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1 Definition der p-adischen Zahlen

(Arthur Bartels, 15.10.2019)
Normierte Körper, nicht-archimedische Normen, Vervollständigungen, der Körper Qp.

Die rationalen Zahlen Q bilden bekanntermaßen einen Körper mit einer Norm | · |. Der
Prozess der Vervollständigung liefert den Körper der reellen Zahlen R. Die rationalen Zahlen
lassen sich aber auch mit einer anderen Norm ausstatten, der p-adischen Norm | · |p, wobei
p eine Primzahl ist. Vervollständigen führt zum Körper Qp der p-adischen Zahlen.

[Kat, §1.1–1.4]

2 Die ganzen Zahlen Zp

(Markus Schmetkamp, 22.10.2019)
p-adische Entwicklung, die ganzen Zahlen, Einheiten, Rechnen mit ganzen Zahlen

Analog zur Dezimaldarstellung von reellen Zahlen gibt es eine p-adische Darstellung
p-adischer Zahlen. Wir können die ganzen Zahlen Z als reelle Zahlen ohne Nachkommas-
tellen auffassen. Es gibt aber auch p-adische ganze Zahlen (die p-adische Vervollständigung
der gewöhnlichen ganzen Zahlen). Es stellt sich heraus, dass p-adische ganze Zahlen keine
Nachkommastellen in ihrer p-adischen Darstellung haben. Im Vergleich zu den gewöhnlichen
ganzen Zahlen ist das Rechnen mit p-adischen ganzen Zahlen etwas komplizierter, wenn auch
nicht viel. Vor allem die Einheiten in Zp sind wesentlich spannender als in Z.

[Kat, §1.4–1.6]

3 Hensels Lemma

(Marius Lutzer, 29.10.2019)
Wurzeln in Qp, Nullstellen und Reduzibilität von Polynomen, Hensels Lemma, Ideale

Über den rellen Zahlen lassen sich manche ganzzahlige Gleichungen lösen, welche sich
über Q nicht lösen lassen, z.B. ist

√
6 reell, aber nicht rational. Hensels Lemma gibt Auf-

schluss darüber, wann sich ganzzahlige Gleichungen über den p-adischen Zahlen lösen lassen.
Zudem haben die p-adischen ganzen Zahlen positive Eigenschaften, welche die gewöhnlichen
ganzen Zahlen nicht haben: Zp ist ein sogenannter lokaler Ring.

[Kat, §1.7–1.8]

4 Der Satz von Ostrowski

(Gianna Frankholz, 05.11.2019)
Satz von Ostrowski, Produkt-Formel, Verschiedenheit der Vervollständigungen

Es stellt sich die Frage, ob neben | · | und | · |p noch weitere Normen auf Q existieren und
ob die Vervollständigungen R und Qp tatsächlich verschiedene Objekte sind. Die Antwort
ist: Alle nicht-trivialen Normen auf Q haben die Form | · | oder | · |p und R, Qp, Qq sind
verschiedene Körper für Primzahlen p 6= q.

[Kat, §1.9]
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5 Topologische Eigenschaften. Cantor-Mengen I

(Annika Rosendahl, 12.11.2019)
Bälle, offene und abgeschlossene Mengen, Kompaktheit, Zusammenhang, Die Cantor-Menge

Die reellen Zahlen sind (topologisch) zusammenhängend. Das ist für uns sehr anschaulich.
Bei den p-adischen Zahlen ist das Gegenteil der Fall: Sie sind (in einem gewissen Sinne) so
unzusammenhängend wie es nur geht, man sagt, sie sind total unzusammenhängend. Auch
sonst ist die Geometrie der p-adischen Zahlen sehr gewöhnungsbedürftig. So ist etwa jeder
Punkt in einem Ball auch schon dessen Mittelpunkt...

[Kat, §2.1–2.2]

6 Euklidische Modelle für Zp. Cantor-Mengen II

(???, 19.11.2019)
Zp ist eine Cantor-Menge, total unzusammenhängende Mengen im R2

Im letzten Vortrag wurde die Cantor-Menge definiert. Die Menge der p-adischen ganzen
Zahlen ist homöomorph zur Cantor-Menge. Die Eigenschaften der Cantormenge zeigt, dass
die Wahl der Primzahl p an dieser Stelle keine Rolle spielt. Es gibt zudem viele Möglichkeiten
die p-adischen ganzen Zahlen, und damit die Cantormenge, zu visualisieren.

[Kat, §2.2–2.3]

7 Folgen und Reihen

(Markus Schmetkamp, 26.11.2019)
Folgen, Reihen, Konvergenz, Potenzreihen, Konvergenzradius

Viele Definitionen aus der Analysis lassen sich 1-zu-1 auf die p-adischen Zahlen übertragen:
Folgen, Reihen, Konvergenz, Potenzreihen, etc. . Entsprechend erhält man ähnliche Resulta-
te. Manche scheinen erschreckend einfach: z.B. ist eine Reihe

∑
n an genau dann konvergent,

wenn die zugrundeliegende Folge (an)n eine Nullfolge ist.
[Kat, §3.1–3.2]

8 Fortsetzbarkeit und bekannte Funktionen

(Emre Dönmez, 03.12.2019)
Fortsetzbarkeit von Potenzreihen, Logarithmus, Exponentialreihe

Die Potenzreihe der Logarithmusfunktion log(x+1) konvergiert im Intervall (−1, 1). Wie
wir wissen können wir diese Funktion fortsetzen, sodass sie sich auf alle positiven reellen
Zahlen anwenden lässt. Der p-adische Fall unterscheidet sich hier vom reellen. Schon die
Frage, was wir uns unter einer geeigneten Fortsetzung vorstellen, erweist sich als interessant.

[Kat, §3.3–3.5]
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9 Stetige Funktionen

(???, 10.12.2019)
lokal-konstante und uniform stetige Funktionen, Satz von Baire

Wir haben ein gutes Gefühl für stetige Funktionen f : R → R. Da die Topologie von
Qp und Zp so verschieden ist von der der reellen Zahlen, verhalten sich stetige Funktionen
ganz anders. Stetige Funktionen f : Zp → Qp lassen sich ganz gut untersuchen. Mithilfe
des Satzes von Baire kann man die Existenz von kuriosen Abbildungen widerlegen, so gibt
es z.B. keine Funktion f : R → R welche an jeder rationalen Stelle stetig ist und an jeder
irrationalen Stelle unstetig. Analoge Aussagen erhält man für die p-adischen Zahlen.

[Kat, §4.1–4.3]
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