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1 Vorbemerkungen
Der Physiologe Emil du Bois–Reymond hielt 1872 auf der 45. Jahresversamm-
lung der Gesellschaft Deutscher Naturforscher und Ärzte eine Rede mit dem Titel
”Über die Grenzen des Naturerkennens”, in der er die These vertrat, dass der
Erkenntnisfähigkeit der Wissenschaften prinzipielle Grenzen gesetzt sind. Zitat:
Gegenüber den Räthseln der Körperwelt ist der Naturforscher längst gewöhnt,
mit männlicher Entsagung sein “Ignoramus” auszusprechen. Im Rückblick auf
die durchlaufene siegreiche Bahn trägt ihn dabei das stille Bewusstsein, dass, wo
er jetzt nicht weiss, er wenigstens unter Umständen wissen könnte, und dereinst
vielleicht wissen wird. Gegenüber dem Räthsel aber, was Materie und Kraft seien,
und wie sie zu denken vermögen, muss er ein für allemal zu dem viel schwerer
abzugebenden Wahrspruch sich entschliessen: “Ignorabimus”

Hier stellt du Bois–Reymond dem eher positiv konnotierten “ignoramus” (wir
wissen [noch] nicht) das “ignorabimus” gegenüber, dass ich hier überspitzt mit
“wir werden [niemals] wissen” übersetzen möchte. Damit startete der Begriff des
Ignorabimus seine Karriere in der Welt der Diskussionen unter Gelehrten. Mit
langer Wirkung.

David Hilbert, einer der einflussreichsten, wenn nicht gar der einflussreichste
Mathematiker des 20. Jahrhunderts, stellt fast dreißig Jahre später seinen berühmt
gewordenen 23 ungelösten mathematischen Problemen, die er 1900 auf dem inter-
nationalen Mathematikerkongress in Paris vorstellte, folgende Worte voran: “Die
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Überzeugung von der Lösbarkeit eines jeden mathematischen Problems ist uns ein
kräftiger Ansporn während der Arbeit; wir hören in uns den steten Zuruf: Da ist
ein Problem, suche die Lösung. Du kannst sie durch reines Denken finden; denn
in der Mathematik gibt es kein ignorabimus.”

Wieder dreißig Jahre später, in einem Vortrag gehalten 1930 in Königsberg
und als Radiosendung aufgezeichnet, greift er dieses Thema wieder auf und endet
mit dem Satz “Wir müssen wissen, wir werden wissen”. Dieser Satz, der auch auf
seinem Grabstein steht, wirkt bis heute, wie ich jüngst auf einer Tagung erfahren
habe. Es ist ja heute modern geworden, sich Tatoos stechen zu lassen. Ein Kollege
erzählte mir dort, dass einer der jüngeren Mitarbeiter auf seinem linken Arm den
Spruch “Wir müssen wissen” eintätowiert hat. Sie dürfen raten, was auf seinem
rechten Arm steht.

Bevor wir uns der Frage zuwenden können, ob vielleicht in der Mathematik
das Ignorabimus doch gelten könnte, müssen wir klären was Wissen in der Mathe-
matik überhaupt bedeutet. Natürlich glauben wir alle zu wissen, dass “Eins plus
Eins gleich Zwei” sei. Aber wissen wir das wirklich? Wenn Sie dies gegenüber ei-
nem mathematischen Erstsemester behaupten, kann es Ihnen durchaus passieren,
dass Sie naseweis (das “naseweis” sein legt sich in höheren Semestern) darüber
belehrt werden, dass Eins plus Eins genausogut Null sein kann. Und sie oder er
hat damit gar nicht einmal Unrecht. Warum glauben wir aber dennoch zu wis-
sen, dass “Eins plus Eins gleich Zwei” ist? Aus Erfahrung? Doch Erfahrung ist
dem Selbstverständnis der Mathematik nach keine zulässige Erkenntnismethode.
Mathematiker wissen erst dann, dass 1 + 1 = 2 ist, wenn sie das auch bewei-
sen können. Mathematik ist eine “beweisende Disziplin”, wie es die Soziologin
Bettina Heintz im Untertitel ihrer Habilschrift “Das Innenleben der Mathematik”
festhält. Das “Wissen” der Mathematik besteht also in ihren bewiesenen Sätzen.

