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1 Topologische Radume
1.1 Definition.  Ein metrischer Raum (X, d) ist eine Menge X mit einer Abbildung, Metrik genannt,
d: X x X — [0, 00) mit den folgenden Eigenschaften:
@) vx,y € X:d(x,y) = d(y,x),
(i) vx,y € X:d(x,y) =0 < x =y und
(iii) Vx,y,z € X:d(x,z) < d(x,y) + d(y, z) (Dreiecksungleichung)
1.2 Definition. Sei V ein R-Vektorraum. Eine Norm auf V ist eine Abbildung ||.||: V — [0, 0c0) mit
den folgenden Eigenschaften:
@D WweV,AeR:|A-v]| =,
(i) WeV:|v|=0 < v=0
(iii) Yv,w € V:|[v+w]| < ||v|| + |[w]| (Dreiecksungleichung)
Durch d(v,w) = ||[v — w|| erhalten wir eine Metrik auf V wie man sich leicht klarmacht.

1.3 Beispiel. Auf R™ gibt es verschiedene Normen und damit auch verschiedene Metriken: Fiir
X = (X1y...,Xn) € R™ definiert man

() [Ix]2 =/ X %
@) [Jxfln = X5 il
(iii) [[x[|oo = max{lx;||i=1,...,n}

1.4 Beispiel. Man kann Metriken auch anderweitig definieren:

() Auf der 1-Sphiire S := {z € C ||zl = 1} wird durch d(z,z') == min{|6|[6 e R:z =€ .2/}
eine Metrik definiert.

(ii) Ist X ein metrischer Raum und A eine Teilmenge von X, so wird A durch die Einschrankung
der Metrik auf A zu einem metrischen Raum. Wir sagen dann A ist ein Unterraum von X.

(iii) Sei X eine beliebige Menge. Durch

dlxy) = 0, fallsx=y
= 1, fallsx#vy

wird auf X eine Metrik, die diskrete Metrik, definiert.

(iv) Sei p eine Primzahl. Jedes x # 0 € Q ldsst sich eindeutig schreiben als x = gp™ mitn,a,b €
Z,b #0und a,b,p paarweise teilerfremd. Dann heifst

Ixl, =p~

der p-adische Betrag von x. Setzt man \OllD := 0, so erhdlt man durch d, (x,y) = [x — y\p die
p-adische Metrik auf Q.

1.5 Definition. Seien (X, dx) und (Y, dy) zwei metrische Raume. Eine Abbildung f: X — Y heift
eine Isometrie, falls fiir alle x,x’ € X
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gilt. f heif3t stetig, falls fiir alle xo € X gilt:

Ve>0:30>0:dx(x,x0) <d = dy(f(x),f(xo)) <€

1.6 Definition. Eine Teilmenge U eines metrischen Raumes X heifst offen, falls gilt

vx € U:35 > 0mit Bs(x) = {y € X|d(x,y) <8} CU

1.7 Lemma. Sei f: X = Y eine Abbildung zwischen metrischen Rdumen. Dann sind dquivalent:

(i) f ist stetig

(ii) Urbilder offener Mengen in Y sind offen in X; also

VU C Y offen: f~1(U) C X offen
Bewers:  Siehe Analysis I1. O

1.8 Definition. Ein topologischer Raum (X, ) ist eine Menge X zusammen mit einer Familie O
von Teilmengen von X, sodass gilt:

W 0,Xeo
i) LveOd = UNnveo
(iii) Ist I eine Indexmenge und U; € O fiir i € I, so gilt UieI u; € 0.

O heifit dann eine Topologie auf X. U C X heifit offen, falls U € O. A C X heifit abgeschlossen, falls
X\ A offen ist.

1.9 Beispiel. (i) Jeder metrische Raum wird durch
O={ucx | U ist offen im Sinne von Definition 1.6}

zu einem topologischen Raum.
(ii) Sei X eine beliebige Menge.
(@) Die grobe Topologie ist Ogyop = {0, X}
(b) Die diskrete Topologie ist Ogiskret == P(X).
(c) Die koendliche Topologie ist Oygenar. :={U C X | X\ U endlich} U {@}.

1.10 Definition. Eine Abbildung f: X — Y zwischen topologischen Raumen heifdt stetig, wenn
Urbilder von offener Mengen offen sind.

1.11 Lemma. Seien f: X — Y und g: Y — Z stetige Abbildungen. Dann ist auch gof: X — Z stetig.

Beweis: Sei U C Z offen. Dann ist g='(U) C Y offen, da g stetig ist. Da auch f stetig ist, gilt
(gof)~'(U)=f"(g~"(U)) C X offen. O

1.12 Definition. Seien X, Y topologische Raume. Eine bijektive stetige Abbildung f: X — Y heifst
Homdoomorphismus, falls auch ihre Umkehrabbildung .Y X stetig ist.

Gibt es einen solchen Hom6omorphismus, so heiffen X und Y homdéomorph und wir schreiben
X =Y, andernfalls X 2 Y.
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1.13 Beispiel. (i) Es gilt (0,1) = (0,00) = (—00,0) = R. Diese Homdomorphismen kann man
leicht explizit hinschreiben.
(ii) Es gilt (0,1) 2 [0,1) 2 [0, 1] 2 (0,1). Dies zeigen wir in einer Ubungsaufgabe.
(iii) Es gilt
R"=R™ <— n=m.

Im Rahmen dieser Vorlesung werden wir nur Spezialfille dieser Aussage (topologische Inva-
rianz der Dimension) beweisen kénnen.

1.14 Definition. Sei X ein topologischer Raum. Eine Familie U von offenen Teilmengen von X heift
eine Basis der Topologie, falls fiir jede Teilmenge W C X dquivalent sind:

(1) W ist offen.

2 xeW:FUeUmitxeUCW «— W=uecu U
ucw

Man sagt X erfiillt das zweite Abzihlbarkeitsaxiom, falls X eine abzédhlbare Basis der Topologie
besitzt.

1.15 Beispiel. Sei X ein metrischer Raum. Dann ist {Bs(x) | x € X, 8 > 0} eine Basis der Topologie
von X nach Definition 1.6. Gibt es eine abzihlbare dichte Teilmenge Xo C X, so ist

{Bi/n(x) |x € Xo,n € N}

eine abzdhlbare Basis der Topologie von X und X erfiillt das zweite Abzdhlbarkeitsaxiom.

1.16 Proposition. Sei X eine Menge und U eine Familie von Teilmengen von X mit X = (Jy,¢y U.
Dann ist U genau dann die Basis einer Topologie O auf X, wenn U die folgende Bedingung erfiillt:

VILVelU:xelUnV:3WeUmitxeWCUNV [#]
In diesem Fall ist die Topologie O eindeutig bestimmt und es gilt
O={WCXvxeW:dJueUmitxeUC W}

Beweis: Sei U die Basis der Topologie O und U,V € U. Per Definition sind U, V offen, also ist
auch U NV offen. Da U eine Basis der Topologie ist, gibt es zu jedem x € UNV ein W € U mit
x € W C UnNV. Daher gilt [#].

Sei umgekehrt [#] erfiillt. Definiere eine Topologie O durch

We«—VxeW:dUuel:xeUCW.

Dann ist ) € O. Wegen X = Jy ¢ U gilt auch X € O. Weiter ist O offenbar unter Vereinigungen
abgeschlossen. Seien W1, W, € O und x € W; N W,. Dann gilt

x € Wi,Wj offen — JU; eU:xeU; CW;
xeWo,Wroffen — dU, e U:xe Uy CW,

Also x € U; NU,. Mit [#] fOlg’[: IWelUmitxeWCU;NnU, CW;NW,. O
1.17 Beispiel. » Sei RN der R-Vektorraum aller reellen Folgen. Fiir eine Konstante & > 0, eine
Zahl n € N und Punkte «1,...,a, € R sei
Uns,o00,eyon = { (Xi)ien | i — o] < 8 fiiri=1,...,n}

Dann erfiillt U = {Un 5 «;,...,an I € Ny; € R, 5 > 0} die Bedingung [#] und ist die Basis
der Topologie der punktweisen Konvergenz.
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» Sei C(R,R) der R-Vektorraum aller stetigen Abbildungen. Zu [a,b] C R, >0, g: [a,b] = R
stetig sei
Ua,b,s,9 = {f: R = R stetig | Vt € [a,b] : |f(t) — g(t)] < 5}.

Dann erfiillt U := {Uq p,5,4} die Bedingung [#] und ist die Basis der Topologie der gleichmii-
figen Konvergenz auf kompakten Intervallen.

1.18 Definition. Sei Y eine Teilmenge eines topologischen Raums X.

:={y € Y|3JU C X offen mit y € U C Y} heifst das Innere von Y.
={x € X|VU C X offen mit x € U: UNY # ()} heifit Abschluss von Y.
Y =Y\ Y heift der Rand von Y.

< <o

1.19 Bemerkung. Es gilt

DY =X\ (X\Y),Y=X\(X\Y)P.

2) ? =J ucy U ist offen.
U offen

3) Y =(\yca,A abg A ist abgeschlossen.

4) OY =Y\ Vist abgeschlossen.

1.20 Definition. Sei X ein topologischer Raum und x € X. V C X heifst eine Umgebung von x, falls
es U C X offen gibt mit x € U C V. Ist V offen, so heifit V eine offene Umgebung von x.

1.21 Definition. Ein topologischer Raum X heifst hausdorffsch (oder ein Hausdorffraum), falls es
zu jedem Paar x,y € X, x # y offene Umgebungen U von x und V von y gibt mit UNV = {.

Metrische Raume sind stets hausdorffsch. Ist [X| > 2 so ist (X, Ogop) nicht hausdorffsch.

1.22 Definition. Ein Hausdorffraum M, der das zweite Abzihlbarkeitsaxiom erfiillt, heifst eine
topologische Mannigfaltigkeit der Dimension n (oder eine n-Mannigfaltigkeit), falls er lokal ho-
moomorph zum R™ ist; d.h. Vx € M existiert eine offene Umgebung U von x mit U = R™.
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2 Konstruktion topologischer Rdume

2.1 Definition. Sei X ein topologischer Raum und A C X. Die Spurtopologie, Teilraumtopologie
oder Unterraumtopologie auf A besteht aus allen Teilmengen von A der Form A N U mit U C X
offen. Mit dieser Topologie heifit A ein Unterraum von X.

2.2 Bemerkung. Seii: A — X die Inklusion. Dann ist i stetig und falls Y ein weiterer topologischer
Raum ist und f: Y — A eine Abbildung, so gilt

f stetig <= iof:Y — X stetig

2.3 Definition. Seien X, Y topologische Raume. Eine Basis fiir die Produkttopologie auf X x Y ist
U:={UxV|UCXoffen,V C Y offen}.

Dies konnen wir auf das Produkt beliebig vieler topologischer Raume verallgemeinern:

2.4 Definition. Seien X; fiir i € I topologische Rdume. Die Produkttopologie auf ihrem Produkt
HXi = {(xi)ie1 | xi € Xi}
i€l
hat als Basis alle Mengen der Form [ [;.; U; mit
(i) U; C X; ist offen

(i) Fur fast alle i ist U; = X; (also fiir alle bis auf endlich viele 1).

2.5 Bemerkung. Seien p;: [[;c; Xi — X; die Projektionen auf die einzelnen Koordinaten. Dann
sind die pj alle stetig und die folgende universelle Eigenschaft ist erfiillt:
Ist Y ein weiterer topologischer Raum und f: Y — [ [, X; eine Abbildung, so gilt:

f stetig <= Vj : fj = pj o f stetig

2.6 Bemerkung. Die iibliche Topologie auf R™ = ] ; R stimmt mit der eben definierten Pro-
dukttopologie iiberein.

2.7 Beispiel. Mit Produkten lassen sich viele interessante topologische Raumen ,bauen”; setze
zum Beispiel
n
T =8"x...xs'=]Js'
—_——
e i=1

T™ heiflt der n-Torus. Der n-Torus ist eine (glatte) n-Mannigfaltigkeit.

Abbildung 1: Der Torus T2, Quelle(#

2 Konstruktion topologischer Réiume 5

Achtung: U C A
offen =5 U C X
offen!
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2.8 Definition. Seien X und Y topologische Raume und (f¢)c[o,1) eine Familie von stetigen Abbil-
dungen f¢: X — Y. Wir sagen, dass die f; stetig von t abhdngen, falls

H: X x [0,1] — Y mit H(x,t) = fy(x)

stetig beztiglich der Produkttopologie ist. In diesem Fall heiflen fo und f; homotop und H eine
Homotopie zwischen fo und f;.

Beispielsweise sind je zwei Abbildungen f, g: X — R™ homotop; eine Homotopie wird gegeben
durch H(x,t) == (1 —t) - f(x) + t - g(x). Wir werden spéter sehen, dass die Identitdt id: S' — S!
nicht homotop zu einer konstanten Abbildung ist.

2.9 Definition. Sei X ein topologischer Raum, M eine Menge und q: X — M eine surjektive Abbil-
dung. Die offenen Mengen der Quotiententopologie auf M (beziiglich q) sind alle U C M fiir die
g~ "(U) C X offen ist.

Die Quotiententopologie ist gerade so definiert, dass q: X — M stetig ist. Aufierdem ist wieder
eine universelle Eigenschaft erfiillt, ndmlich die folgende:
Ist Y ein weiterer topologischer Raum und f: M — Y eine Abbildung, so gilt

f stetig <= fo q stetig

Die Quotiententopologie wird oft wie folgt eingesetzt: Sei ~ eine Aquivalenzrelation auf dem to-
pologischen Raum X. Dann ist die Aquivalenzklassenabbildung q: X — X/~, x — [x]. surjektiv.
Insbesondere wird X/~ durch die Quotiententopologie zu einem topologischen Raum.

2.10 Beispiel. Betrachte X =[0,1] x R.

(i) Definiere (s,t) ~ (s/,t') & (s =s’und t =t’) oder (s = 0,s’ = 1,t = t’). Dann erhalten wir
einen Zylinder

[le

Anschaulich haben wir zwei gegeniiberliegende Seiten ,,zusammengeklebt”.

(ii) Definieren wird stattdessen (s,t) ~ (s/,t') < (s=s’und t =t') oder (s =0,s’' =1Tund t =
—t’). Dann erhalten wir das Mébiusband, siehe Abbildung 2. Hier haben wir anschaulich
gesprochen X verdreht und dann zusammengeklebt.

Abbildung 2: Mobius-Band, Quelle &

(iii) Sei RP™ die Menge aller 1-dimensionalen Unterrdume des R™*'. Wir erhalten eine surjektive
Abbildung
q: R™T\{0} = RP™ ,  q(v) = (v)

RP™ mit der Quotiententopologie beziiglich q heifdt der reell projektive Raum der Dimension
n. Er ist eine n-Mannigfaltigkeit.
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(iv) Betrachte auf R x {0, 1} die Aquivalenzrelation die durch
(x,t) ~ (x',t") : & x =x" und (t = t’ oder x # 0)

definiert wird. Dann ist R x {0, 1}/ ~ nicht hausdorffsch (obwohl R x {0, 1} natiirlich haus-
dorffsch ist).

(v) Betrachte auf R die Relation x ~y :& x —y € Q. Dann ist die Quotiententopologie auf R/ ~
die grobe Topologie.

