5 Ausblick

Welche Auswirkung hat nun diese Tatsache auf die Entwicklung der Mathema-
tik? Ich mochte hier kiihn behaupten “keine” oder zumindest “so gut wie keine”.
Die Mathematik teilt hier das Schicksal fast aller Wissenschaften, dass sie ihre
eigene Konsistenz nicht beweisen kann. Doch tut das der Mathematik irgendei-
nen Abbruch? Bislang hat man innerhalb der giingigen Axiomensysteme keinen
Widerspruch entdeckt, der sich nicht in befriedigender Weise auflosen lieB—wie
z.B. die Russellsche Antinomie—und Mathematik ist sehr erfolgreich. Die Grund-
lagenkrise hat sich so heute mehr oder minder erledigt. Das ist nicht zuletzt auch
das Verdienst der im Rahmen der mathematischen Logik entwickelten Mengen-
lehre, deren Sprache sich zur “lingua franca” der Mathematik entwickelt hat. So
gut wie alle mathematischen Theorien lassen sich in der Sprache der Mengenlehre
entwickeln und innerhalb des Axiomensystems ZFC (Zermelo—Fraenkel set theo-
ry with Axiom of Choice) formalisieren. Kaum ein “main—stream” Mathematiker
bezweifelt die Konsistenz von ZFC.
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Als Randbemerkung sei erwihnt, dass sich im Programm der “reverse ma-
thematics” zeigen lisst, dass ein Gutteil der Mathematik (mein Kollege Stephen
Simpson von der Vanderbilt University behauptet 85%) in Bereichen unterhalb
des Axiomensystems PA formalisierbar ist, deren Widerspruchsfreiheit finit nach-
weisbar ist. Allerdings erfordert dies zuweilen einen erheblichen Aufwand.

Was jedoch durch die Diskussionen um die Grundlagenkrise der Mathematik
erreicht wurde, war die Entwicklung der mathematischen Logik und die Durch-
setzung der axiomatischen Methode in der gesamten Mathematik im Laufe der
ersten Hélfte des 20. Jahrhunderts. David Hilbert hatte daran einen wesentlichen
Anteil.® Diese hat die Mathematik nachhaltig geprigt und hat einen groBen Anteil
daran, dass Mathematik heute so viel besser lehrbar geworden ist.

Doch zuriick zum “ignorabimus”. Der Godelsatz mit seiner Aussage “ich
bin nicht beweisbar” wirkt durch seine Selbstreferenz doch recht konstruiert und
gehort so eigentlich nicht zu den mathematischen Sitzen, die “in der Natur” vor-
kommen. Ich erinnere mich an eine Diskussion, die ich noch in Miinchen mit
einem Experimentalphysiker’ gefiihrt habe, in der der Satz fiel “Lassen wir doch
Spitzfindigkeiten wie den Godelschen Satz beiseite”.

Wie sieht es also mit dem “ignorabimus” in der Mathematik aus, wenn wir
diese “Spitzfindigkeiten” beiseite lassen? Natiirlich gibt es eine Menge von Pro-
blemen, die ungeldst sind. Die Frage ist, ob sie noch ungeldst sind oder prinzipiell
unlosbar sind. Wobei eine mathematische Losung durchaus auch darin bestehen
kann, die Unldsbarkeit eines Problems zu beweisen. Es kann aber auch Probleme
geben, die potenziell unldsbar sein konnten, von denen es aber auch nicht klar ist,
ob sich nicht doch noch ein Beweis finden lédsst. Ein solches Beispiel konnte die
Goldbachvermutung sein.®

Die Goldbachvermutung

Jede gerade Zahl groBer als 2 ist Summer zweier Primzahlen.

Diese Vermutung wurde, soweit ich weiB, fiir alle Zahlen kleiner als 4 - 10'®
bestétigt. Es kann nun sein, dass diese Behauptung wabhr ist, (d.h. in der Struktur
der natiirlichen Zahlen richtig ist), aber fiir jede Zahl n ein vollig neuer Beweis
erforderlich ist. Da wir keine unendlich langen Beweise fiihren konnen, haben wir
dann keine Moglichkeit diesen Satz jemals zu beweisen. Die Negation der Gold-

®Vgl. seinen Vortrag “Axiomatisches Denken” 1917 in Ziirich.
"Wenn ich mich recht erinnere war es Alfred Faessler.
$Die Hilbert in seinem 8. Problem (Primzahlprobleme) erwihnt.
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bachvermutung, “es gibt eine gerade Zahl grofler als 2, die nicht Summe von
zwei Primzahlen ist”, ist ein positiv entscheidbares Problem.” Wenn die Gold-
bachvermutung falsch ist (also ihre Negation wahr ist), so werden wir in endlich
vielen Schritten ein Beispiel fiir eine gerade Zahl finden, die nicht Summe zweier
Primzahlen ist. Aber das hilft uns auch nicht weiter. Ist ndmlich die Goldbachver-
mutung wahr, so werden wir niemals eine solche Zahl finden. Beim Prozess des
Suchens konnen wir aber zu keinem Zeitpunkt wissen, ob wir nicht doch vielleicht
spiter eine finden. Bis zur Zahl 4 - 10'® haben wir noch keine gefunden, aber was
ist 10'8 angesichts der unendlich vielen natiirlichen Zahlen?

Auf der anderen Seite ist es ebenfalls moglich, dass ein Beweis gefunden wer-
den kann, wie es bei der groBen Fermatschen Vermutung'® geschehen ist, die
1994 von Andrew Wiles und Richard Taylor bewiesen wurde. (Nach einem noch
liickenhaften ersten Beweisversuch 1993). Die Hilbertsche Parole des “kein igno-
rabimus” ist daher immer noch die wesentliche Triebfeder aller mathematischer
Forschung.

Leider ist die Zeit nun doch so weit fortgeschritten, dass ich nicht mehr da-
zu komme, Thnen etwas iiber das erste Hilbertsche Problem zu berichten. Dieses
hat sich als unabhéngig von den bekannten Axiomensystemen der Mengenlehre
erwiesen und kann auch nicht so ohne weiteres durch die Annahme der Existenz
groBer Kardinalzahlen entschieden werden. Daher erdffnen sich hier vollig andere
Aspekte des “ignorabimus”, auf die ich vielleicht ein anderes Mal zurtickkommen
kann.

9 Positiv entscheidbare Probleme sind Probleme, die sich entscheiden lassen, wenn sie wahr
sind (daher positiv entscheidbar).
19Deren logische Komplexitit von dhnlichem Typus ist.
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