Wann aber ist ein Satz bewiesen? Offenbar erst dann, wenn wir ihn aus schon
bewiesenen Sätzen logisch folgern können (wobei ich in diesem Vortrag darauf
verzichte(n muss), den Begriff der logischen Folgerung genauer zu fassen, was
aber mathematisch exakt möglich ist). Das darf aber keinen “regressus ad infini-
tum” bedeuten. Irgendwann kommen wir zu Sätzen, die sich nicht mehr beweisen
lassen, sondern als gültig angenommen werden müssen. Diese Sätze sind unsere
Axiome.

Wann aber kann man einen Satz als Axiom akzeptieren? Das hängt von der
mathematischen Theorie ab, die wir betrachten. Es ist jedoch schwierig abstrakt
zu beschreiben, was ein Wissensgebiet zu einer mathematischen Theorie macht.
Wir erkennen zwar immer, wann ein Wissensgebiet der Mathematik zuzurechnen
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ist, dies allgemein zu definieren ist jedoch, wie gesagt, unglaublich schwierig. Ich
glaube aber, nicht zu sehr zu lügen, wenn ich behaupte, dass sich Mathematik in
erster Linie mit der Untersuchung abstrakter Strukturen beschäftigt.

Um nicht ins Ungefähre abzugleiten, möchte ich die Axiomenfindung am Bei-
spiel der elementaren aber grundlegenden Struktur der natürlichen Zahlen erläutern.

2 Die Struktur der natürlichen Zahlen
Wir alle kennen die natürlichen Zahlen. Sie entstehen beim Prozess des Zählens.
Die natürlichen Zahlen bilden den Träger der Struktur der natürlichen Zahlen. Ne-
ben der Identitätsrelation auf den natürlichen Zahlen haben wir gewisse Operatio-
nen, die wir mit natürlichen Zahlen vornehmen können. Wir können sie addieren
und multiplizieren. (Alle anderen Grundrechenarten lassen sich aus diesen beiden
ableiten.)

Unser Ziel ist es nun, die Struktur der natürlichen Zahlen durch Axiome zu
beschreiben zu versuchen.

Um die Menge der natürlichen Zahlen zu beschreiben, also Namen für natür-
liche Zahlen einzuführen, bedienen wir uns der “Bierdeckelmethode”. Wir begin-
nen mit dem leeren Deckel, als Namen für die 0, und fügen bei jedem weiteren Ge-
tränk einfach einen Strich hinzu und erhalten so einen neuen Deckel. Wir nennen
den Deckel, bei dem ein Strich hinzugefügt wurde, den Nachfolger des vorherge-
henden Deckels. So erhalten wir eine Folge von Deckeln 0, 0′, 0′′, . . . als Namen
für natürliche Zahlen (im “wirklichen alltäglichen Leben” benutzen wir die Dezi-
malschreibweise als Namen für natürliche Zahlen, was wesentlich ökonomischer
ist. Hier aber geht es um das Prinzip, was in weniger ökonomischer Schreibweise
oft besser zu erkennen ist). Damit erhalten wir unsere ersten Axiome.

Ontologische Axiome

(A1) Jede natürliche Zahl ist entweder 0 (der leere Deckel) oder Nachfolger einer
natürlichen Zahl (des vorhergehenden Deckel).

(A2) Jede natürliche Zahl hat genau einen Nachfolger.

Nun müssen wir noch die Operationen beschreiben, die wir auf den natürliche
Zahlen ausführen können. Dazu wollen wir ruhig schon die mathematischen Sym-
bole + für Addition und · für die Multiplikation verwenden. Wir haben also zu
beschreiben, was diese Operationen machen.
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Axiome der Addition

(A3) a+ 0 = a und

(A4) a+ n′ = (a+ n)′

Axiome der Multiplikation

(A5) a · 0 = 0 und

(A6) a · n′ = (a · n) + a

Diese Axiome reichen bereits aus, unseren naseweisen Studenten zu widerlegen
und zu zeigen, dass in der Struktur der natürlichen Zahlen 1 + 1 = 2 gilt. Wir
rechnen einfach

1 + 1 = 0′ + 0′
(A4)
= (0′ + 0)′

(A3)
= 0′′ = 2.