(vi) Sei f: X — X eine stetige Abbildung. Betrachte auf X x [0, 1] die Aquivalenzrelation
(x,t) ~ (x',t") <= (x=x"und t =t’) oder (t =0,t' =1 und x’ = f(x))

Der Quotient Ty := X x 10,11/ heifst der Abbildungstorus von f.

Beispiel: Betrachte f: R — R gegeben durch f(x) = —x. Dann ist Tf das Mobiusband von
eben.

2 Konstruktion topologischer Réume 7



Ein Teilnetz einer
Folge ist nicht not-
wendig eine Teilfolge!

3 Konvergenz

3.1 Definition.  Sei X ein topologischer Raum und (x,, )nen eine Folge in X. Dann sagen wir (xn Jnen
konvergiert gegen x € X, falls gilt:

Zu jeder offenen Umgebung V von x, gibt es N € IN, sodass x,, € V fiir allen > N.

Wir schreiben dann x,, — x oder x,, === x. Der Punkt x heifit Grenzwert von (xn)nen.

Wir stellen fest: Beziiglich der groben Topologie ist jeder Punkt Grenzwert jeder Folge.
Betrachte die Topologie der gleichméfiigen Konvergenz auf kompakten Teilmengen (siehe Bei-
spiel 1.17) auf dem Raum C(R,IR). Dann gilt fiir Folgen (f,)nen von stetigen Abbildungen f, €
C(R,R)
fn — f <= Va < b konvergiert f,,|[q,b] — f[q,b) gleichmafig.

3.2 Lemma. Sei X hausdorffsch. Gilt x, — x und x,, — y, so folgt x = y.

Bewers:  Ubung! O

3.3 Definition. Eine nichtleere Menge A mit einer Relation < heift gerichtet, falls gilt
@ VAeA:ALA
(i) VA1, A2, A3 e A: (A1 <A2)A (A2 <A3) = A < A3 (transitiv)
(i) VA, A e A3 (A S A (A2 <)

3.4 Definition. Sei X ein topologischer Raum. Ein Netz (x))aea in X besteht aus einer gerichteten
Menge A und Elementen x, € X fiir A € A. Fiir x € X sagen wir (xa)aca konvergiert gegen x, falls
gilt:

vV Umgebungen U von x: 3Ag € A: VA€ Amit A > A gilt x, € U

. . A
Wir schreiben dann x, 222 x oder x) — x.

Es sei X ein topologischer Raum und x € X ein Punkt.Dann ist die Menge A aller offenen Umge-
bungen von x gerichtet beziiglich
Uugsv=<vcu

Ist nun xy € U fiir alle U € A so gilt xy — x.

3.5 Lemma. Sei X hausdorffsch. Gilt xA — x und x, — vy, so folgt x =y.

Bewers: Angenommen es gilt x # y. Da X hausdorffsch ist, existiert dann eine Umgebung U von
x und V von y mit UNV = . Da x, — x finden wir Ay, sodass x, € u fiir alle A > Ay. Genauso
finden wir Ay, sodass x, € V fiir alle A > Ay. Sei nun p € A mit p > Ay und p > Ay. Dann folgt
xyp € UNV = 0. Widerspruch! O

3.6 Definition. Sei (x3)aca ein Netz in X. Ein Teilnetz von (xx+)arca- ist eine gerichtete Menge A’
mit einer Abbildung f: A’ — A, so dass gilt

) A} <A, = f(A]) < f(A)) (f erhalt ,, <)
ii) VAe A: 3N e A/ mit A < f(A) (f ist kofinal)

<
Oft schreiben wir dann (x¢(x1), fiir das entsprechende Teilnetz.

rTeN!
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4 Kompakie Raume

4.1 Definition. Eine Familie U von offenen Teilmengen von X heifit eine offene Uberdeckung, falls

Ju=x

ueu

V C U heifit eine Teiliiberdeckung, falls immer noch X C (Jy ¢y V gilt.

4.2 Definition. Ein topologischer Hausdorffraum X heifit kompakt, wenn jede offene Uberdeckung
von X eine endliche Teiltiberdeckung besitzt.

4.3 Satz. Sei X ein Hausdorffraum. Dann sind dquivalent:

1) X ist kompakt.

2) Jedes Netz in X besitzt ein konvergentes Teilnetz.

BewErs: Sei (x))aca €in Netz in X. Fiir A € A betrachten wir A = {xx/ |A’ > A} und U, = X\ A,.
Wir behaupten zunéchst, dass {U, | A € A} keine endliche Teiltiberdeckung besitzt.

Sei Ag C A endlich. Da A gerichtet ist, gibt es A € A mit A > u fiir alle © € Ao. Es folgt
xa € {xas [N > p} fur alle p € Ap. Insbesondere folgt daraus x, € ﬂue Ao Au und damit x) ¢ U,
fur alle p € Ag. Der Schnitt ist also nicht leer und damit die Behauptung gezeigt.

Da X kompakt ist kann {U, | A € A} keine Uberdeckung von X sein und es gibt x & [J,c 4 Ua. Mit
anderen Worten x € [)yca A

Sei U die Menge aller offenen Umgebungen von x. Wir setzen

Auv={AMW|AeAxeUcU}

Durch (A, U) < (A, U) :& A <A und U D U wird Ay zu einer gerichteten Menge: Fiir (A, U;)
und (A2, Uz) € Ay betrachte U := U;NU; und wihle A € AmitA > Aq,A2. Dax € Ay ={xar [N = A}
ist und U eine offene Umgebung von x ist, folgt

un {X)\/

NZ=ALA£D

Also gibt es A’ > A mit x,. € U und es gilt (A, U) € Ay sowie (A7, U;), (A2, Uz) < (M, U). Damit
ist Ay gerichtet.

Sei f: Ay — A definiert durch f(A,U) := A. Es gilt nun x¢(»,u) — x fiir (A,U) — oo. Daher ist
(x¢(a,u)) (A, u)en, das gesuchte konvergente Teilnetz.

Zur anderen Implikation: Sei U eine offene Uberdeckung von X. Angenommen U besitzt keine
endliche Teiltiberdeckung. Sei A := {Up C U| Uy ist endlich} die Menge der endlichen Teilmengen
von U. A ist gerichtet beziiglich Uy < Uy = Uy € Uy.

Zu Uy € A wihle

X, € | U

Uelo

Sei nun (x¢(»))aeas mit f: A’ — A ein konvergentes Teilnetz von (xy,)u,ea und x der Grenzwert
von (x¢(ar))arenr. Da U eine Uberdeckung von X ist gibt es V € U mit x € V. Nun gibt es Ag € A’
mit x¢(p) € V fiir alle A > Ao. Da f kofinal ist gibt es A mit f(A;) > {V} € A. Sei u > Ao, Ay in A,
Dann gilt wegen p > Ao

Xf(n) eV
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und andererseits, wegen | > A4

Xf(pn) ¢ U uoswv.
uef(p)

Widerspruch. O

4.4 Bemerkung. Sei X ein Hausdorffraum. Eine Familie A von abgeschlossenen Teilmengen von
X hat die endliche Durchschnittseigenschaft, wenn fiir jedes Ay C A mit |[Ao| < oo gilt

(] A#0.

AcAo

Dann ist X genau dann kompakt, wenn gilt: Hat eine Familie A von abgeschlossenen Teilmengen
von X die endliche Durchschnittseigenschaft, so gilt

[ A#0.

AcA

{ala e A}
{a‘aeA}

3+

(547

4.5 Bemerkung. Sei X ein metrischer Raum. Dann sind dquivalent:
(1) X ist kompakt.
(2) Jede Folge in X besitzt eine konvergente Teilfolge.

Topologische Rdume mit der zweite Eigenschaft heiflen folgenkompakt.

4.6 Bemerkung. Man kann auch zeigen, dass sich Stetigkeit in metrischen Rdumen tiiber das Fol-
genkriterium charakterisieren ldsst, in allgemeinen topologischen Rdumen muss man stattdessen
aber Netze benutzen. Bei der Verallgemeinerung von metrischen Rdumen hin zu topologischen
Raumen, miissen also auch Folgen zu Netzen verallgemeinert werden.

4.7 Satz (TycHoNoV). Sei (Xi)ier eine Familie von kompakten topologischen Raumen. Dann ist
auch X := [ [;¢; Xi kompakt.

4.8 Bemerkung. Seien (X, di)ien folgenkompakte topologische Rdume. Dann ist auch [ [; X; fol-
genkompakt:

Sei pj: [[; Xi = X; die Projektion auf den j-ten Faktor. Sei (xn,)nen eine Folge in J]; Xi. Wahle
induktiv N = Ny D2 N7y D N, D ... mit

(@ INi| =00

(i) (pi(xn))nen, ist eine konvergente Folge in X;.
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Dies ist moglich, da X; kompakt ist. Wahle nun ny € Ny induktiv, so dass ni > ny_1. Dann ist
(Xn, ke eine Teilfolge von (xn)nen. Fiir i € N ist (pi(xn,)), N k> eine Teilfolge der konvergen-
ten Folge (pi(xn))nen; und daher konvergent. Damit konvergiert auch (pi(xn,)), o fiir jedes i.
Daher konvergiert (xn, Jxew punktweise, also in der Produkttopologie (Ubung).

4.9 Definition. Sei (xa)aca ein Netz in X und A C X. Wir sagen (xa)aca ist immer wieder in A,
falls gilt:
VAe A:Jue Amitp>Aund x, € A

Wir sagen (xa)aea ist schliefilich in A, falls gilt
AeA:Vpe Amitpu>Agitx, € A
Offensichtlich gilt: x, — x <= fiir jede Umgebung U von x ist x, schliefSlich in U.

4.10 Definition. Ein Netz (xa)aea in X heilSt universell, falls fiir jede Teilmenge A C X gilt: Entwe-
der ist (x))aea schlieBSlich in A oder schlieSlich in X'\ A.

4.11 Bemerkung. P Ist (x)aea universell und immer wieder in A, dann ist (x; )ac A schliefSlich
in A.

» Ist (xa)aen ein universelles Netz in X und f: X — Y eine Abbildung, so ist auch (f(xa))ca
ein universelles Netz in Y.

4.12 Lemma. Ist X kompakt und (xa)aea ein universelles Netz in X, so konvergiert (xa)aeca in X.

Bewers: Sei X kompakt und (xj)ae ein universelles Netz in X. Angenommen (x))aea konvergiert
nicht in X. Dann gibt es zu jedem x € X eine offene Umgebung U, von x, so dass (xa)aea nicht
schliefSlich in U, ist. Da (xx)aea universell ist, ist (xa)aea schliefSlich in X\ Uy. Da X = [J,cx Ux
und X kompakt ist, gibt es x1,...,xx € Xmit X = Uy, U...UlUy, . Fiirjedesi e {1,...,k}seiA; € A
mit x,, € X\ Uy, fiir p > Ai. Seinun p € Amit u> Ay furi=1,...,k. Es folgt

k

k
xuerNXUkJ—X\<UL%>—X\X—®f O
i=1

i=1
4.13 Proposition. Jedes Netz besitzt ein universelles Teilnetz.

Bewers: Sei (x))aca ein Netz in X. Sei

o (1) B € DB = (xa)aca ist immer wieder in B
M = {%QT(X)‘ (2) B,B'eB—=BNB B

Dann ist {X} € 9, insbesondere gilt M # 0. Ist My C M eine Kette, also
B, B €My =— BCB oder B’ CB

so gilt Upeon, B € M. Nach dem Lemma von Zorn enthélt Mt ein maximales Element 9. Da B
maximal ist, ist {X} € 9B. Sei

A" = {(B,A) | B € B,A € A,x) € B}

Durch (B,A) < (B/,A’) :& B 2 B/,A < A wird A’ gerichtet. Wir zeigen nun, dass (xx)(s,x)jen’
universell ist. Dazu zunichst ein Hilfssatz:
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Sei (xA)(B,n)en’ immer wieder in S. Dann gilt S € B.

Beweis: Wir zeigen: B+ == B U{SNB|B € B} € M. Da B maximal ist und B C B, folgt dann
B =B und S € BT = B. Offenbar erfiillt B+ Bedingung (2); es bleibt also (1) zu zeigen.

Wir miissen zeigen, dass fiir alle B € 98 das Netz (xp)aca immer wieder in B N S ist. Sei also
A € A beliebig. Gesucht istnun 1 > Amitx, € BNS. DaB € B € M gibtes A’ € A, ' > A mit
xas € B. Also ist (B,A’) € A’. Da (xa)(B,n)en’ immer wieder in S ist, gibt es

A3 (Asu) = (B,N)

mit x, € S. Da (A, ) € A'ist x, € A C B. Also x, € BN'S, was zu zeigen war. []
Sei S C X beliebig. Ist (xA)(B,n)cnr Weder schlieflich in S noch schlieflich in X \ S, so ist
(xA)(B,A)ens immer wieder in S und immer wieder in X \ S. Mit dem Hilfssatz folgt nun, dass

S,X\S6%.Danngiltaber(2)=$ﬂ(X\S)e%.f O

BeweEis (des Satzes von Tychonov): Ist (x)ae ein Netz in [ [; Xj, so besitzt dieses Netz ein univer-
selles Teilnetz (x¢(,)) e’ nach Proposition 4.13. Fiir jedes i ist dann pi (x¢(,)) e’ ein universelles
Netz in X; und nach Lemma 4.12 konvergent. Daher ist (x(.)) uea+ beziiglich der Produkttopologie
konvergent. O

4.14 Definition. Sei {*°(Z) der R-Vektorraum aller beschrinkten Abbildungen f: Z — R. Die
Supremumsnorm

[f]| o = sup{If(n)| | n € Z}

ist eine Norm auf {*(Z).

4.15 Satz. Es gibt eine Abbildung M: ({*(Z) — R mit

a) M ist R-linear,

b) M ist positiv, d.h. f > 0 = M(f) > 0,

c¢) M(1) =1 fir die konstante 1-Funktion 1: Z — R,

d) M ist Z-invariant: Fiir f € {*(Z) sei Tf € {*°(Z) gegeben durch (Tf)(n) = f(n + 1). Dann gilt

M(f) = M(TT).
Bewers:  Sei 9t die Menge aller Abbﬂdungen M: €°°(Z) lR dle die Punkte a), b) und c) erfiillen.
Fir n € N sei M,, € 9 definiert durch M, Z ). Dann gilt fiir f € {*°(Z)
1 .. , T e s 1
M (f) = My (Tf) = e ; f(i) = Tf(i) = e é(fm —f(i+1) = n—H(f(O) —f(n+1))

Es folgt ‘Mn(f) — Mn(Tf)’ < % Wir konstruieren nun eine kompakte Topologie auf 9, denn
dann kénnen wir anschlieffend ein konvergentes Teilnetz der Folge (M, )nen betrachten. Sei

X= TT [l 1]

et (2)
Aus a), b), c) folgt, dass fiir f € £*°(Z) und M € M gilt: M(f) € [—||f||o, [|f]|0] - Mittels

M>M— (M(f)) eX

feeo(Z)
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wird 9t zu einem abgeschlossenen Unterraum von X. 9t ist kompakt beziiglich der Produkttopolo-
gie auf X, also beziiglich punktweiser Konvergenz. Sei nun «: A — IN, sodass M) — M € M
(existiert, da 9t kompakt). Es folgt

VE € 1°(Z) : Mo n) (f) — M(f)

A—00

Wegen My a) (f) — Mga) (TF) —— M(f) — M(Tf) und

2-Ifll «)—oo
o(A)+1

IMaa)(F) = Mg (TH| < 0

folgt M(f) = M(Tf) fur alle f € {*°(Z). O
4.16 Definition. Sei X eine Menge. Ein Filter auf X ist eine Familie J von Teilmengen von X die
folgenden Bedingungen erfiillt:

a) ist A € Fund A C B so gilt auch B € J;

b) sind A,Bc Fsogilt ANB € J;

A XeF 0¢7.

