
05.09.2018

Voreen – Volume Rendering Engine

Aaron Scherzinger, Dominik Drees

Version 5.0.1

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 2

Outline
1. About Voreen

2. Obtaining Voreen

3. Project Structure

4. Property Linking

5. Extending Voreen

6. Additional Features

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 3

Outline
1. About Voreen

2. Obtaining Voreen

3. Project Structure

4. Property Linking

5. Extending Voreen

6. Additional Features

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 4

About Voreen
• Framework for interactive visualization of volumetric data

• Originally initiated and maintained by the Visualization & Computer Graphics
Research Group at the University of Münster in the Collaborative Research Centre
656 ‘Molecular Cardiovascular Imaging’

• Now maintained and developed collaboratively by the Pattern Recognition and
Image Analysis Group (https://uni-muenster.de/PRIA) and the VISualization and
graphIX (VISIX) research group (https://uni-muenster.de/VISIX)

• Open source (GPL) research platform with a focus on rendering / visualization, some
preprocessing capabilities and analysis tools

• Functional entities can be reused by exploiting
the data-flow metaphor

• Integrates not only volume data
(e.g., geometry, flow data, ...)

• Platform independent (Windows, Linux;
Mac OS currently not supported)

https://uni-muenster.de/PRIA

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 5

About Voreen

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 6

Collaborating with Domain Experts
• Insightful visualizations can only be generated collaboratively

• Challenging for domain experts and computer scientist

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 7

Data Flow Concept
• Data flow network for visual rapid prototyping

• Modular concept, reusability

• Data (e.g., volume data, geometry, images, …) is transmitted
through the network

• Processors: Entities that perform computations
(e.g., rendering, geometry processing, data import)

• Connected by ports

• Different types, e.g., ImagePort, GeometryPort, …

• Central network evaluator

• Determines evaluation order

• Manages resources

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 8

Data Flow Concept
• Configuration of processors through properties

• e.g., lighting, camera, transfer function

• Specify processor behavior

• Interactive manipulation of network behavior through interaction with properties

• Linking of properties for synchronization between processors

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 9

Data Flow Concept
• Reusability of processors

• Processors are organized in processor list

• List can be searched and sorted by type, module, name, …

• State flags depict the processor’s stability
(= experimental, = testing, = stable)

• Processors can be dragged into the network to create a new network or extend an
already existing network

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 10

Data Flow Concept
• Drawbacks: networks may become large and confusing for domain experts

• Large number of components and properties, settings, …

• Solution: provide a more streamlined application user interface for a created workspace

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 11

Application Mode
• As an addition to the network mode there exists an application mode.

• Revised and extended in Voreen 5.0

• Visibility of single properties can be configured

• Provides a user interface for the actual application domain as an abstraction from the
underlying network

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 12

Workspaces
• The current session is serialized within the XML- based Voreen workspace format .vws

• Network topology

• Property states

• Processor layout

• Loaded volumes

• …

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 13

Technical Aspects
• Written in C++

• Exploits OpenGL / GLSL and (optionally) OpenCL, OpenMP

• GUI optional (Qt 5)

• Support for several volume file formats (e.g., RAW, DICOM, HDF5, TIFF-Stacks, …)

• Main renderer: OpenGL / GLSL volume ray-casting

• Support for out-of-core data sets using an octree data structure and an OpenCL volume
ray-casting approach

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 14

Outline
1. About Voreen

2. Obtaining Voreen

3. Project Structure

4. Property Linking

5. Extending Voreen

6. Additional Features

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 15

Obtaining Voreen
• Download of pre-built version or source code from http://voreen.uni-muenster.de

• Current public version 5.0

• Configuration via the CMake build system

• Instructions for building Voreen from source can be found on the website

http://voreen.uni-muenster.de

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 16

Outline
1. About Voreen

2. Obtaining Voreen

3. Project Structure

4. Property Linking

5. Extending Voreen

6. Additional Features

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 17

Voreen Architecture

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 18

Framework
• Voreen core library

• Ports, Properties

• Processor base classes

• Processor, VolumeProcessor,
RenderProcessor, ImageProcessor, …

• Data structures

• Data flow network, volumes, geometries, …

• Network handling

• Minimal external dependencies (OpenGL, GLEW, Boost, TinyXML)

• Voreen Qt library

• Property widgets

• Processor widgets

• Graphical network editor

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 19

VoreenVE
• Visualization environment for rapid prototyping

• Auto-generated property widgets (Voreen Qt Library)

• Visual debugging

• Inspection of intermediate rendering results

• Runtime shader editing

• Application mode for domain experts

• Hides the underlying network

• Visibility of single properties can be configured

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 20

Modules
• Recommended way to extend Voreen

• Encapsulate rendering and data processing functionality

• Processors

• Data reader and writers

• Are included / excluded from the build process using
CMake configuration options