Ein wichtiges Axiom fehlt aber noch. Wie können wir nachweisen, dass eine Ei-
genschaft allen natürlichen Zahlen zukommt? Das wird sicher der Fall sein, wenn
diese Eigenschaft auf die 0 zutrifft und sich stets auf den Nachfolger vererbt. Die-
se Tatsache lässt sich im Prinzip der vollständigen Induktion formulieren.

Axiom der Vollständige Induktion

(A7) Sei E(n) eine Eigenschaft, die der natürlichen Zahl n zukommen kann. Trifft
E auf die 0 zu, d.h. gilt E(0) und vererbt sich die Eigenschaft E von jeder
Zahl n auch auf ihren Nachfolger n′, so haben alle natürlichen Zahlen die
Eigenschaft E.

Etwas formaler ausgedrückt lautet dies

Gilt E(0) und folgt aus der Annahme, dass E(n) gilt, dass dann auch E(n′)
gilt, so gilt E(z) für alle natürlichen Zahlen z.

So sieht also ein Axiomensystem für die Struktur der natürlichen Zahlen aus. Auf
diesen Axiomen kann man die gesamte elementare Zahlentheorie aufbauen, deren
Lehrbücher ganze Buchregale füllen.

Hier ein einfaches Beispiel für ein mathematisches Theorem.
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1 Satz Addiert man zur Summe zweier natürlicher Zahlen eine Dritte hinzu, so
erhält man das gleiche Ergebnis als würde man die erste Zahl zur Summe der
beiden anderen hinzuzählen.

Formal ausgedrückt heißt das

(a+ b) + c = a+ (b+ c)

Beweis Sei E(c) die Eigenschaft (a+ b) + c = a+ (b+ c). Dann gilt

(a+ b) + 0
(A3)
= (a+ b)

(A3)
= a+ (b+ 0), also E(0).

Nun nehmen wir E(c) an, also (a+ b) + c = a+ (b+ c). Wir testen E(c′).

(a+ b)+ c′
(A4)
= ((a+ b)+ c)′

E(c)
= (a+(b+ c))′

(A4)
= (a+(b+ c)′)

(A4)
= a+(b+ c′)

also gilt E(c′) und mit vollständiger Induktion erhalten wir den Satz. �

3 Hilberts Programm
Wir wollen nun an Hand der Hilbertschen Liste mathematischer Probleme testen,
in wie weit das “kein ignorabimus” auf die Mathematik zutrifft. Da erweisen sich
bereits die ersten beiden von Hilbert angeführten offenen Probleme als kritisch.
Die beiden ersten in Hilberts Liste aufgeführten Probleme waren:

1. Cantors Problem von der Mächtigkeit des Kontinuums.

2. Die Widerspruchslosigkeit der arithmetischen Axiome.

Das erste Problem will ich noch zurückstellen. Dazu benötigen wir einen noch
etwas größeren Begiffsapparat. Vielleicht finde ich am Ende noch die Zeit, etwas
darauf eingehen zu können.

Mit dem zweiten Problem können wir aber schon etwas anfangen, da wir ein
Axiomensystem der Arithmetik bereits kennengelernt haben.

3.1 Definition Ein Axiomensystem heißt widerspruchsfrei wenn es nicht gleich-
zeitig einen Satz und dessen Negation beweist.

N.B.: Aus logischen Gründen genügt es zum Nachweis der Widerspruchslosig-
keit schon zu zeigen, dass es einen Satz gibt, der sich nicht aus den Axiomen
beweisen lässt.
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Das “kein ignorabimus” in Hilberts Königsberger Rede war vielleicht schon
nicht mehr von der gleichen Gewissheit getragen, auf die es sich noch in der
Präambel seiner Pariser Rede stützen konnte. Die feste Zuversicht “Du kannst
sie durch reines Denken finden” der Pariser Rede ist nun durch die Forderung
“Wir müssen wissen” ersetzt. Die Grundlagen der Mathematik waren nämlich
ins Gerede gekommen. Erste Zweifel an der Tragfähigkeit der mathematischen
Grundlagen traten im Zusammenhang mit der Cantorschen Mengenlehre auf, ins-
besondere mit der Entdeckung der Russellschen Antinomie.