Ein Ultrafilter ist ein Filter ¥ der maximal beziiglich Inklusion ist. (Mit anderen Worten ist ¥’ ein
Filter der F enthdlt, so ist F = F'.) Zu x € X heifit Fy .= {A C X|x € A} der Hauptfilter zu x.

4.17 Bemerkung. a) Ein Filter J ist genau dann ein Ultrafilter, falls fiir jede Teilmenge A C X
entweder A € F oder X\ A € F ist.

b) Hauptfilter sind Ultrafilter.

¢) Zur Konstruktion von Ultrafiltern die keine Hauptfilter sind wird das Zornsche Lemma be-
notigt.

4.18 Definition. Sei X ein topologischer Raum. Wir sagen ein Filter F auf X konvergiert gegen x € X
falls er den Umgebungsfilter von x

Uy == {U C X | U ist Umgebung von x }

enthalt.

4.19 Bemerkung. Ein Hausdorffraum X ist genau dann kompakt wenn jeder Ultrafilter auf X
konvergiert. Diese Charakterisierung von Kompaktheit kann man zu einem weiteren Beweis des
Satzes von Tychonov benutzen. Diesen Beweis werden wir in den Ubungen behandeln.
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5 Kompaktifizierungen

5.1 Definition.  Sei X ein topologischer Raum. Ein kompakter Raum X heifit eine Kompaktifizierung
von X, falls er X als offenen, dichten Unterraum enthilt. (Oft heifst 0X := X \ X der Rand der
Kompaktifizierung.)

5.2 Beispiel. Beispiele fiir Kompaktifizierungen:
@ (—=1,1) € [-1,1]
(i) D" == {x e R™|[[x]|l2 <1} € D™= {x € R™ | |[x||2 < 1}. Fiir n = 2 sieht das wie folgt aus:

Esgilt 0D™ = S™ " == {x e R™ | [[x[|, =1}

(iii) f: R™ — D™, f(x) := 3775y ist ein Homdomorphismus. Daher kénnen wir R™ zu

R™:=R"U(S™ " x {o0}) = D"

kompaktifizieren.

(iv) Definiere auf R™ U {00} folgende Topologie
0 :={U|UCR"ist offen} U {UU{oo} | U C R™ offen und IR > 0: R™\ Bg(0) C U}

Dann ist R™ U {oo} eine weitere Kompaktifizierung von R™. Ubung: R™ U{oo} = S™.

5.3 Definition. Ein topologischer Raum X heifst lokalkompakt, wenn fiir jedes x € X und jede
offene Umgebung U von x eine kompakte Umgebung K von x existiert mit K C L.

5.4 Beispiel. (i) R™ ist lokalkompakt: Sei x € R™ und U C R™ eine offene Umgebun& von Xx.
Da U offen ist existiert ¢ > 0 mit B¢ (x) C W. Es folgt B, /2(x) € B¢(x) C U. Dann ist B, ,(x)
eine kompakte Umgebung von x, die in U liegt.

(ii) Topologische Mannigfaltigkeiten sind lokalkompakt, da sie lokal homéomorph zum R™ sind.

(iii) Offene Teilrdume von lokalkompakten Raumen sind lokalkompakt.

5.5 Proposition. Sei K kompakt und W C K offen. Dann ist W lokalkompakt. Insbesondere sind
kompakte Rdume auch lokalkompakt.

Beweis: Sei x € W und U eine offene Umgebung von x in W. K ist Hausdorff, also gibt es fiir alle
y € K\ U offene Umgebungen V,, von y und Wy, von x mit Vy N Wy = (). Dann ist {Vy, |y € K\ U}
eine offene Uberdeckung von K \ U. Da mit K auch K\ U kompakt ist, gibt es Yo C K\ U endlich
mit

Knuc [ vy
yeYo
Nunist L :== K\Uj ey, Vy kompaktund L C U. Da (ﬂerO Wy) NU offen ist und (ﬂero Wy> nu C
L ist, ist L eine Umgebung von x. O
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5.6 Bemerkung. Wegen obiger Proposition konnen nur lokalkompakte Rdume eine Kompaktifi-
zierung besitzen.

5.7 Definition. Sei X ein lokalkompakter Hausdorffraum. Die Einpunktkompaktifizierung, EPK
(EPK) von X ist EPK(X) := X U {oo} mit der folgenden Topologie:

U C XU{oo} offen : <= U C X ist offen oder U = (X \ K) U{oco} mit K C X kompakt

5.8 Proposition. EPK(X) ist kompakt. Ist X nicht kompakt, so ist EPK(X) eine Kompaktifizierung
von X.

Bewers: Sei U eine offene Uberdeckung von EPK(X). Sei Uy € U mit co € Up. Dann existiert K C X
kompakt mit Uy = (X \ K) U{oo}. Da K kompakt ist, gibt es Us,...,U, € Umit KC Uy U...UU,.
Dann ist Up, Uy,..., U, eine endliche Teiliiberdeckung von EPK(X).

Es bleibt zu zeigen, dass EPK(X) Hausdorff ist. Seien dazu x,y € EPK(X) mit x # y. Gilt x #
oo #ysogibtes U,V C Xmitx e Uy e Vund UNV =0, da X hausdorffsch ist. Nach Definition
sind dann U,V auch offen in EPK(X). Andernfalls sei 0.B.d.A. X = oo. Da X lokalkompakt ist, gibt
es eine Umgebung K von y mit K C X kompakt. Dann sind U := K und V := (X \ K) U{co} disjunkte
offene Umgebungen von x und y.

Sei nun X nicht kompakt. Ist U eine Umgebung von co € EPK(X), so gibt es K C X kompakt mit
U = (X\K)U{oo}. Dann ist UNX = X\ K. Da X nicht kompakt ist, ist X # K, also X\ K # ). Daher hat
jede Umgebung von oo € EPK(X) einen nicht-trivialen Schnitt mit X. Also ist X C EPK(X) dicht. O

Frage. Sei f: X — Y stetig und X, Y lokalkompakt. Gibt es dann eine stetige Fortsetzung
f: EPK(X) — EPK(Y)

mit f(oo) = c0?

5.9 Beispiel. (i) Sei f: R — R, f(x) = 0. Dann ist f: EPK(R) — EPK(R) mit

fix) = f(x) =0, fallsxeR
) oo, falls x = oo

sicher nicht stetig. Nattirlich ist aber f: EPK(R) — EPK(R) mit f(x) = 0Vx € EPK(R) stetig.

(ii) Betrachte f: R — R mit
1, fallsx>1

f(x) =<x, fallsxel0,1]
0, fallsx<0

Dann gibt es keine stetige Fortsetzung f: EPK(R) — EPK(R), denn die Folge x, = n kon-
vergiert in EPK(R) gegen co. Da f(x,) = 1 Vn miisste f(co) = 1 sein. Die Folge yn = —n
konvergiert in EPK(IR) auch gegen oco. Da f(y,) = 0 fiir alle n miisste auch f(co) = 0 sein. 4

5.10 Definition. Seien X und Y lokalkompakt. Eine stetige Abbildung f: X — Y heifst eigentlich,
wenn fiir jede kompakte Teilmenge K C Y auch f~'(K) C X kompakt ist.

5.11 Satz. Seien X, Y lokalkompakt und f: X — Y stetig. Dann sind dquivalent:
(1) f ist eigentlich.
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f(x), fallsxe X

ist stetig.
00, falls x = o0 &

(2) f: EPK(X) — EPK(Y) mit f(x) = {

Bewers: Wir nehmen zunichst an, dass f eigentlich ist. Sei U C EPK(Y) offen. Ist co ¢ U, so ist
f~1(U) = f~'(U) offen, da f stetig ist. Ist co € U, so gibt es K C Y mit U = (X \ K) U{oco}. Da f
eigentlich ist, ist auch L := f~'(K) C X kompakt und f~1(U) = (X \ L) U{oo} ist offen in EPK(X).
Fiir die andere Implikation betrachten wir K C Y kompakt. Dann ist U = (Y \ K) U{co} C Y offen.
Da f stetig ist, ist auch f~'(U) = (X \ f~'(K)) U{oo} offen. Damit ist f~' (K) C X kompakt. O
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6 Der Approximationssatz von Stone-Weierstra

6.1 Definition. Sei X ein lokalkompakter Hausdorffraum. Eine stetige Funktion f: X — R ver-
schwindet im Unendlichen, falls fiir jedes ¢ > 0

Ke = {x € X[If(x)| > ¢}
kompakt ist. Die Algebra aller solchen Funktionen bezeichnen wir mit Cy(X). Durch

1]l = sup [f(x)| = max |f(x)]
xeX xeX

fiir f € Co(X) erhalten wir eine Norm auf Cy(X).

6.2 Bemerkung. FEine Abbildung f: X — R liegt genau dann in Co(X), wenn wenn f: EPK(X) — R

mit
i) - flx) xeX
"o X = 00

stetig ist.

6.3 Definition. Sei B C Cy(X). Wir sagen, dass B die Punkte von X streng trennt, falls es zu x,y € X
mit x # y ein f € B gibt mit 0 # f(x) # f(y) # 0.

6.4 Bemerkung. Sei A C Cy(X) eine Unteralgebra. Gilt

a) Vx,y € X:3If € A: f(x) # f(y) und
b) Vxe X:3ge A:g(x) #0

so trennt A die Punkte von X streng:
Sei x £y € X. Sei f € A mit f(x) # f(y). Dann ist mindestens einer der zwei Funktionswerte
f(x) und f(y) verschieden von Null. Sind beide # 0, so ist nichts mehr zu zeigen. Sei also 0.B.d.A.

f(x) = 0 und f(y) # 0. Wahle g € A mit g(x) # 0. Fiir « € R\ {—g(y)/f(y), (g(x) — g(y))/f(y)} gilt
dann

0 # af(x) + g(x) # af(y) + gly) #0.

6.5 Beispiel. Die Unteralgebra der reellen Polynome A := {x — p(x) | p € R[t]} C Co([a,b]) trennt
die Punkte von [a, b] streng.

6.6 Satz (STONE-WEIERSTRASS).  Sei X ein lokalkompakter Hausdorff-Raum und sei A C Co(X) eine
Unteralgebra, die die Punkte von X streng trennt. Dann ist A C Co(X) dicht beztiglich ||.||o-

6.7 Satz (DIN).  Sei (fy,: [0,1] — R), o eine punktweise monoton wachsende Folge stetiger Funk-
tionen, die punktweise gegen eine stetige Funktion f konvergiert. Dann konvergiert f,, — f gleich-
maBig, d.h. ||fn —flleec — 0.

Bewers: Sei e > 0. Zu jedem t € [0, 1] gibt es ny mit
mZ>mng o f(t) > fa(t) > o (t) > f(t) — e

Da f und f,., stetig sind, ist U; = {s e [0,1] ‘ f(s) — fn,(s) < e} offen. Da [0, 1] kompakt ist,
gibt es to,...,tx € [0,1] mit [0,1] = Uy, U... U Uy,.. Fur alle n > max{ng,,...,n,} folgt dann
[Ifn —flloo < €. O
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6.8 Lemma. Seig(t) =+t firt € [0,1]. Es gibt eine Folge (pn)nen von reellen Polynomen so dass
Pn — g gleichmafig auf [0, 1] und p,(0) = 0.

Bewers: Sei pp =0 und fiirn > 0
1
Prt (8 =palt) = 5 (Pu()? = 1)

Dann gilt p, (0) = 0. Per Induktion nach n zeigen wir, dass 0 < pn (t) < V't fiir alle t € [0, 1] gilt:
Fiir n = 0 ist die Behauptung offensichtlich erfiillt. Fiir den Induktionsschritt n — n+1 betrachte

Pt () = VE=p(t) = VE— 1 (pa(t)2 —t) = (pult) = V&) 3 (pu(t) ~ VE) (pult) + VA)

2 2
= (palt) = VA) (1 — 2 (a0 + V) )
T IV: <2VE
>0

Also gilt pn41(t) — Vit <0 wie behauptet. Weiter gilt, dass pn (t) monoton wachsend ist fiir jedes
t. Wegen pn (t) < v/t existiert lim,, o, pn (t) fiir t € [0, 1]. Es folgt

0= lm pyy1(t) = lim pn(t) = lim (pns1(t) —pn(t)) = lim —%(pn(tf—t)

im
n—oo n—oo

Also gilt limp 0o pn(t) = V/t. Mit dem Satz von Dinr (6.7) folgt, dass pn gleichmifiig gegen g
konvergiert. O

6.9 Bemerkung. Sei A C Cy(X) eine Algebra. Ist p € R[t] ein Polynom mit p(0) = 0 und f € A, so
liegt auch po f € A: Sei dazup = Y [ ; a;t?, dann gilt

p(f(t) =D aif(t) = (Z aif1> (t) € A.
i=1 i=1
6.10 Lemma. Sei X ein lokalkompakter Hausdorffraum und A C Cy(X) eine Unteralgebra. Sei

A := der Abschluss von A beziiglich ||.||. Dann gilt: f € A = [f| € A.

Bewers: Sei f € A. O.B.d.A. sei f(X) C [-1,1]. Dann ist f(x)? € [0,1] fiir alle x € X. Sei (pn)nen
die Folge von Polynomen aus Lemma 6.8. Dann gilt

Pn(f(x)?) — /f(x)2

gleichmiBig in x € X. Es folgt ||pn(f2) — Ifl|| . — 0. Wegen f € A gilt f* € A und nach Bemer-
kung 6.9 auch p, (f?) € A. Also folgt [f| € A. O

n—oo

= [pn(F02) = [f00)| | == 0

6.11 Bemerkung. Fiir zwei Funktionen f, g € A gilt
ax(f, g) :% f+g+|f—gl) €A und min(f,g) :% f+g—I|f—gl)eA
m

Wegen A = A gilt auch f,g € A = min(f, g), max(f, g) € A.
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6.12 Lemma. Sei X ein lokalkompakter Hausdorffraum und A C Cy(X) eine Unteralgebra, die die
Punkte von X streng trennt. Zu x,y € X, x #y, «, 3 € R gibt es dann f € A mit f(x) = &, f(y) = B.

Bewers: Es gibt g € A mit 0 # g(x) # g(y) # 0. Ansatz: Fiir A, 1 € R betrachte f := Ag + pg?.

f(x) =« g+ g(x)* =
—

fly)=8 gYA+gly)u=
Da 5
det (383 3832) =g(x)g(y)?* — g9(y)g(x)* = g(x)g(y) (g(y) — g(x)) #0
gibt es A, u € R, sodass das Gleichungssystem eine Losung hat. O

BewErs (von Satz 6.6): Seien h € Co(X) und ¢ > 0 beliebig. Wir miissen zeigen, dass ein f € A
existiert mit ||f — h||o < ¢, da A = A gilt.