• May contain external libraries

• Dedicated directory for custom modules

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 21

Outline
1. About Voreen

2. Obtaining Voreen

3. Project Structure

4. Property Linking

5. Extending Voreen

6. Additional Features

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 22

Property Linking
• Properties of the same type can be linked (value synchronization)

• Within or across processors

• Uni- or bidirectional

• Cycle prevention

• Linking of differing, but compatible property types is also possible

• Float Integer Boolean

• Linking of more complex properties (e.g., transfer functions)

• (Optional) auto-linking of camera properties

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 23

Managing Links in VoreenVE
• Network editor provides linking layer

• Links are represented by arrows

• Port connections are faded out

• Dragging a line between
processors opens linking dialog

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 24

Outline
1. About Voreen

2. Obtaining Voreen

3. Project Structure

4. Property Linking

5. Extending Voreen

6. Additional Features

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 25

Extending Voreen
• Tutorials on the website (more to come)

• Adding a module

• Adding a processor

• Sample-module voreen/modules/sample can be used as a starting point

• Documentation in the source code should be helpful

• Use existing processors as templates

• process()-method does (almost) all the work, is called during network evaluation

• Adding ports / properties using addPort() and addProperty() in constructor

• Callback-functions for performing actions on property changes can be realized using
MemberFunctionCallback or LambdaFunctionCallback

• …

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 26

Outline
1. About Voreen

2. Obtaining Voreen

3. Project Structure

4. Property Linking

5. Extending Voreen

6. Additional Features

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 27

Visual Debugging
• By hovering over render ports, their content can be inspected

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 28

Visual Debugging
• Render target viewer allows to inspect the color, alpha, depth layer , …

• For all render targets (e.g., RenderPort objects)

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 29

Serialization
• Workspace serializes network topology and property states to XML

• Custom data can be serialized by implementing the Serializable interface and
overwriting the serialize- and deserialize-methods

• Serializer supports primitive data types, tgt data types (e.g., vectors, matrices, …), and
STL containers

• Voreen 5.0 also added a binary JSON serializer that can optionally be used instead of the
XML serialization

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 30

Application Mode Configuration
• Configures the application mode by creating property groups and adding selected

properties to a specific group

• Properties of multiple processors can be grouped by functionality in the interface

• Independent from network topology

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 31

Animation
• Allows to animate (almost) all properties that have been added to the application mode

configuration

• User specifies key frames for which the property value is stored

• Automatic interpolation of values in intervals between key frames

• Video export

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 32

Python Scripting
• Generic read / write access to almost all types

of properties, including cameras

• Volume and transfer function loading

• Canvas snapshots

• Integrated Python editor

• Since Voreen 5.0: Python 3
(earlier versions of Voreen: Python 2.7)

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 33

Selected Modules
• Base

• Base functionality, standard rendering processors (2D and 3D)

• Volume and geometry processors

• Clipping

• Bounding boxes

• Image processors (post processing etc.)

• Volume I/O

• Ffmpeg

• Video export

• OpenCL
• Rendering of large data sets (≥ 30 GB)

• OpenMP

• Parallel code execution for various processors

Aaron Scherzinger, Dominik Drees

Voreen – Volume Rendering Engine 34

Selected Modules
• Plotting

• Multiple plotting functions (2D / 3D)

• RandomWalker

• Semi-automatic 3D segmentation of volume data sets

• … and many more.

Aaron Scherzinger, Dominik Drees

Selected Functionality Examples
• Configurable views: Splitter, triple view, quad view, tabs, …

Voreen – Volume Rendering Engine 35

Aaron Scherzinger, Dominik Drees

Selected Functionality Examples
• Interactive clipping: Axis-aligned clipping, arbitrary clipping, on-screen handles

Voreen – Volume Rendering Engine 36

Aaron Scherzinger, Dominik Drees

Selected Functionality Examples
• Random walker: semi-automated volume segmentation

Voreen – Volume Rendering Engine 37

Aaron Scherzinger, Dominik Drees

Selected Functionality Examples
• Plotting: Support for CSV files, line plots, bar plots, 3D surface plots, …

Voreen – Volume Rendering Engine 38

Aaron Scherzinger, Dominik Drees

Selected Functionality Examples
• Large Volume Visualization:

• Interactive 3D and 2D visualization of multi-channel volume data
(e.g., lightsheet microscopy image stacks)

• Support for TIFF / OME TIFF image stacks

• HDF5 file support (incl. compression)

• Rendering of large data sets (100 GB and more)

Voreen – Volume Rendering Engine 39

Aaron Scherzinger, Dominik Drees

Selected Functionality Examples
• Surface Extraction based on iso values

Voreen – Volume Rendering Engine 40

Aaron Scherzinger, Dominik Drees

Selected Functionality Examples
• Multivolume Raycasting: Simultaneous 3D visualization of multi-modal datasets

Voreen – Volume Rendering Engine 41

Aaron Scherzinger, Dominik Drees

Selected Functionality Examples
• Volume Registration: Landmark registration, interactive (manual) registration

Voreen – Volume Rendering Engine 42