Die Russellsche Antinomie
Sei R die Menge der Mengen, die sich nicht selbst als Element enthalten.
Also R = {s s /∈ s}. Dann erhalten wir den Widerspruch dass R ∈ R
genau dann gilt, wenn R /∈ R gilt.

Sie wuchsen sich zur sogenannten Grundlagenkrise aus, als Hermann Weyl in
seiner Schrift “Über die neue Grundlagenkrise der Mathematik” (1921) darauf
hinwies, dass die Methoden, die sich in der Cantorschen Mengenlehre als proble-
matisch erwiesen hatten, auch im Bereich der als etabliert geltenden Analysis zur
Anwendung kommen. Um die Mathematik in ihrem vollen Besitzstand wieder-
herzustellen,1 entwarf Hilbert ein Programm, das heute unter dem Titel “Hilbert-
sches Programm” firmiert. Grob zusammengefasst lässt sich Hilberts Programm
auf zwei Schritte reduzieren:

• Formalisiere die gesamte Mathematik!

• Beweise mit finiten Mitteln, dass in dieser formalisierten Mathematik keine
Widersprüche abgeleitet werden können!

Insbesondere auf Grund des ersten Schrittes des Hilbertschen Programmes wird
Hilbert oft als “Formalist” bezeichnet. Ich halte das für falsch. Hilbert war sicher-
lich kein Formalist, wie seine reichhaltigen Beiträge zur Entwicklung der moder-
nen Mathematik beweisen. Es war lediglich Hilberts Anliegen, die Mathematik
in ihrem vollen Besitzstand zu erhalten und eine Formalisierung der Mathematik
schien ihm dazu ein geeignetes Mittel zu sein.

1Aus Hilbert: “Neubegründung der Mathematik” (1922) “[. . . ]; ich möchte der Mathematik
den alten Ruf der unanfechtbaren Wahrheit, die ihr durch die Paradoxien der Mengenlehre ver-
loren zu gehen scheint, wiederherstellen; aber ich glaube, daß dies bei voller Erhaltung ihres
Besitzstandes möglich ist.”

6



4 Die Gödelschen Sätze
Ironischerweise hat ein junger österreichischer Logiker, Kurt Gödel, auf der glei-
chen Tagung in Königsberg, einen Tag vor (oder nach ?) Hilberts später im Ra-
dio gesendeter Rede die Bemerkung gemacht, dass er Aussagen gefunden hat,
die sich innerhalb des Axiomensystems der Zahlentheorie nicht beweisen lassen.
Ein Theorem, das er 1931 unter dem Titel “Über formal unentscheidbare Sätze
der Principia mathematica und verwandter Systeme” publiziert. Mit diesen Sätzen
stellte er Hilberts Optimismus und sogar sein ganzes Programm in Frage.

Erwähnen möchte ich hier allerdings, dass Kurt Gödel bereits ein Jahr früher
eine Arbeit veröffentlicht hat, die—obwohl weniger spektakulär—von viel weit-
reichender Bedeutung ist als seine berühmt gewordenen Unvollständigkeitssätze.
In dieser Arbeit beweist Gödel seinen Vollständigkeitssatz, dessen wesentliche
Aussage darin besteht, dass sich logisches Schließen formalisieren lässt. Jeder lo-
gische Schluss lässt sich also durch formale Schlussregeln darstellen. Das ist eine
der Grundlagen unserer heutigen Computertechnologie. Dieser Satz ist weniger
spektakulär als seine Unvollständigkeitssätze, da er in dieser Form erwartbar war.
Schon Aristoteles hatte in seinen Syllogismen versucht, ein Regelwerk für das lo-
gische Schließen aufzustellen. Die Unvollständigkeitssätze waren hingegen völlig
unerwartet und eher kontraintuitiv.