Schritt 1: Wir konstruieren fiir y € X eine Funktion f € A mit fy(y) =h(y) und fy(z) > h(z) —¢
fur alle z € X.

Zu x € K gibt es nach Lemma 6.12 g« € A mit
gx(y) =hly) und gx(x) =h(x)

Sei U, = {z e X | gx(z) > h(z) — s}. Da gy und h stetig sind, ist U offen. Da g« und h in co
verschwinden ist X \ U, kompakt. Folglich gibt es x1,...,xn mit X = U,, U... U U, . Nun
ist fy := max{gx,, ..., gx,} die gesuchte Funktion. Wegen Lemma 6.10 bzw. Bemerkung 6.11
gilt fy € A.

Schritt 2: Konstruktion von f: Zu y € X sei Vy, == {z € X| fy(z) < h(z) + ¢}. Wieder ist V,; offen,
X\ 'V, kompakt und y € V,,. Also gibt es wieder yy, ...,y mit X =V, U... UV, . Fiir die
Funktion f := min{f,,,...,f, } gilt dann

h(z) — f(z) = maxh(z) — fy,(z) < ¢

da fy,(z) > h(z) — e = h(z) — fy,(z) < € nach obiger Konstruktion fiir jedes i gilt. Weiter gilt

f(z) —h(z) = miin fy. (z) —h(z) < e

nach Definition der V,,,. Also gilt insgesamt ||f —h| < e.
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7 Metrisierbarkeit

7.1 Definition. Ein topologischer Raum X heifst metrisierbar, wenn es eine Metrik auf X gibt, so
dass die von der Metrik induzierte Topologie die Topologie von X ist.

7.2 Bemerkung. Ist X metrisierbar, so gibt es fiir jedes x € X eine abzidhlbare Umgebungsbasis U
bei x, also eine abzédhlbare Menge von offenen Umgebungen von x, sodass jede Umgebung von x
eine Menge aus Uy enthalt.

7.3 Definition. Ein topologischer Hausdorffraum X heifst normal, wenn er die folgende Trennungs-
eigenschaft hat: Sind A, B C X abgeschlossen mit A N B = (), so gibt es U,V C X offen mit A C U,
BCVmitunV=40.

7.4 Bemerkung. Metrisierbare Rdume sind normal. (Ubung.)

7.5 Satz (URYSOHN). Sei X ein normaler Raum, der das zweite Abz&hlbarkeitsaxiom (1.14) erfiillt .
Dann ist X metrisierbar.

Beweis (mit Urysohn’s Lemma, 7.6):  Sei U eine abz&hlbare Basis der Topologie von X. Da X normal
ist, gibt es zu jedem Paar U,V € U mit U C V (also UN X\ V = () nach Urysohn’s Lemma (7.6)
eine stetige Funktion fy,v: X — [0, 1] mit fy,v(x) =0 fur x € U und fuvly) =1firy ¢ V.Da U
abzihlbar ist, ist das abzdhlbare Produkt

Z = [0,1]

u,veu
ucv

metrisierbar (Ubung). Wir definieren F: X — Z durch

F(x) = (fu,v(X)) u,Veu
ucv

Da die fy,v stetig sind, ist F beziiglich der Produkttopologie auf Z auch stetig. Es bleibt zu zeigen,
dass F: X — F(X) C Z ein Homdomorphismus ist.

Wir konstruieren nun zu x,y € X mit x # y, offene Mengen U,V € UmitU C V,x € U,y ¢ V.Da
X Hausdorff ist gibtes V € Umitx € Vundy ¢ V. Nun trennen wir die abgeschlossenen Mengen {x}
und X\ V. Insbesondere gibt es U € U mit x € Uund UNX\V = (). Esist fy,v(x) =0 # 1 = fy,v(y).
Insbesondere ist F injektiv; durch Einschrankung auf das Bild also bijektiv. Es gentigt nun zu zeigen,
dass F offene Mengen von X auf offene Mengen in F(X) abbildet. Sei W C X offen und x € W. Wir
miissen eine offene Menge O C Z finden mit F(x) € O und F~'(0) € W. Wir kénnen zunichst W
verkleinern und W € U annehmen. Weiter nehmen an, dass eine offene Menge Uy € U mit x € Uy
und Uy C W existiert. Damit setzen wir O == [ [y lu,v wobei

0,1), fallsU=1Uy, V=W
Iuyv =
[0,1], sonst

Dann ist F-1(0) = fal’w([O,U) C Wund F(x) € O, da fu,,w(x) = 0.

Wir miissen noch die letzte Annahme rechtfertigen: Da X Hausdorff ist, ist {x} abgeschlossen. Da
auch X \ W abgeschlossen ist, gibt es offene mengen U; und V; mit U; N V; = 0, x € U; und
X\ W C V. Insbesondere ist U; € X\ V; C W. Da U eine Basis ist, gibt es Uy € U mit x € Uy und
Uy C U;. O
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7.6 Lemma. Sei X normal und A,B C X abgeschlossen mit A N B = (). Dann gibt es eine stetige
Funktion f: X — [0, 1] mit f(a) = 0 fir alle a € A und f(b) = 1 fiir alle b € B.

Bewers: Sei U; := X\ B. Da X normal ist, gibt es Uy C X offen mit A C Uy und Uy N B = (), also
Uy C U;4.1 Ebenso finden wir

» Uy, C X offen mit Uy € Uy, und Uy, C Uy,
» Uy /4, Us,4 C X offen mit Uy C Uy 4, Uy g € Uy o und Uy o C Uz, Uzg C Uy, .

Induktiv finden wir fiir jedes 1 = J% mit 0 < m < 2" eine offene Menge U, C X so dass gilt:
U, C U fiir r < s mit A C Uy und B = X\ Uy. Sei nun f: X — [0, 1] definiert durch

p 1, falls x € B
xX) =
inf{r|xeU,}, fallsx¢B

Fiir o € [0, 1] ist £~ ([0, &)) = U, o Uy offen und

)= UX\U=UX\T

T>X T>X

offen. Damit ergibt sich leicht die Stetigkeit von f. O

TACUpund Vo D BmitUpgNVy=0 = UpNB =@also Uy C U;
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8 Zusammenhdngende topologische Radume

8.1 Definition. Sei X ein topologischer Raum.

(1) X heifst zusammenhiingend, falls er nicht als die disjunkte Vereinigung von zwei nicht leeren
offenen Mengen geschrieben werden kann.

(2) X heifst wegzusammenhiingend, falls es zu allen x,y € X eine stetige Abbildung w : [0,1] — X
gibt mit w(0) = x und w(1) =y. w heifit dann ein Weg von x nach y.

(3) X heifst lokal zusammenhiingend, falls es fiir jedes x € X und jede offene Umgebung U von x
eine zusammenhédngende Umgebung V von x gibt mit V C U.

(4) X heifst lokal wegzusammenhdngend, falls es fiir jedes x € X und jede offene Umgebung U
von x eine wegzusammenhdngende Umgebung V von x gibt mit V C U.

8.2 Bemerkung. Einige Beispiele und Anmerkungen zu obigen Definitionen:

(1) R\{0} = (—00,0)U(0, co) ist nicht zusammenhdngend und auch nicht wegzusammenhingend,
wie man leicht mit dem Zwischenwertsatz zeigen kann.

(2) 10, 1] ist zusammenhidngend: Angenommen es wére [0,1] = U UV mit U,V offen, UNV = (.
Dann sind U = [0, 1]\ V und V = [0, 1]\ U auch abgeschlossen. O.B.d.A. sei 0 € U. Dann liegt
inf V sowohlin V als auch in U. AlsoUNV =UNV # z.

Nattirlich ist [0, 1] auch wegzusammenhédngend: Zu x,y € [0, 1] ist w: [0, 1] — [0, 1] mit w(t) =
(T—1)-x+t-y ein stetiger Weg von x nach y.

(3) Ist f: X — Y stetig und surjektiv und X zusammenhingend, so ist auch Y zusammenhéngend:
Ist Y = UUV, soist auch X = f ' (WUFf (V) und es gilt U # ) <= £ '(U) # 0 und
VA) = f1(V)#£0.

(4) Ist X wegzusammenhingend, so ist X auch zusammenhéangend: Sei X = UU V mit U, V offen
und U # 0, V # (. Sei x € Uund y € V. Da X wegzusammenhéngend ist, gibt es einen
Weg w: [0,1] — X von x nach y. Dann ist [0,1] = 0w~ ' (U) U w (V). Bsist 0 € w~'(U)
und 1 € w (V). Also w™'(U) # 0 # w (V). Da [0,1] nach (1) zusammenhéngend ist, ist
w (W Nw (V) # 0. Damit ist auch UN 'V # 0.

(5) Ist f: X = Y ein Homdomorphismus, so gelten:

X wegzusammenhidngend <= Y wegzusammenhingend
X zusammenhidngend <= Y zusammenhingend

8.3 Beispiel. Die eben definierten Begriffe sind nicht dquivalent:

(i) Der sogenannte Polnische Kreis PK, gegeben durch

xel-1,11 N y=1)
Vo o (xe{-1,1} A yelo,1])
PK={(x,y) €eR?*| V (x€[-1,00 A y=0)
Voo (x= N yel=1/2,1/2])
VvV (xe (0,1] A y=1/2-sin(m/x))

ist wegzusammenhéangend, aber nicht lokal wegzusammenhéngend.
(ii) Die folgende Teilmenge ist zusammenhéngend, aber nicht wegzusammenhéngend.

x=0 A yel-1/2,1/2 }

{(x,y)eﬂ?z Vo oxe (0,1 A y=1/2-sin(m/x)
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Abbildung 3: Der Polnische Kreis und eine nicht wegzusammenhingende Teilmenge davon

Wir kénnen nun einen ersten Spezialfall der topologischen Invarianz der Dimension zeigen:

8.4 Satz. Esgilt R" = R™ <= n=m

Bewess (fiir n = 1): Angenommen es gidbe einen Homdomorphismus f: R — R™ mit m > 2.
Durch Einschrankung von f erhalten wir dann auch einen Homdomorphismus R\ {0} — R™\{f(0)}.
Nach obiger Bemerkung ist R \ {0} aber nicht wegzusammenhédngend und fiir m > 2, x € R™ ist
R™ \ {x} wegzusammenhangend 7. O

Eine Variante dieses Arguments kann benutzt werden, um zu zeigen, dass R™ = R™ genau

dann gilt, wenn n = m. Dafiir ben6tigt man aber hoher dimensionale Varianten des Begriffes
,wegzusammenhdngend”.
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9 Die Fundamentalgruppe

9.1 Definition. Ein topologischer Raum X heif$t einfach zusammenhingend, wenn jede stetige Ab-
bildung f: S' — X eine stetige Fortsetzung F: D? — X besitzt.

Er heisst lokal einfach zusammenhéangend falls es zu jedem x und jeder offenen Umgebung von
x eine einfach zusammenhdngende Umgebung V von x mit V C U gibt.

9.2 Bemerkung. Ein topologischer Raum X ist genau dann wegzusammenhangend, wenn jede
stetige Abbildung f: S° — X ein stetige Fortsetzung F: D' — X besitzt.

9.3 Bemerkung. (i) R™ ist einfach zusammenhéngend: Sei f: S' — R™ stetig. Dann erhélt man
eine Fortsetzung F: D? — R™ durch

F(t-v)=t-f(v) firt e [0,1],v € S’

(ii) Ist X =Y dann gilt: X einfach zusammenhdngend <= Y einfach zusammenhéngend.

(iii) Wir werden spiter sehen: R? \ {0} ist nicht einfach zusammenhingend.

9.4 Definition. Seien wg, wq: [0, 1] — X Wege in X. Eine Homotopie mit festen Endpunkten (oder
relativ {0, 1}) zwischen wo und w; ist eine stetige Abbildung H: [0,1] x [0, 1] — X, so dass gilt:

(i) H(s,0) = wo(s) Vs € [0,1]

(ii) H(s,1) = wq(s) Vs € [0,1]
(iii) H(0,t) = wo(0) = w;(0) Vt € [0,1]
(iv) H(1,t) = wo(1) = wq(1) YVt € [0,1]

Abbildung 4: Homotopie relativ {0, 1}
Durch
wo ~ w1y : <= I Homotopie relativ {0, 1} zwischen w( und w;

wird eine Aquivalenzrelation auf der Menge aller Wege in X erklért. Die Aquivalenzklassen heiflen
Homotopieklassen, wir schreiben [w] fiir die Homotopieklasse von w.

9.5 Definition. Ein Weg w: [0, 1] — X heifst eine Schleife in X, falls w(0) = w(1) gilt.

9.6Llemma. Xist genau dann einfach zusammenhéngend, wenn jede Schleife in X homotop relativ
{0, 1} zu einer konstanten Schleife ist.

Beweis:

O

9.7 Notation. Fiir x € X bezeichne c,: [0,1] — X die konstante Schleife bei x, d.h. ¢, (t) = x fiir
alle t € [0, 1].
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9.8 Definition. Seien w und w’ Wege in X mit w’(0) = w(0). Dann ist der Kompositionsweg
w * w’: [0,1] — X definiert durch

, w’(2t), falls t € [0,1/2]
wxw'(t) =
w(2t—1), fallste [1/2,1]
9.9 Lemma. Kompositionswege haben die folgenden Eigenschaften:
a) Seien w,w’, w” Wege in X mit w” (1) = w’(0) und w’(1) = w(0). Dann gilt

[(ww)*xw”] =[ws* (0 *w”)]
b) Seien wo, w}, wr,w; Wege in X mit w}(1) = wo(0), wi(1) = wi(0) und [wo] = [w;] und

[w§] = [w]]. Dann gilt
[wo * w{] = [wy * w1l

c) Sei w ein Weg in X und w: [0, 1] — X der umgekehrte Weg, also @(t) := w(1 —t). Dann gilt
[w * @] = [c (1)) und [@ * w] = [ce(0)]-

d) Sei w ein Weg in X. Dann gilt
(W cwio] = W = [ew) *w]

Bewers:  Wir zeigen an dieser Stelle nur a), die anderen Beweise funktionieren dhnlich.

A

‘IAV

FNT N

nw 4+
—

3
Abbildung 5: Funktion ¢ aus dem Beweis von Lemma 9.9
Sei @: [0,1] — [0, 1] gegeben wie in Abbildung 5 gezeichnet. Dann gilt
((w *w') w”)(s) = (w * (W' x w”))((p(s))
Die gesuchte Homotopie mit festen Endpunkten wird durch
H(s,t) = ((w *w') x w”) (1 —1t)s + to(s))

definiert. O

9.10 Korollar.  Sei X ein topologischer Raum und x¢ € X fest. Dann wird
(X, %0) = {[w] | w ist eine Schleife in X mit w(0) =xo}

durch die Komposition von Wegen zu einer Gruppe mit neutralem Element e = [cy,].
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9.11 Definition. 7 (X, x0) heifst die Fundamentalgruppe von X beziiglich des Basispunktes xo.