Ich möchte hier keine Vorlesung über die Gödelschen Sätze halten, wegen ih-
rer Bedeutung für meinen Vortrag aber dennoch versuchen, sie in ihren Grundzügen
darzustellen. Wie Sie sehen werden, sind diese Sätze zwar weitreichend, aber—im
Gegensatz zum Vollständigkeitssatz—mathematisch nicht besonders tiefliegend.

Wesentlich für die Gödelschen Sätze ist Selbstreferenz, d.h. die Fähigkeit eines
Axiomensystems über sich selbst sprechen zu können. Das von uns eingeführte
Axiomensystem besitzt diese Fähigkeit. Um dies einzusehen erinnern wir uns ei-
nes zahlentheoretischen Satzes, den wir alle im Gymnasium kennengelernt haben.
Zur Erinnerung:

4.1 Definition Eine natürliche Zahl ungleich 0 und 1 ist eine Primzahl, wenn sie
selbst und 1 ihre einzigen Teiler sind.

Die Reihe der Primzahlen beginnt mit

2, 3, 5, 7, 11, 13, 17, 19, . . .
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2 Satz Jede natürliche Zahl lässt sich in eindeutiger Weise als Produkt von Prim-
zahlpotenzen darstellen.

z.B. 20 = 4 · 5 = 22 · 5 oder 36 = 3 · 12 = 3 · 2 · 6 = 3 · 2 · 2 · 3 = 22 · 32, etc.

Diese eindeutige Primzahlzerlegung eröffnet die Möglichkeit sprachliche Sätze
durch Zahlen zu kodieren.

Zunächst ordnen wir allen Buchstaben Zahlen zu

A = 0, B = 1, C = 2,. . .

Dann kodieren wir Wörter und Wortfolgen durch Produkte von Primzahlpotenzen,
z. B.

AND = 〈 A , N , D 〉 := 2 A +1 · 3 N +1 · 5 D +1 = 21 · 314 · 54 = 2 ·
4782969 · 625 = 5.978.711.350,

wobei wir darauf achten müssen, dass kein Exponent 0 auftritt (daher das +1),
da ja p0 = 1 für jede Primzahl p gilt und somit die Eindeutigkeit der Kodierung
verloren ginge.

Damit können wir jeden sprachlichen Satz und insbesondere auch jede Formel
A in der Sprache der Zahlentheorie durch eine natürliche Zahl A kodieren. A
heißt die Gödelnummer von A. Aus der Gödelnummer A eines Satzes können
wir über ihre eindeutige Primzahlzerlegung den Satz A zurückgewinnen. Damit
sind zahlentheoretische Axiomensysteme selbstreferent, d.h. sie können Aussagen
ihrer Metasprache (also zahlentheoretische Sätze) durch ihre Grundobjekte (also
Namen für natürliche Zahlen) ausdrücken.

Als eine erste Anwendung der “Gödelisierung” erhalten wir ein Prädikat, das
die Beweisbarkeit in einem Axiomensystem ausdrückt. Sei also Ax ein Axio-
mensystem, das unser Axiomensystem der Zahlentheorie umfasst. Ist ein Satz A
in diesem Axiomensystem beweisbar, so erhalten wir mit Hilfe des Gödelschen
Vollständigkeitssatzes eine Folge von Formeln

A0, A1, A2, . . . , A

so, dass jede der Formeln Ai entweder ein Axiom des Axiomensystems Ax ist oder
sich durch einen (formalen) logischen Schluss aus Formeln Aj mit Indizes j < i
erschließen lässt. Die Tatsache, dass die Formeln in der Folge A0, . . . , A eine
korrekte Beweiskette bilden ist völlig formal nachprüfbar und kann beispielsweise
von einem Computer überprüft werden. Nun kodieren wir die Formelfolge in eine
Zahl
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a = 〈 A0 , A1 . . . , A 〉

und erhalten so eine Formel Bew(a, A ) in der Sprache der Zahlentheorie, die
ausdrückt, dass a einen Beweis der Formel A kodiert. Die Richtigkeit des Be-
weisprädikats ist sehr einfach zu entscheiden. Wir haben lediglich a zu dekodieren
und dann zu überprüfen, ob die dekodierte Formelfolge einen korrekten Beweis
von A darstellt. Im Prinzip könnten wir das einem Computer überlassen. Insbe-
sondere kann die Überprüfung schon in unserem zahlentheoretischen Axiomen-
system formalisiert werden.