9.12 Bemerkung. Wegen Lemma 9.6 gilt: X ist genau dann einfach zusammenhingend, wenn
771 (X, x0) fur alle xo € X die triviale Gruppe ist.

9.13 Bemerkung. Sein ein Weg in X von x;1 nach x¢. Dann definiert

conj

™ (X)XO) 2 [w} '_n> [(ﬁ* w) *ﬂ] € m (X)X1)
einen Isomorphismus zwischen 71 (X, xo) und 71 (X, x1).

Bewers: Wir zeigen nur, dass conj, ein Gruppenhomomorphismus ist. Unter Benutzung der ein-
zelnen Aussagen von Lemma 9.9 erhalten wir:

conyj, ([w] * [w’]) = conj, ([w * w']) = [(ﬁ (w* @) *n}
Conjn([w]) -conjn([w']) = [(ﬁ* w) *ﬂ] . [(ﬁ* w’) *n] = [((ﬁ* w) *ﬂ) % ((ﬁ* w’) *Tl)}

{(n* (W (=) ') *n} 2 [(n* (@ co) + @) *n}

e

9 [(ﬁ* (w = w’)) *n}

Insbesondere hdngt der Isomorphietyp von 77 (X, xo) fiir wegzusammenhédngende Rdume nicht von
der Wahl des Basispunktes ab. O
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10 Die Windungszahl

Frage. s (]Rz \{0}, Xo) =? sl (S],Xo) =?

10.1 Proposition. Sei p: R — S! definiert durch p(t) = e?™'*. Sei w: [0,1] — S! stetig und to € R
mit p(to) = w(0). Dann gibt es eine eindeutige stetige Abbildung @: [0, 1] — R mit &(0) = to und
pod =w.

0 —° R

IR
@
l // \LP

0,1 —- §!

Istn: [0,1] — S eine weitere Abbildung mit ] = [w] und A: [0,1] — R mit f(0) =to, pofi =n so
gilt (1) = d(1).
Bewers:  Mit dem Homotopiehebungssatz (siehe Satz 10.7). O

10.2 Definition. Sei w: [0,1] — S! eine Schleife in S" mit w(0) = w(1) = 1. Sei
@ :[0,1]] = Rmitpod = w und ®(0) = 0. Dann heifit &(1) € Z = p~'(1) die
Windungszahl von w. R

10.3 Satz. Die Windungszahl definiert einen Isomorphismus d: 7 (s',1) = Z,
[w] — d(1).

Bewers: Nach Proposition 10.1 ist d eine wohldefinierte Abbildung.
Fir die Surjektivitdt betrachten wir stetige Abbildungen @, : [0,1] — R gegeben
durch @, (t) =t-n firn € Z. Dann ist

d([P © d)n]) = d)n(]) =n

und d somit surjektiv.

Wir zeigen nun, dass d ein Gruppenhomomorphismus ist. Seien dazu w,n: [0,1] —
S! zwei Schleifen mit w(0) =1 (0) = 1. Seien d,H: [0,1] = R Hebungen mit f(0) =
0,®(0) =0, pod = w, pofl =1n. Es giltalso d([w]) = ®(1) und d(]) =A(1). Sei nun
W4 :[0,1] = R gegeben durch & (s) = W(s) +1(1). Dann ist @ * 1] wohldefiniert
und es gilt (d4 *)(0) = 0 sowie (b *H)(1) =1A(1) + d(1). Also folgt

d(lw*nl) = (@4 *A) (1) =A(1) + ®(1) = d([w]) + d()). pl

Kommen wir schliellich zur Injektivitit: Sei w: [0,1] — S eine Schleife mit d([w]) = w ‘
0. Dann gibt es @: [0,1] — R mit &(0) = 0 = @®(1) und po & = w. Nun ist /1¢c§!

H: [0,1] x [0,1] — R mit

fl
A

Abbildung 6: Schleife w mit

H(s,t) = (1 —1t) - d(s) der Windungszahl 1

eine Homotopie mit festen Endpunkten zwischen @& und co. Dann ist p o H eine
Homotopie mit festen Endpunkten zwischen w und c;. Also [w] = e € ;(S',1). O

10.4 Definition.  Eine surjektive stetige Abbildung p: X — X heif}t eine Uberlagerung, falls es zu je-
dem x € X eine Umgebung U gibt, so dass sich p~' (U) schreiben lasst als die disjunkte Vereinigung
von offenen Mengen U; C X und fiir jedes i die Einschrankung p’u_l : Uy — U ein Homdomorphis-
mus ist. Eine solche Umgebung U heifst eine elementare Umgebung.
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die H=1(Uy) diber-
decken {zo} x [0, 1]

10.5 Beispiel. (1) p: R — S, t — €27t ist eine Uberlagerung.
(2) pn: S = ST,z z" ist eine Uberlagerung.

() Sindp: X=X, q: Y=Y Uberlagerungen, soistp x q: X x Y = X x Y eine Uberlagerung.
Man erhélt so zum Beispiel einer Uberlagerung des Torus: R? — T2 = §' x S'.

(4) Die Quotientenabbildung S? — RP? = $2/x ~ —x ist eine Uberlagerung. (Ubung!)

10.6 Definition. Sei p: X — X eine Uberlagerung und f: Z — X eine stetige Abbildung. Eine
Hebung oder ein Lift von f (beziiglich p) ist eine stetige Abbildung f: Z — X mitp o f = f.

10.7 Satz (HOMOTOPIEHEBUNGSSATZ).  Sei p: X — X eine Uberlagerung, H: Z x [0, 1] — X eine Homo-
topie und f: Z — X eine Hebung von f = H(—, 0 Dann gibt es eine eindeutige Hebung

A von H mit A(—,0) = f.

)= H‘ZX{O}'

Zx 0} —— X

1
.
. H ///
i 7 P
.
.
p
.

Zx[0,1] 25 X

Beweis:  Sei U eine Uberdeckung von X durch elementare Umgebungen. Wir kénnen U mittels H
zuriickziehen und erhalten eine offene Uberdeckung H™' (U) := {H~'(U) | U € U} von Z x [0, 1].

Sei zp € Z fest. Da {zo} x [0, 1] kompakt ist, gibtesO =ty <t1 < ... <tp =Tund U;,...,U, € U
mit

H({zo} x [ti, ti1]) € Uy

Da die U; offen sind gibt es zu jedem 1i eine offene Umgebung V; von zo mit H(Vi x [ti, tigq }) C Uu;.
Sei V := ., Vi, dann ist H(V X [ti,ti“]) C U;. Da alle U; elementar sind, finden wir induktiv
eindeutige Hebungen HY von H|,,

mit
tiytig]

HY (=0 =1, und HY(—t)=H (- t).

Nun erhalten wir mit AY (z,t) = l:ly(z, t) firz € V, t € [ti, ti+1] eine eindeutige Hebung von

H|V><[O ;) mit HY(—,0) = f|,. Dabei bleibt HV eindeutig auch wenn wir V verkleinern. Nun fin-

den wir fiir jedes z € Z eine Umgebung V, und eine eindeutige Hebung H"> von H|, «[0,1) it
HY=(—,0) = f|,, . Wegen der Eindeutigkeit gilt

HVZ(‘E) t) = ]:lvzl (E») t)

fir alle & € V, N V.. Daher definiert H(z,t) := HY=(z,t) die gesuchte eindeutige Hebung. O
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11 Induzierte Abbildungen

1.1 Lemma. Sei f: X — Y stetig mit f(xo) = yo. Dann definiert f. ([w]) := [f o w] einen Gruppen-
homomorphismus f.: 71 (X, x0) = 71 (Y, yo).

Bewels: Wir zeigen nur, dass f,. wohldefiniert ist. Seien w,n: [0,1] — X Schleifen mit w(0) =
xo =1(0) und [w] = ]. Es gibt also eine Homotopie H: [0, 1] x [0, 1] — X mit festen Endpunkten
zwischen w und n.Dann ist f o H eine Homotopie mit festen Endpunkten zwischen f o w und fon.
Also

fu([w]) = [fow] = [fon] = f.(In]) € m1(Y,yo) O

11.2 Definition.  f, heifSt die von f induzierte Abbildung. Manchmal schreibt man auch 7 (f) fiir
f., um f, von anderen induzierten Abbildungen zu unterscheiden.

11.3 Bemerkung. Es gelten:
() Furf:Y—=Z,g: Y= Ygilt (fog), =1, 0g..
(ll) Es gﬂt (idx)* = id’?‘[] (X,x0)"

Damit ist 71y ein sogenannter Funktor.

11.4 Definition. Ein topologischer Raum X zusammen mit einem Basispunkt xo € X, (X,x0)
heifst ein punktierter Raum. Eine punktierte Abbildung zwischen punktierten Riumen f: (X,xo) —
(Y,yo) ist eine stetige Abbildung f: X — Y mit f(xo) = yo. Punktierte Abbildungen f, g: (X,x0) —
(Y,yo) heiflen punktiert homotop, falls es eine Homotopie H: X x [0, 1] — Y von f nach g gibt mit

H(xo,t) =yo Vt € [0,1].

Wir schreiben dann f ~ g.

11.5 Proposition (HOMOTOPIEINVARIANZ VON 717).  Seien f, g: (X,x0) — (Y,yo) homotop. Dann gilt
f* =0« T (X>XO) — T (YJJO)

Bewers: Sei H eine Homotopie zwischen f und g. Fiir [w] € 711 (X, x) ist H o w eine Homotopie
mit festen Endpunkten zwischen f o w und g o w. Also

fe(lw]) = [f o w] = [g o w] = g« ([w]) O

11.6 Definition. Seien X, Y topologische Rdume. Dann heiffen X und Y homotopieiquivalent, falls
es stetige Abbildungen f: X — Y, g: Y — X gibt, so dass

fog~idy und gof~idx.

Wir schreiben dann X ~ Y oder X % Y. g heifst Homotopie-Inverse von f. Entsprechendes benutzen

wir auch fiir punktierte Riume. Falls X ~ {0}, so sagen wir: X ist zusammenziehbar.

11.7 Beispiel. (1) S™~! ist homotopiedquivalent zu R™ \ {0}:
Betrachte dazu die Inklusion i: ™' < R™ \ {0} und die Normierung p: R™ \ {0} — S™ T,
V= ﬁ Dann gilt

poizidsn—l s 10]:) ﬁian\{o}
mit der Homotopie H(v,t) =t - v+ (1 —t) 5.

vl

11 Induzierte Abbildungen 29



(2) Sei K C R™ eine konvexe Teilmenge und x, € K. Dann ist (K, o) zusammenziehbar:

1: ({xo},x0) — (K;x0) die Inklusion
p:(Kyxo) — ({xo},x0) die konstante Abbildung

poi=id(xy}x,) und iop ~idk x,) mit der Homotopie H(x,t) =t -x + (1 —t)xo.

11.8 Satz. Ist f: (X,x0) — (Y,yo) eine Homotopiedquivalenz, so ist f, : 71 (X, x0) — 71 (Y,yo) ein
Isomorphismus. Insbesondere ist 711 (X, xo) = {1}, falls (X, x¢) zusammenziehbar ist.

Bewers: Sei g: (Y,yo) — (X, xo) eine Homotopie-Inverse zu f, also g o f >~ idx, f o g =~ idy. Dann
ist g, = (f,)”' (und f, ein Isomorphismus):

fi0g. = (fog)
g*of*:(gof)*

(idy). = idm (Y,yo)
(idX)* = id7n (X,x0) 0

11.9 Satz (FIXPUNKTSATZ VON BROUWER). Jede stetige Abbildung f: D™ — D™ hat einen Fixpunkt.

Bewers (fiir n < 2): Fiir n = 1 ist dies eine Folgerung aus dem Zwischenwertsatz.
Angenommen f: D™ — D™ habe keinen Fixpunkt, also f(x) # x fiir alle x € D™. Wir konstruieren
eine stetige Abbildung F: D™ — S™~! mit F|, , =idg~ 1 wie in Abbildung 7, sodass gilt

F(x)

@ F(x) =t(x—f(x)) +x ,t =0
(i) F(x) € S™!

Abb. 7: Konstruktion von F
Sei xo € S™'. Wir haben also

(" ix0) = (M x0) (8™ x0) (57 o)
1 F L F.
(D™, xo) m (D™ x0)

Da (D™, xo) zusammenziehbar ist, gilt t; (D™, xo) = {e}. Fiir n = 2 ist das zweite Diagramm also

id) . =id
z W=7

s A

{e}
Daher folgt id = F, o i, = triviale Null-Abbildung. 4 O

Fiir n > 3 ist m (S™ ', %) trivial. In diesem Fall benutzt der Beweis eine andere Invariante als
die Fundamentalgruppe.
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11.10 Proposition. Fiirn € Z sei f,,: S' — ST, z+ z™.Dann ist (f,,).: 711 (S',1) — 71 (S, 1) durch
Multiplikation mit n gegeben:

(fr)s(lw]) =n - [w]
Weiter sind die f,, paarweise nicht homotop zueinander.

Bewris: Seip: R — S',t+— €27t Zujeder Schleife w: [0,1] — S! mit w(0) = w(1) = 1 gibt es eine
eindeutige Hebung &: [0,1] — R zu einem Weg mit &(0) = 0. Der Isomorphismus d: 71 (S',1) —
Z bildet [w] auf (1) € Z C R ab. Sei f,: R — R, t > n-t. Dann gilt pof, = f, op und ,(0) = 0.
Ist @ eine Hebung von w, so ist fn oW eine Hebung von f,, o w, da

(f"'\nO(,f))(O):]En(O) =0
pofno(j):fnopod):fnow

Es folgt
d([fn o w]) = (fr o @)(1) = fr (@(1)) = fr(dlw]) =n - dlw]

Da d ein Isomorphismus ist, folgt die Behauptung.

Mit der Homotopieinvarianz von induzierten Abbildungen folgt, dass die f,,: (S',1) — (S',1)
als punktierte Abbildungen paarweise nicht punktiert homotop sind. Mit dem nédchsten Lemma
folgt das die f,, paarweise nicht homotop sind. O

11.11 Lemma.  Seien f, g: (X,x0) — (S',1) stetig. Sei H: X x [0,1] =+ S' eine (unpunktierte) Homo-
topie zwischen f und g. Dann ist H: X x [0,1] — ST,

l:l(x,t) _ H(x,t)

ein punktierte Homotopie zwischen f und g.

Bewers: Es ist H(xo,t) = % =1 fiir alle t. Da H(x0,0) = f(xo) =1 = g(x0) = H(xo, 1) gilt, ist

H(x,0) = H(x,0) = f(x) und H(x,1) =H(x,1) = g(x). O

11.12 Satz (HAUPTSATz DER ALGEBRA). Jedes Polynom p = X™ + An X1+ ...+ ap € C[X] von
gradp =n > 1 hat eine Nullstelle.

BeEwers: Angenommen p habe keine Nullstell“e.Man kann zeigen, dass dann fy, : ST STz 20
homotop zu einer konstanten Abbildung ist (Ubung). Aus Proposition 11.10 folgt dann aber n =
0. a
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12 Eigentlich diskontinuierliche Wirkungen

12.1 Definition. Sei G eine Gruppe und X ein topologischer Raum.
(1) Eine Wirkung G ~ X von G auf X ist eine Abbildung G x X — X, (g,x) — g.x, so dass gilt
» Fiir g € Gist Ag: X — X, x — g.x stetig.
» Fir g,h € G gilt g.(h.x) = (g.h).x
» Fiir das neutrale Element e € G gilt e.x = x fiir alle x € X
(2) Eine Wirkung heifst frei, falls gx =x = g=e. (G — Sym(X) ist injektiv)

(3) Eine Wirkung heifst eigentlich diskontinuierlich (e.d .k.), falls es zu jedem x € X eine Umge-
bung U von x gibt mit guNU = ( fiir alle g € G \ {e}.