Die zweite wesentliche Grundlage der Unvollständigkeitssätze ist der Fix-
punktsatz für selbstreferente Systeme. Dies ist ein grundlegender rein kombina-
torischer Satz, der für alle selbstreferenten Systeme gilt und wesentlich für viele
Anwendungen in der Informatik ist.2 Angewendet auf die Sprache der Zahlen-
theorie lautet er wie folgt.

3 Satz (Fixpunktsatz der Arithmetik) Ist F (c) eine Formel in der Sprache der
Zahlentheorie, so gibt es eine Formel A in der Sprache der Zahlentheorie mit

A ≡ F ( A ).

Diesen Fixpunktsatz wenden wir nun auf die Formel ¬(∃x)Bew(x, c) an, die be-
sagt, dass es keinen Beweis der Formel mit Kode c gibt. 3 Dies liefert uns eine
Formel

G ≡ ¬(∃x)Bew(x, G )

und damit gilt auch

¬G ≡ (∃x)Bew(x, G ).

4 Satz (Erster Gödelscher Unvollständigkeitssatz) Ist Ax ein widerspruchsfreies
Axiomensystem, das das Axiomensystem der Zahlentheorie umfasst, so gilt weder
Ax ` G noch Ax ` ¬G.4

Beweis 5Wäre G in Ax beweisbar, so erhielten wir einen formalen Beweis
2Auch Computer (oder deren Idealisierungen als Turing– oder Registermaschinen) sind selbst-

referente Systeme. Jedes Programm kann durch eine Zahl kodiert werden.
3Der Quantor (∃x) ist zu lesen als “es gibt eine Zahl x”
4Mit dem Zeichen ` notieren wir formale Beweisbarkeit.
5Der Beweis ist hier natürlich nur eine Skizze
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A0, A1, . . . , G.

Den kodieren wir in eine Zahl a = 〈 A0 , . . . , G 〉. Dann erhalten wir ` Bew(a, G )
und damit ` (∃x)Bew(x, G ), d.h. ` ¬G, denn die Zahl a ist ja ein Beispiel für
x. Widerspruch.

Wäre andererseits ¬G beweisbar, so wäre ¬G also (∃x)Bew(x, G ) in der
Struktur der natürlichen Zahlen wahr. Damit gäbe es aber eine natürliche Zahl
a mit Bew(a, G ). Dekodieren wir diese Zahl, so erhalten wir eine Folge A0,
A1,. . . , G von Formeln, die einen formalen Beweis von G bilden. Widerspruch.
Damit müsste das Axiomensystem Ax , im Gegensatz zu unserer Voraussetzung,
widerspruchsvoll sein. �

Durch “genaueres Hinsehen” lässt sich nun feststellen, dass für den Gödelsatz, der
ja durch

G ≡ ¬(∃x)Bew(, G )

definiert war, sogar

G ≡ ¬(∃x)Bew(x, 0 = 1 ) (1)

gilt, und diese Äquivalenz schon im Axiomensystem der Zahlentheorie beweisbar
ist. Damit ist G zu der Aussage äquivalent, dass es eine Formel gibt, nämlich die
Formel (0 = 1), die im Axiomensystem Ax nicht beweisbar ist. Das ist aber die
Aussage, dass das Axiomensystem Ax widerspruchsfrei ist, wie wir es im N.B. zur
Definition der Widerspruchsfreiheit festgehalten haben. Da Ax das Axiomensys-
tem der Zahlentheorie umfassen soll, ist die Äquivalenz (1) auch in Ax beweisbar.
Wir erhalten somit den zweiten Gödelschen Unvollständigkeitssatz.