(@) Durch x ~y ¢ 3g € G : g.x = y(< Gx = Gy) wird eine Aquivalenzrelation auf X erklrt.
Die Aquivalenzklassen dieser Aquivalenzrelation sind genau die Bahnen Gx = {g.x | g € G}
der Wirkung. Die Menge der Aquivalenzklassen bezeichnen wir mit G\X := X/~. Durch die
Quotiententopologie beziiglich der Quotientenabbildung X — G\X, x — Gx wird G\X zu
einem topologischen Raum.

12.2 Lemma. Sei G ~ X eine e.d.k Wirkung. Dann ist p := X — G\X, x — Gx eine Uberlagerung.

Bewers: Offenbar ist p surjektiv und stetig. Sei X :== Gx € G\X. Sei U eine offene Umgebung von
x € X, fiir die gUuN U = § fiir alle g # e ist. Dann ist

p ' (p(W) = gu
geG

die disjunkte Vereinigung der gu, g € G. Weiter ist p: U — p(U) ein Homéomorphismus. Da p
offenbar stetig und bijektiv ist miissen wir nur noch zeigen, dass p offen ist. Sei V C U offen. Dann ist
P '(p(V) = UgeG gu die Vereinigung offener Mengen also offen. Da G\X die Quotiententopologie
tragt, ist auch p(V) offen. Insgesamt ist p(ULl) nun eine elementare Umgebung von X. O

12.3 Beispiel. (1) Z™ ~ R™ mit z.x == x + z ist eine e.d.k. Wirkung: Ist ¢ <  so gilt
B:(x) NBe(x) +z=B:(x)NBe(x+2z)=10

fir alle x € R™, z € Z™\ {0}. Da Z\R = S' folgt Z™\R™ = (Z\R)" = (S")™ = T". Wir
erhalten eine Uberlagerung R™ — T™ des n-Torus.

(2) Sei Z/2 ={e,7}. Durch t.v := —v erhalten wir eine e.d.k. Wirkung Z/2 ~ S™. Dann gilt
Z/5\S™ = RP™
und wir erhalten eine Uberlagerung S™ — RP™.
() Zum,n € Z sei fr,m: R? = R? mit f,m(x,y) = (x +n, (—1)"y + m). Dann ist
G:={fam|n,mezZ}

eine Gruppe beziiglich der Verkniipfung von Abbildungen. Man rechnet nun nach, dass
from © fr/om’ = frinsmt(—1)nm- gilt. Die kanonische Wirkung von G auf R? gegeben durch
fr,m.X = fn,m(x) ist e.d.k., da

fn,m(ua (X)) NUe(x) = 0

fiir (n,m) # (0,0) und ¢ < 3. Der Quotient G\IR? = K heiSt die Kleinsche Flasche.Wir
erhalten eine Uberlagerung R? — K.

32 12 Eigentlich diskontinuierliche Wirkungen



Abbildung 8: Kleinsche Flasche, Quelle(#

12.4 Satz. Sei X wegzusammenhingend und einfach zusammenhédngend. Sei G ~ X eine e.d.k.
Wirkung. Fiir jedes Xo € G\X ist dann

m (G\X,Xo) = G

Bewels: Sei xo € X ein Urbild von Xy, also Xo = Gxo. Zu jeder Schleife w: [0,1] — G\X mit
w(0) = w(1) =X, gibt es eine Hebung &: [0, 1] — X mit @(0) = x¢. Hier heben wir beziiglich der
Uberlagerung p: X — G\X, x = Gx, alsopo & = w.

Da p(®(1)) = w(1) = %o folgt ®(1) € p~'(Xo) = Gxo. Es gibt also g € G mit g, - xo = d(1).
Wie im Fall der Uberlagerung R — S' zeigt man mit Hilfe des Homotopiehebungssatzes, dass
[w] — g, ein Gruppenhomomorphismus ¢: 7 (G\X,Xo) — G definiert.

Surjektivitit von @: Sei g € G. Sei d: [0, 1] — X ein Weg von x¢ nach g - xo (Solch einen Weg gibt
es, da X wegzusammenhingend ist). Dann ist & die Hebung von w := p o & und es folgt
@([w]) =gw =g, da d(1) =g-xp. Also g € im @.

Injektivitdat von @: Sei w = [0, 1] — G\X eine Schleife mit w(0) = w(1) = Xy, fir die @([w]) = e.
Sei : [0,1] — X die Hebung von w mit @(0) = xo. Da ¢([w]) = e ist, gilt O(1) = xo, b ist
also eine Schleife in X. Da X einfach zusammenhéngend ist, ist [] = e € 71 (X, xo). Es folgt

[w] = [p o @] = p.ld] =p.(e) =e. O

12.5 Bemerkung. Fiir n > 1 ist S™ wegzusammenhingend (einfache Ubung). Fiir n > 2 ist S™
einfach zusammenhédngend (weniger einfache Ubung).

Nach Satz 12.4 ist daher 77 (RP™,xo) = Z/2 fiir n > 2. Es folgt RP™ # S™ fiir n > 2. (Andererseits
ist RP! = S1))

12.6 Definition. Sei p: X — X eine Uberlagerung. Eine Decktransformation von p ist ein Homoo-
morphismus f: X — X, sodass p o f = p. Die Decktransformationen von p bilden eine Gruppe A(p).
Diese Gruppe wirkt in kanonischer Weise auf X.
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13 Klassifikation von Uberlagerungen

13.1 Definition. Sei G eine Gruppe. Eine G-Menge ist eine Menge mit einer Wirkung von G. Eine
G-Menge S heisst transitiv, wenn es zu s,s’ € S immer g € G gibt mit gs = s’. Zu s € S heisst,
Gs :={g € G| g.s = s} die Standgruppe von s. Eine G-Abbildung zwischen G-Mengen S und T, ist
eine Abbildung f: S — T die mit der G-Wirkung vertauscht, also f(g.s) = g.f(s) fir g € G, s € S.
Wir schreiben Map, (S, T) fiir die Menge aller G-Abbildungen von S nach T.

13.2 Bemerkung. Ist H eine Untergruppe von G, so bilden die Linksnebenklassen von G nach H
eine G-Menge: g.(aH) = gaH. Diese G-Menge ist transitiv.

Sei umgekehrt S eine transitive G-Menge und s € S. Dann definiert gGs — gs eine bijektive
G-Abbildung G/Gs — S.

13.3 Proposition. Sei p: Y — X eine Uberlagerung. Sei xo € X ein Basispunkt. Sei w eine Schleife
in X bei xo. Zuy € p~'(xo) sei der Weg @, in Y bestimmt durch @,,(0) =y und p o @y = w.
Dann definiert [w].y := @y (1) eine Wirkung von 711 (X;xo) auf P (%0).

Beweis: Nach dem Homotopiehebungssatz 10.7 existiert @, eindeutig. Da po@,, = w eine Schleife
bei x¢ ist, gilt @y (1) € p~'(x0). Wieder nach dem Homotopiehebungssatz 10.7 hangt @y (1) nur
von [w] € 7 (X;x0) ab. Seien w und n zwei Schleifen bei xo. Zuy € p~' (xo) sei y’ := fiy(1). Dann
ist p := @y * fiy ein Weg mit p(0) =y und pop = w *n. Es folgt [w xn].y = p(1) = @y (1) =

/

(wly’ = [w].(].y). O

13.4 Definition. Seien p: Y — X und q: Z — X zwei Uberlagerunger}. Mit Map, (Y, Z) bezeichen
wir die Menge aller stetigen Abbildungen f: Y — Z mit q o f = p. Die Uberlagerungen p und q von
X heissen isomorph falls es f € Map, (Y, Z), g € Map, (Z,Y) gibt mit fo g =idz, gof =idy.

13.5 Safz. Sei X wegzusammenhdngend und lokal wegzusammenhéngend. Seien p: Y — X und
q: Z — X zwei Uberlagerungen. Dann ist die durch f ~ f|,,-1(,, definierte Abbildung

Mapy (Y, Z) = Map,,. (xo) (P~ (X0)y a4 (x0))
bijektiv.

13.6 Korollar.  Sei X wegzusammenhé&dngend und lokal wegzusammenhédngend. Zwei Uberlagerun—
genp: Y — X und q: Z — X sind genau dann isomorph, wenn p~' (xo) und q~'(x0) isomorph als
71 (X; x0)-Mengen sind.

Bewers (von Satz 13.5): Sei f € Map, (Y, Z). Wir {iberzeugen uns zunéchst davon, dass fl, 1 (y,)
eine 711 (X;x0)-Abbildung ist. Sei g = [w] € 71(X;x0) und yo € p~'(x0). Sei @ die eindeutige
Hebung von w zu einem Weg in Y, der in yo beginnt. Dann ist g.yo = @(1). Weiter ist f o @ die
eindeutige Hebung von w zu einem Weg in Z, der in f(yo) beginnt. Daher ist g.f(yo) = f(®(1)) =
f(g-yo)-

Zuy € Y sei w ein Weg von p(y) nach x in X. Sei @ die eindeutige Hebung von w zu einem Weg
in Y, der in y beginnt. Sei yo € p~'(xo) der Endpunkt von @. Dann ist f o @ die eindeutig Hebung
von w zu einem Weg in Z der in f(yo) endet. Sein Anfangspunkt, f(y), ist also schon durch w und
f(yo) eindeutig festgelegt. Folglich ist f durch f|, 1 (,,) schon eindeutig bestimmt.

Zur Surjektivitdt. Sei fo € Map, | x.x,) (P~ (x0), 9" (x0)) gegeben. Zuy € Y sei w, ein Weg von
P(y) zu x¢ in X. Sei @, die eindeutige Hebung von w, zu einem Weg in Y, der in y beginnt. Sei
Yo € p~ ' (x0) der Endpunkt von @,. Sei 1y die eindeutige Hebung von w zu einem Weg in Z, der
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in fo(yo) endet. Wir setzen f(y) :=n,(0). Es ist offenbar q(f(y)) = p(y). Wir miissen zeigen, dass f
wohldefiniert ist (also unabhéngig von der Wahl von w, ist) und dass f stetig ist.

Zur Wohldefiniertheit. Sei w, ein weitere Weg von p(y) zu %o in X. Sei @), die die eindeutige
Hebung von w;, zu einem Weg in Y, der in y beginnt. Sei y, der Endpunkt von @;,. Sei n, die
eindeutige Hebung von wé zu einem Weg in Z, der in fy(yy) endet. Zu zeigen ist n; (0) =ny(0).

Wir benutzten - um umgekehrte Wege zu bezeichnen, also z.B. uT’J,(t) = w; (1 —t). Wir erhalten

eine Schleife w, * wy in X, die in x( startet und endet. Es ist @, * ) die Hebung von w,, * wy,

mit Anfangspunkt yg. Daher gilt g.y; = yo fiir g := [wy * w{] € m(X;x0). Es folgt g.fo(yy) =
fo(g.yy) = folyo). Sei p die Hebung von uT; * Wy zu einem Weg in Z, der in fy(y,) beginnt. Der

Endpunkt von p ist dann g.fo(yg), also fo(yo). Da 1y eine Hebung von w, mit Endpunkt fo(yo)

ist und 1}, eine Hebung von w/ mit Anfangspunkt fo(y,) folgt, dass p, nach Reparametrisierung,

VO %y
je zur Halfte mit ny und n|; tibereinstimmt. Also
() = ny(2t) 0<t<g1,2
P T I 2t-1) 125t <

Insbesondere ist 1}, (0) =1/ (1) =ny(0).

Zur Stetigkeit. Sei y € Y und U eine offene Umgebung von f(y) in Z. Da q eine Uberlagerung ist,
kénnen wir, nach verkleinern von U, annehmen, dass q|y: U — q(U) ein Homéomorphismus ist
und q(U) in X offen ist. Dann ist q(Ul) eine offene Umgebung von q(f(y)) = p(y) in X. Da p eine
Uberlagerung ist, gibt es eine offene Umgebung V von y mit p(V) C f(U) so dass plyv: V — p(V)
ein Hom6omorphismus ist und p(V) in X offen ist. Da X lokal wegzusammenhingend ist, gibt
es eine offene wegzusammenhidngende Umgebung W von p(y) mit W C p(V). Dann ist auch
V' :=VNp (W) eine offene wegzusammenhingende Umgebung von y.

Wir kénnen nun zeigen: f(V’) C U. Sei zunéchst w,, ein Weg von p(y) nach xo, @, eine Hebung
von wy, zu einem Weg in Y der in y beginnt, und 7, eine Hebung von w,, zu einem Weg in Z der
in fo (@, (1)) endet. Dann ist f(y) der Startpunkt von 1. Zuy’ € V’ gibt es nun einen Weg (I);L, von
y’ zuyin V' C Y. Sein Bild wlj , in X hat eine Hebung n;r , zu einem Weg in U, der in y endet. Nun

ist, wy/ == wy * w,, ein Weg von p(y’) nach xo, @y := @y * @, eine Hebung von wy zu einem
Weg in Y der in y’ beginnt, und 1y = ny * nlj, eine Hebung von wy/ zu einem Weg in Z der in
fo(@y/ (1)) endet. Es ist also f(y’) =mny(0) = nlj,(O). Da nlj, ein Weg in U ist, ist f(y’) € U. O

13.7 Satz.  Sei X wegzusammenhingend, lokal wegzusammenhingend und lokal einfach zusam-
menhdngend. Sei xo € X ein Basispunkt. Dann gibt es eine wegzusammenhingende und einfach

zusammenhédngende Ubgrlagerung X 2 X. Weiter gibt es eine eigentlich diskontinuierliche Wir-
kung von 7 (X; o) auf X, so dass p einen Homéomorphismus 711 (X;x0)\X — X induziert. Sie ist
frei und transitiv.

Bewers (Skizze): Sei xo € X. Sei P = {w: [0,1] — X Weg | w(1) = xo}. Sei
X =P /Homotopie mit festen Endpunkten

Dann induziert w ~— w(0) eine wohldefinierte Abbildung p: X — X. Sei w € P und V eine wegzu-
sammenhéngende, einfach zusammenhéangende Umgebung von w(0) in X. Setze

U(V,w) = {lw=*n]|n: [0,1] = V Weg mit n(1) = w(0) }

Die U(V, w) bilden die Basis der Topologie von X. Da V wegzusammenhingend und einfach zu-
sammenhéngend ist, ist

p‘u(v)w): UV, w) = V
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bijektiv. Da X lokal wegzusammenhéngend und lokal einfach zusammenhéngend ist, ist p|u(v w)
sogar ein Homomorphismus. Damit ist V eine elementare Umgebung von w(0). Da X wegzusam-
menhéngend ist, ist p auch surjektiv und p: X — X eine Uberlagerung. ~

Wir zeigen, dass X wegzusammenhéangend ist: Sei %o : [cx,] € X.Sei X = [w] € X.Sei ws: [0,1] — X
mit

Dann ist «: [0, 1] — X mit «(s) = [w;] ein Weg von %o nach %. Damit ist X wegzusammenhangend.
Dass X einfach zusammenhéngend ist, zeigen wir an dieser Stelle nicht.