5 Satz (Zweiter Gödelscher Unvollständigkeitssatz) Ist Ax ein widerspruchsfrei-
es Axiomensystem, das die Zahlentheorie umfasst, so gilt

Ax ` G ≡ ¬(∃x)Bew(x, 0 = 1 ).

Zusammen mit dem ersten Unvollständigkeitssatz erhalten wir damit, dass kein
widerspruchsfreies Axiomensystem, das die Zahlentheorie umfasst, seine eigene
Widerspruchsfreiheit beweisen kann.

Wir lernen also aus den Gödelschen Sätzen, dass sich die Widerspruchsfreiheit ei-
nes Axiomensystems nicht im Axiomensystem selbst nachweisen lässt. Damit er-
halten wir eine hierarchische Ordnung von Axiomensystemen wie in Abbildung 1
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dargestellt. Dabei beweist das höherstehende Axiomensystem die Widerspruchs-
freiheit aller darunterstehenden Axiomensysteme. Nur die Konsistenz der endli-
chen Kombinatorik lässt sich mit finiten Mitteln zeigen. Das bedeutet aber einen

ZF(C) plus große Kardinalzahlen

ZF(C) (Mengenlehre)

PA (Zahlentheorie)

ZF(C) plus größere Kardinalzahlen

PRA (endliche Kombinatorik)

Abbildung 1: Die Gödel Hierarchie der Axiomensysteme

“progressus ad infinitum”. Die Widerspruchsfreiheit der Axiomensysteme ober-
halb von PRA kann daher niemals zum gesicherten (d.h. beweisbaren) Wissen der
Mathematik gehören. Damit haben wir ein “ignorabimus” in der Mathematik. Es
ist sogar noch weitergehend: Die Mathematik ist in der Lage ihr eigenes “igno-
rabimus” beweisen zu können.

5 Ausblick
Welche Auswirkung hat nun diese Tatsache auf die Entwicklung der Mathema-
tik? Ich möchte hier kühn behaupten “keine” oder zumindest “so gut wie keine”.
Die Mathematik teilt hier das Schicksal fast aller Wissenschaften, dass sie ihre
eigene Konsistenz nicht beweisen kann. Doch tut das der Mathematik irgendei-
nen Abbruch? Bislang hat man innerhalb der gängigen Axiomensysteme keinen
Widerspruch entdeckt, der sich nicht in befriedigender Weise auflösen ließ—wie
z.B. die Russellsche Antinomie—und Mathematik ist sehr erfolgreich. Die Grund-
lagenkrise hat sich so heute mehr oder minder erledigt. Das ist nicht zuletzt auch
das Verdienst der im Rahmen der mathematischen Logik entwickelten Mengen-
lehre, deren Sprache sich zur “lingua franca” der Mathematik entwickelt hat. So
gut wie alle mathematischen Theorien lassen sich in der Sprache der Mengenlehre
entwickeln und innerhalb des Axiomensystems ZFC (Zermelo–Fraenkel set theo-
ry with Axiom of Choice) formalisieren. Kaum ein “main–stream” Mathematiker
bezweifelt die Konsistenz von ZFC.
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Als Randbemerkung sei erwähnt, dass sich im Programm der “reverse ma-
thematics” zeigen lässt, dass ein Gutteil der Mathematik (mein Kollege Stephen
Simpson von der Vanderbilt University behauptet 85%) in Bereichen unterhalb
des Axiomensystems PA formalisierbar ist, deren Widerspruchsfreiheit finit nach-
weisbar ist. Allerdings erfordert dies zuweilen einen erheblichen Aufwand.

Was jedoch durch die Diskussionen um die Grundlagenkrise der Mathematik
erreicht wurde, war die Entwicklung der mathematischen Logik und die Durch-
setzung der axiomatischen Methode in der gesamten Mathematik im Laufe der
ersten Hälfte des 20. Jahrhunderts. David Hilbert hatte daran einen wesentlichen
Anteil.6 Diese hat die Mathematik nachhaltig geprägt und hat einen großen Anteil
daran, dass Mathematik heute so viel besser lehrbar geworden ist.