Die Wirkung von 1 (X; x0) auf X ist wie folgt definiert. Sei 1 eine Schleife in X am Basispunkt
Xo. Sei w eine Weg in X mit Endpunkt xo. Die Wirkung ist definiert durch [n].[w] := [ * w]. Wir
weisen hier nicht nach, dass diese Wirkung die behaupteten Eigenschaften hat. O

13.8 Definition. Die Uberlagerung X *» X aus Satz 13.7 heifit die universelle Uberlagerung von X.

13.9 Satz.  Sei X wegzusammenhingend, lokal wegzusammenhingend und lokal einfach zusam-
menhéngend. Sei S eine 71 (X; x0)-Menge. Dann gibt es eine Uberlagerung q: Y — X, so dassp~' (xo)
und S als 711 (X; x0)-Mengen isomorph sind.

Bewers (Skizze): Sei X 2 X die universelle Uberlagerung. Auf X x S betrachte die durch
(x,8) ~ (x/ys") : <= 3g € m(X;x0) with(x,s) = (gx’, g 's’)

definierte Aquivalenzrelgtion. Die Abbildung XxS =X gleﬁniert durch (x,s) — p(x) induziert
eine Abbildung q: Y : =X x S/ ~— X ; dies ist die gesucht Uberlagerung. O

13.10 Bemerkung. In der Sprache der Kategorien und Funktoren lassen sich die Aussagen von
Satz 13.5 und Satz 13.9 wie folgt zusammenfassen.

Sei X wegzusammenhingend, lokal wegzusammenhingend und lokal einfach zusammenhén-
gend. Dann ist der Funktor (p: Y — X) p~'(x0) eine Aquivalenz von der Kategorie der Uberla-
gerungen von X in die Kategorie der 711 (X; xo)-Mengen.

Streng genommen enthdlt Satz 13.5 etwas mehr Information, da wir dort nicht annehmen muss-
ten, dass X lokal einfach zusammenhéangend ist.

13.11 Satz (HEBUNGSSATZ).  Sei p: X — X eine Uberlagerung. Sei xg € X, X0 € X, p(Xo) = x0. Sei Z
wegzusammenhdngend und lokal wegzusammenhingend. Sei zo € Z, f: Z — X stetig mit f(zo) =
xo. Dann gibt es eine Hebung f: Z = X mit f(z0) = %o genau dann, wenn

f.(m1(Z,20)) € pu(m1(X,%0)) [x]

als Untergruppe von 7 (X, xo) gilt. In diesem Fall ist f eindeutig.

+2 X

BEwEIs: Ubung. O
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14 Differenzierbare Mannigfaltigkeiten

Sei M eine topologische Mannigfaltigkeit. Welche Funktionen f: M — R sind differenzierbar? Was
sind Richtungsableitungen fiir solche Funktionen? Was sind Richtungen in M?
Da topologische Mannigfaltigkeiten lokal homéomorph zum R™ wére folgendes ein naheliegen-
der Ansatz fiir eine Definition im obigen Sinne: f: M — R heifst C* genau dann, wenn
VxeM:IUCMoffenmitxc Uund h: U S VCR : foh ':V — R ist C®
Dieser Ansatz hat aber noch die folgenden Probleme:
a) Obfoh ':V— R C*® ist oder nicht, hingt von der Wahl von h ab.

b) Jeder Homdomorphismus f: R — R ist in dieser Definition C*!

14.1 Definition. Sei M™ eine topologische n-Mannigfaltigkeit.

a) Eine Karte fiir M ist ein Homdomorphismus h: U Z, V mit U C M offen, V C R™ offen. U
heifst das Kartengebiet von h. Ist x € U, so heifit h eine Karte um x.

b) Sind hi: Uy =5V, i= 0,1 zwei Karten, so heifst

]’L]Oha )Zho(UoﬂU1)—>h1(uOHU1)

1
’ho (UoNU;
CVoCR™ CV,CR™

der Kartenwechsel zwischen hy und h;. Ein Kartenwechsel ist ein Homdomorphismus zwi-
schen offenen Teilmengen des R™.

c) Eine Menge von Karten {ho( Uy — Vo | x € A} heif$t ein Atlas fiir M, wenn die Kartengebiete
U, die Mannigfaltigkeit iberdecken: M = [J,ca U«

d) Ein Atlas A heifit C* (oder glatt), wenn alle Kartenwechsel zwischen Karten aus A C*-Ab-
bildungen sind.

14.2 Definition. Eine C*-Mannigfaltigkeit ist eine topologische Mannigfaltigkeit zusammen mit
einem C*-Atlas A.

14.3 Beispiel. Viele interessante topologische Rdume sind differenzierbare Mannigfaltigkeiten:
(1) U C R™ offen ist eine C*°-Mannigfaltigkeit mit Atlas {idy}.
(2) S™ ist eine C*°-Mannigfaltigkeit: Definiere Kartengebiete Uy ; := {x € S™| (—=1)Ix, > 0} fiir
k=0,...,n,j=0,T1. Sei
Rigj: Ui = D" = {x e R™ | ||x[|2 < 1}
mit
i (X0y e oy Xn) = (X0y e oy XK1, Xk Ty - oy Xn)
Dann ist A = {hy; |k =0,...,n j=0,1} ein C®-Atlas fiir S™.
(3) RP™ = S"/x~—x ist eine C*°-Mannigfaltigkeit: Setze
Uy = {[(x0y-- -y Xn)] € RP™ | x # 0}

und definiere hy: Uy — [o)n durch
X
hic([xoy -+ oy xnl) = lx—tl(xo,...,xk,1,xk+1,...,xn)

Dann ist {hy |k =0,...,n} ein C*-Atlas fiir RP™.
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hs,0(Us0) = {x3 +x3 < 1}

Abbildung 9: Die C*°-Mannigfaltigkeit S? mit dem Kartengebiet U3 o

4) Sind (M, A) und (N, B) C*-Mannigfaltigkeiten, so ist {h x k| h € A,k € B} ein C*-Atlas fiir
M x N.

14.4 Bemerkung. Sei (M, A) eine C*°-Mannigfaltigkeit. Eine Karte h: U — V fiir M (nicht not-
wendig in A) heifit eine C*-Karte, wenn alle Kartenwechsel zwischen h und einer Karte aus A C*
sind. Offenbar besteht A aus C*°-Karten. Es ist auch Amay := {h | hist C*-Karte} ein C>-Atlas fiir
M. Dieser Atlas ist maximal, d.h. man kann keine weiteren Karten zu A, hinzufiigen und immer
noch einen C*-Atlas erhalten.

14.5 Definition. Seien M, N C*-Mannigfaltigkeiten. Sei f: M — N eine stetige Abbildung.

a) Sei x € M. f heifst C* oder glatt in x, wenn es eine Karte hy: Uy — Vp von M um x und eine
Karte hy: Uy — V; von N um f(x) gibt, sodass

}1101‘01151

auf einer Umgebung von hg(x) eine C*-Abbildung ist.

b) Ist f in allen x € M glatt, so heifit f eine C*-Abbildung. Wir schreiben C*(M,N) fiir die
Menge der C*-Abbildungen von M nach N.

¢) M und N heilen diffeomorph, wenn es f € C*(M,N) und g € C*°(N, M) gibt mit fo g = idn
und go f =idpm.

In diesem Fall heiflen f und g Diffeomorphismen.

Ein etwas kiinstliches Beispiel: (M, A) und (M, Amax) sind diffeomorph mittels der Identitat
idnm: (M,.A) — (M)-Amax)-

14.6 Bemerkung. a) Ist f: M — N glatt in x, so ist hy o f o hy ' glatt in einer Umgebung von
ho(x) fiir alle Wahlen von C*-Karten hy um x und h; um f(x).

b) Die Komposition von C*-Abbildungen ist wieder eine C*-Abbildung.

o) Ist f: M — N bijektiv und C® ist, so ist f noch nicht notwendigerweise ein Diffeomorphismus.
(betrachte z.B. f: R — R, x — x?3)

14.7 Bemerkung. Beim Unterscheiden zwischen Homéomorphismen und Diffeomorphismen ist
Vorsicht geboten:
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a) Es gibt C*-Mannigfaltigkeiten M und N, sodass M und N zueinander homdomorph sind,
aber nicht diffeomorph sind. Dabei kann man sogar M = S” wihlen.

b) Es gibt topologische Mannigfaltigkeiten, auf denen kein C*-Atlas existiert.

Diese Aussagen liegen aber weit ausserhalb der Reichweite dieser Vorlesung.

14.8 Definition. Eine Teilmenge N C M™*¥ einer (n + k)-dimensionalen C*-Mannigfaltigkeit
M, heifst eine n-dimensionale C*-Untermannigfaltigkeit, wenn es um jedes x € N eine Karte
h: U — V C R™* fiir M gibt, so dass h(NNU) = VN (R™ x {0}). k = dim M — dim N heif$t die
Kodimension von N in M. Durch Einschrankung dieser Karten von M auf N erhalten wir einen
C*-Atlas fiir N. Insbesondere ist N eine n-dimensionale C*-Mannigfaltigkeit.

R x {0}

Abbildung 10: Skizze einer Untermannigfaltigkeit N der Mannigfaltigkeit M = R?

14.9 Definition. Eine C*-Abbildung f: N — M heifit eine Einbettung, wenn f(N) C M eine C*-
Untermannigfaltigkeit ist und f: N — f(N) ein Diffeomorphismus ist.
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15 Reguldre Werte

Man betrachte, die in Abbildung 11 gezeichnete Héhenfunktion auf dem Torus T2. Wie angedeu-
tet, scheinen die Urbilder einzelner Punkte Mannigfaltigkeiten zu sein, die entweder S' oder eine
disjunkte Vereinigung von zwei Kopien der S' sind. An zwei Punkten (einer davon der griin ge-

zeichnete) findet ein Wechsel zwischen diesen beiden Typen von Urbildern statt und das Urbild ist
keine Mannigfaltigkeit, da eine Umgebung des Klebepunktes der beiden 1-Sphéren nicht homdo-

I'IIOI‘ph zum R ist.
..‘ :
E—

D

Abbildung 11: Hohenfunktion beim T2 Torus

15.1 Definition. Sei U C IR™ offen und f: U — R™ eine C*-Abbildung. Fiir x € U sei Dfy: R™ —
R™ das Differential von f in x. Der Rang der linearen Abbildung Df,: R™ — R™ heifst der Rang
von f in x.

15.2 Definition. Seien N™ und M™ glatte Mannigfaltigkeiten mit dimN = n,dimM = m. Sei
f: N — M glatt und x € N. Seien hp: Uy — Vo € R™ und hy: U; — V7 € R™ Karten von N um x
und M um f(x). Der Rang von f in x ist erkldrt als

RgX f= Rang(D(M ofo hal )ho (x]>'

Abbildung 12: Diagramm zur Definition des Ranges einer glatten Abbildung f: N — M
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15.3 Lemma. Sind hy: Uy — Vo und hy: Uy — Vi zwei weitere Karten um x und f(x), so gilt:

Rang(D(}u ofo h51 )ho(x)> = Rang(D(Fm ofo Flg] )Ho(x)>
Insbesondere hiangt Rg, f nicht von der Wahl von Karten ab.

Bewers: Es gilt

DRy o fohy') (AohyTohyofohy' ohg Oﬂ(;])ﬁo(x)

(R i), () @Dl 0oy )

ho (%) =D
:D 1 f(X

f 1
notx) °P(ho oo g (s
Dah; o hﬁ und hg o ﬁg1 Diffeomorphismen (um h; (f (x)) bzw. ho(x)) sind, sind die Differentiale

D(hi ohy') «) und D(ho o ho') invertierbar. Es folgt die Behauptung. O

hy (f( ho (x)

15.4 Definition. Sei f: N — M eine C*-Abbildung.

a) x € N heift reguliir fiir f, wenn Rg, f = dim M.
b) y € M heifit ein reguliirer Wert fiir f, falls alle x € f~'(y) regular sind.

15.5 Satz (UBER REGULARE WERTE).  Sei f: N — M eine C*°-Abbildung und y € M ein reguladrer Wert.
Dann ist f~' (y) eine Untermannigfaltigkeit der Kodimension dim M von N.

15.6 Beispiel. Sei O(n) ={A € R™*™|A'. A = 1,,} die Gruppe der orthogonalen n x n-Matrizen.
Sei
S:{BERHXH|B:B1’_}

n(n+1)

Dann ist S = R™ z . Nun ist f: R™*™ — S mit f(A) = A' - A eine C*-Abbildung und es ist
Oom) =1 (1,). Behauptung: 1, ist reguldrer Wert von f und somit folgt, dass O(n) eine Unter-
mannigfaltigkeit von R™*™ = R™ ist.

Bewrls: Sei A € O(n) und B € R™*™, Fiir A € R ist dann
f(A+AB) = (A+AB)Y(A+AB) = A'A + AB'A + AA'B + A?B'B
= A'A +A(B'A + A'B) + A’B'B.

Es folgt, dass die Richtungsableitung in Richtung B von f in A genau B'A + A'B ist. Die Richtungs-
ableitungen von f sind genau das Bild des Differentials von f in A. Fiir C € S ist mit B := 1A - C,
C = B'A + A'B. Also ist das Differential surjektiv und A regulér fir f. O

15.7 Satz (UBER IMPLIZITE FUNKTIONEN). Seien U; C R™ und U, C R™ offen. Seien x; € Uy, x> € U,
und f: Uy x Uy — R™ eine C*-Abbildung, fiir die

(x1,%2) (O}xR™

invertierbar ist. Dann gibt es eine C*-Abbildung g: Vi — V, mit x; € V; C Uy, x; € V5 C Uy,
g(x1) =x2 und

{(y1,v2) € Vi x V2 | f(y1,y2) = f(x1,%2)} = {(y1,9(u1)) [y1 € Vi }
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15.8 Satz (vON DER UMKEHRFUNKTION). Seien U;, U, C R™ offen. Sei x € Uy und f: Uy — U, eine
C>-Abbildung fiir die Dfy ein Isomorphismus ist. Dann gibt es offene Umgebungen V; C U; von
x und V, C U, von f(x), so dass fly, : Vi — V, ein Diffeomorphismus ist.

Bewers (des Satzes tiber reguldre Werte 15.5): Sei x € f~T(y). Wir miissen zeigen, dass eine Karte
@: U=V CR* x R™ um x existiert mit

fueulfw=y}={e '(x,0) | (x,0) eV}

Da es Karten um x und y gibt, konnen wir 0.B.d.A. annehmen, dass N C R*x R™und M C R™
offene Teilmengen sind. Weiter kénnen wir annehmen, dass x = 0,y = 0 gilt. Nach Voraussetzung
ist Dfp: R* x R™ — R™ surjektiv. Indem wir f — falls ntig — um einen linearen Isomorphismus
von R¥™ =Rk x R™ &ndern, kénnen wir erreichen, dass Df ({0} x R™) = R™ gilt.