Doch zurück zum “ignorabimus”. Der Gödelsatz mit seiner Aussage “ich
bin nicht beweisbar” wirkt durch seine Selbstreferenz doch recht konstruiert und
gehört so eigentlich nicht zu den mathematischen Sätzen, die “in der Natur” vor-
kommen. Ich erinnere mich an eine Diskussion, die ich noch in München mit
einem Experimentalphysiker7 geführt habe, in der der Satz fiel “Lassen wir doch
Spitzfindigkeiten wie den Gödelschen Satz beiseite”.

Wie sieht es also mit dem “ignorabimus” in der Mathematik aus, wenn wir
diese “Spitzfindigkeiten” beiseite lassen? Natürlich gibt es eine Menge von Pro-
blemen, die ungelöst sind. Die Frage ist, ob sie noch ungelöst sind oder prinzipiell
unlösbar sind. Wobei eine mathematische Lösung durchaus auch darin bestehen
kann, die Unlösbarkeit eines Problems zu beweisen. Es kann aber auch Probleme
geben, die potenziell unlösbar sein könnten, von denen es aber auch nicht klar ist,
ob sich nicht doch noch ein Beweis finden lässt. Ein solches Beispiel könnte die
Goldbachvermutung sein.8

Die Goldbachvermutung
Jede gerade Zahl größer als 2 ist Summer zweier Primzahlen.

Diese Vermutung wurde, soweit ich weiß, für alle Zahlen kleiner als 4 · 1018
bestätigt. Es kann nun sein, dass diese Behauptung wahr ist, (d.h. in der Struktur
der natürlichen Zahlen richtig ist), aber für jede Zahl n ein völlig neuer Beweis
erforderlich ist. Da wir keine unendlich langen Beweise führen können, haben wir
dann keine Möglichkeit diesen Satz jemals zu beweisen. Die Negation der Gold-

6Vgl. seinen Vortrag “Axiomatisches Denken” 1917 in Zürich.
7Wenn ich mich recht erinnere war es Alfred Faessler.
8Die Hilbert in seinem 8. Problem (Primzahlprobleme) erwähnt.
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bachvermutung, “es gibt eine gerade Zahl größer als 2, die nicht Summe von
zwei Primzahlen ist”, ist ein positiv entscheidbares Problem.9 Wenn die Gold-
bachvermutung falsch ist (also ihre Negation wahr ist), so werden wir in endlich
vielen Schritten ein Beispiel für eine gerade Zahl finden, die nicht Summe zweier
Primzahlen ist. Aber das hilft uns auch nicht weiter. Ist nämlich die Goldbachver-
mutung wahr, so werden wir niemals eine solche Zahl finden. Beim Prozess des
Suchens können wir aber zu keinem Zeitpunkt wissen, ob wir nicht doch vielleicht
später eine finden. Bis zur Zahl 4 · 1018 haben wir noch keine gefunden, aber was
ist 1018 angesichts der unendlich vielen natürlichen Zahlen?

Auf der anderen Seite ist es ebenfalls möglich, dass ein Beweis gefunden wer-
den kann, wie es bei der großen Fermatschen Vermutung10 geschehen ist, die
1994 von Andrew Wiles und Richard Taylor bewiesen wurde. (Nach einem noch
lückenhaften ersten Beweisversuch 1993). Die Hilbertsche Parole des “kein igno-
rabimus” ist daher immer noch die wesentliche Triebfeder aller mathematischer
Forschung.

Leider ist die Zeit nun doch so weit fortgeschritten, dass ich nicht mehr da-
zu komme, Ihnen etwas über das erste Hilbertsche Problem zu berichten. Dieses
hat sich als unabhängig von den bekannten Axiomensystemen der Mengenlehre
erwiesen und kann auch nicht so ohne weiteres durch die Annahme der Existenz
großer Kardinalzahlen entschieden werden. Daher eröffnen sich hier völlig andere
Aspekte des “ignorabimus”, auf die ich vielleicht ein anderes Mal zurückkommen
kann.

9 Positiv entscheidbare Probleme sind Probleme, die sich entscheiden lassen, wenn sie wahr
sind (daher positiv entscheidbar).

10Deren logische Komplexität von ähnlichem Typus ist.
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