Seien nun 0 € U; € R* und 0 € U, € R™ offen mit Uy x Uz C N. Mit dem Satz iiber implizite
Funktionen folgt, dass offene Menge V1, V, existieren mit 0 € V; C U, 0 € V, C U, und eine C*-
Abbildung g: Vi — V;, sodass gilt: Fiir (x1,x2) € Vi x V, ist

f(x1,x2) =0 <= x2 = g(x1).

Betrachte nun
Vi x 'V, M

Jo

Rk x R™
mit @(x1,%2) = (x1,%x2 — g(x1)). Fiir (x1,x2) € V1 x V; gilt dann
f(x1,%2) =0 <= @(x1,x2) € R* x {0}

Weiter ist Do = (7]5“190 9) invertierbar. Mit dem Satz von der Umkehrfunktion folgt wieder die
Existenz offener Umgebungen 0 € U C V; x V, und 0 € V C R* x R™, sodass (p’uz U — Vein
Diffeomorphismus ist. Dies ist die gesuchte Karte. O

15.9 Bemerkung. Nach dem Satz von Sarp ist die Menge der kritischen Werte, also der nicht
reguldren Werte einer C*-Abbildung f: N — M eine Menge mit Lebesgue-Maf3 Null. Insbesondere
gibt es immer reguldre Werte.
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16 Approximation durch C*-Abbildungen

16.1 Proposition. Sei M eine C*-Mannigfaltigkeit. Dann ist C3°(M,R) := C*(M,R) N Cy(M, R)
dicht in Co(M, R) beziiglich ||.||c-

16.2 Beispiel (GLOCKENFUNKTIONEN). Seien {, ¢.: R — R fiir ¢ > 0 gegeben durch

o, falls t < 0 B W(t)
wit) = {etz, aistso YT T we—1

P und @, sind C*®-Funktionen. Fiir r > 0 sei nun eine weitere Familie von Funktionen f, ;: R™ — R

Pe

e=1
Abbildung 13: Die Funktionen { und ¢, fiir ¢ = 1

gegeben durch f, ;(x) =1 — @,(||x|]| — ). Es ist f. » € C*(R™) und es gilt f. .(x) C [0,1] fir alle

fer

‘],,, _
T
r=15 =1

Abbildung 14: Glockenfunktion f, . fiir R und R?, wobeie =1,r=1.5

x € R™. Weiter ist f. »(x) = 1 fur x| <7, fo +(x) = 0 flr x| > v+ ¢. Abbildung 14 zeigt eine der
Funktionen fiir n = 1 und eine fiir n = 2.

Bewers (von Proposition 16.1): Wir wollen den Approximationssatz von Stone-Weierstraf (6.6)
anwenden: Dazu miissen wir zeigen:
Vx,y € M : 3f € CF°(M, R) mit f(x) # f(y) und f(x) # 0 # f(y)

Wihle dazu Karten ¢: U — Vund ¢: U — Vvon M mitx € U,y € U und UN U = (. Indem
wir, wenn nétig, einen Isomorphismus von R™ anwenden, kénnen wir auflerdem fordern, dass
©(x) =0, p(y) =0, B2(0) C Vund B,(0) C V gilt. Dann ist fy € CP(M,R) mit

0, falls z ¢ U
fx(z) =
f1,2,1(@(2)), sonst
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Dann gilt fy(x) = 1 und fx(y) = 0. Ebenso gibt es fy, € C§°(M,R) mit fy(x) = 0 und f,(y) =1
Nun ist f = 2f, + f, die gesuchte Funktion. O

16.3 Korollar. Sei M eine kompakte C*°-Mannigfaltigkeit und ¢: M — R™ stetig. Dann gibt es zu
jedem € > 0 eine C*-Abbildung f: M — R™ mit ||¢(x) — f(x)||2 < ¢ fiir alle x € M.

Bewers: Schreibe ¢ = (@1,..., @) und approximiere die ¢; durch C*°-Funktionen. O

16.4 Korollar. Sei M eine kompakte C*°-Mannigfaltigkeit und ¢: M — S™ stetig. Dann gibt es zu
jedem € > 0 eine C*-Abbildung f: M — S™ mit ||f(x) — @(x)||2 < ¢ fiir alle x € M.

Bewris: Da S™ C R™*!, gibt es nach Korollar 16.3 eine C*-Abbildung fo: M — R™"! mit ||fo(x)—
e(x)]]2 < e Vx € M. O.B.d.A. sei ¢ < 1. Wegen ¢(x) € S™ folgt

T—e<|fox)]2<T+¢

Sei f: M — S™ die durch f(x) := % definierte C*-Abbildung. Dann gilt:

[If(x) — @(x)]l2 < |If(x) — fo(x)|l2 + [[fo(x) — @(x)]2
folx)

Tt ot

1

I TSR

fo(x)]2 — 1

— Mot 1 ’-Ilfo(XJer&

£ e—0

175(”_8)4_8—)0

< +e

2

] Mfobollz +¢

N

Damit folgt die Behauptung. O

16.5 Bemerkung. Allgemein ldsst sich jede stetige Abbildung zwischen C*-Mannigfaltigkeiten
durch C*-Abbildungen approximieren. Dazu zeigt man:

(i) Jede (kompakte) C*-Mannigfaltigkeit ldsst sich in den RN fiir N > dim M einbetten.

(i) M C RN besitzt eine Tubenumgebung?. Dies erlaubt es, eine C®-Retraktion K — M auf einer
kompakten Umgebung K von M C RN zu konstruieren.

16.6 Proposition. Sei U C R™ offen und f: U — R™ eine C*-Abbildung. Ist m > n, so ist f(U) C
IR™ eine Nullmenge beziiglich des Lebesgue-Mafes.

Bewers: Jede offene Teilmenge des R™ ist die abzdhlbare Vereinigung von kompakten Teilmengen.
Die abzéhlbare Vereinigung von Nullmengen ist wieder eine Nullmenge. Daher gentigt es zu zeigen:
Ist K C U kompakt, so ist f(K) C R™ eine Nullmenge.

Da K kompakt ist , ist | Dfx|| fiir x € K beschrankt. Insbesondere ist f auf K Lipschitz-stetig. Es
gibt also & > 0 mit

Ve > 0: f(Be(x) NK) C By (f(x))

2 Wikipedia: https://de.wikipedia.org/wiki /Tubulare_Umgebung &
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Sei nun R > 0 mit K C [-R,R]™. Zu ¢ > 0 gibt es dann eine Uberdeckung von K durch (2(%1)“
viele Bille B, (x;) C R™. Es folgt

Volgm (f(K)) < (zﬁbn - Volgm (B (0)) = (z[RDn (€)™ - Con

£

e—0

mit Cp, := Volgm (B1(0)). Wegen m > n gilt (2[%})“-(0@)”‘@1“ — 0. Also Volg= (f(K)) =0. O

16.7 Korollar. Sei f: N — M eine C*-Abbildung. Sei dimM > dim N. Dann ist M\ f(N) € M
dicht und insbesondere ist f nicht surjektiv.

Bewers: Sei y € M. Sei U eine offene Umgebung von y. Zu zeigen: U \ f(N) # (. O.B.d.A. sei U
das Kartengebiet einer Karte h: U — V. Da N das zweite Abzdhlbarkeitsaxiom erfiillt, kénnen wir
f~1(U) durch abzihlbar viele C>-Kartengebiete U; von Karten k;: U; — V; von N tiberdecken, fiir
die wir U; C f~'(U) annehmen diirfen. Nun ist

h(f(N)NU) = h(U f(h{' (vi))> =|Jhofoh' (Vi)

i

Nach Proposition 16.6 ist jedes hofoh; ' (V;) eine Nullmenge in V. Da die abzahlbare Vereinigung
von Nullmengen eine Nullmenge ist, ist auch h(f(N) N U) eine Nullmenge in V. Insbesondere ist
V\ h(f(N) NU) # (. Da h bijektiv ist, folgt auch U\ f(N) # 0. O

16.8 Satz.  Fiirn < mist jede stetige Abbildung S™ — S™ homotop zu einer konstanten Abbildung.
Insbesondere ist S™ fiir m > 1 einfach zusammenhéngend.

Bewers:  Wir miissen zeigen, dass jede stetige Abbildung f: S™ — S™ homotop zu eine konstanten
Abbildung ist. Nach Korollar 16.4 gibt es eine C*-Abbildung ¢: S™ — S™ mit ||f(x) — @(x)|| < %
fiir alle x € S™. Sei nun H: S™ x [0, 1] — S™ definiert durch

ot fx)+ (1 —te(x)
Hoo Y = g 1= D]

H ist eine Homotopie von ¢ nach f. Mit Korollar 16.7 folgt, dass f nicht surjektiv ist. Sei y €
S™A f(S™). Nun ist S™ \ {y} = R™. Dabher ist jede stetige Abbildung S™ — S™ \ {y} punktiert
homotop zur konstanten Abbildung. Daher ist f punktiert homotop zur konstanten Abbildung. O

Proor (Beweis der Invarianz der Dimension fiir n = 2.): Sei f: R2 — R™ ein Homéomorphismus.
Wir kénnen ohne Einschrankung annehmen f(0) = 0 (andernfalls ersetzten wir f durch x — f(x) —
£(0)). Durch Einschriankung von f erhalten wir eine Homotopiedquivalenz R? \ {0} — R™ \ {0}.
Wegen R? \ {0} ~ ST, R™ \ {0} ~ S™! erhalten wir eine Homotopiedquivalenz S' ~ S™~!. Nun
ist S* genau dann zusammenhéngend und einfach zusammenhéngend wenn k = 1 ist. Es folgt
m—1=1,alsom=2. O
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17 Der Tangentialraum
17.1 Beispiel. Betrachte S™ C R™*!. Zu x € S™ betrachten wir den Unterraum
TeS™ = {ve R*""| (v|x) =0}

Diesen konnen wir als R-Vektorraum von ,Richtungen” von S™ in x auffassen. Die Vereinigung
der TS™, T*S™ = U, cgn TES™ ist ein natiirlicher Weise ein Unterraum des topologischen Raumes
S" x R™*1 ) also

TS = {(x,v) | x € S",vex'}

Insbesondere ist T*S™ ein topologischer Raum.

17.2 Bemerkung. S™ heifst parallelisierbar, falls es einen Homdomorphismus @: T*S™ — S™ xR™
gibt, so dass fiir jedes x € S™ die Einschrankung

®|T;;Sn (TeS™ — {x} x R™

ein R-Vektorraumisomorphismus ist. Unter den Sphéren sind genau S', $3 und S” parallelisierbar,
siehe Borr, MILNOR u. a. [B+58].

17.3 Beispiel. Sei M C R™"* eine n-dimensionale C*°-Untermannigfaltigkeit. Sei x € M. Dann
gibt es eine an M angepasste Karte

R™* DU 5 VvV CR"x R

um x mit h(MNU) = (R™ x{0})NV. Das Urbild von R™ x{0} unter Dh, ist der Tangentialraum T M
von M im Punkt x. Da h ein Diffeomorphismus ist, ist Dh, ein Isomorphismus von IR-Vektorraumen.
Insbesondere ist dimTyM = dim R™ = n.

T¥M ist unabhéngig von der Wahl der Karte h: Ist k eine zweite an M angepasste Karte, so ist

. | A %
D(hok ), ., = <O ’
mit A € GL(n,R). Das Tangentialbiindel von M ist
T"M = {(x,v) |[x e M,v € T*M} C M x R"*¥

Ist V C R™ eine Untermannigfaltigkeit der Kodimension 0, also V C R™ offen, so ist T"V = V x R™.

17.4 Lemma. Sei M C R™"* eine C*-Untermannigfaltigkeit. Sei x € M. Fiir v € R™"* sind
dquivalent:

1 veT;M.

(2) Es gibt einen C*-Weg w: (—¢,¢) — M mit w(0) =x und C11—‘;’(0) =v.

Bewrrs: Sei R™% D U % V C R™ x R¥ eine Karte mit h(M N U) = V N (R™ x {0}). Ohne
Einschrankungen kénnen wir h(x) = 0 annehmen.
Istv € TYM, so gilt Dhy (v) € R™x{0}. Sei w: (—¢, €) — M definiert durch w(t) := h~'(t - Dh(v)).
Dann gilt
dw d

E(O) = ah—‘ (t-Dhy(v)) = (Dh_])h(x)(th(v)) —v
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Im umgekehrten Fall ist

mk(ﬁfmo—JUMmﬂDwMU%—DWOwa)

Dahow: (—¢g¢e) = R™ x {0}, folgt auch D(h o w)e(1) € R™ x {0}. O

17.5 Lemma. Seien w,n: (—¢, &) — R™ zwei C*-Abbildungen, mit w(0) = 1n(0). Dann sind dqui-
valent:

@) 42(0) = §1(0)

(2) Fiir alle f € C*(R™,R) gilt 972¢)(0) = 4en) ()

Bewers: Nach der Kettenregel gilt

d(fo w) dw
220000 = Do ()

und somit die erste Implikation.
Sei nun P; : R™ — R die Projektion auf die i-te Koordinate. Dann gilt

d(PiO(,U) _D. di(.U
dtm—m(&wﬂ.

und es folgt die andere Implikation. O

17.6 Definition. Sei M eine C*-Mannigfaltigkeit. Sei x € M. Sei TyM die Menge der C*-Abbil-
dungen w: (—¢,€¢) - M mit w(0) = x. Durch

d(f o w) d(fomn)

x V=g ©

w~1:<= Ve C°(M,R):

erhalten wir eine Aquivalenzrelation auf TxM. Der Tangentialraum zu M im Punkt x ist definiert
als die Menge der Aquivalenzklassen T,M := TxM/ .

17.7 Bemerkung. Sei M C R™"* eine Untermannigfaltigkeit und x € M. Wegen Lemma 17.4 ist
die Abbildung TxM — T¢M, w + 9€(0) surjektiv und induziert wegen Lemma 17.5 eine bijektive
Abbildung oy : TyM — T M.

17.8 Bemerkung. Sei V C R™ offen und x € V. Dann erhalten wir aus Bemerkung 17.7 eine
Bijektion
o T,V — R"
[w] —— 42(0)
denn V C R™ ist eine C*°-Mannigfaltigkeit der Kodimension 0. Oft werden wir diesen Isomorphis-
mus unterschlagen und einfach T,V = R™ schreiben.

17.9 Bemerkung. Sei U eine offene Umgebung von x € M. Dann gilt T,U = T,M. Genauer

induziert die Inklusion U C M eine Inklusion T, U — T, M, die wiederum einen kanonischen
Isomorphismus T, U = T, M induziert.
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17.10 Lemma. Sei ¢: N — M eine C*-Abbildung und x € N. Dann definiert [w] — [@ o w] eine
wohldefinierte Abbildung Tx@: T,N — T (x)M.

BewEeis: Seien w,n: (—e¢,e) — N glatte Wege mit w(0) = x = 1n(0) und [w] = ] € TxN. Sei
f € C*(M,R) eine Testfunktion. Zu zeigen ist:

d(fo@on)
dt

Sei g :=fo @ € C*(N,R). Da [w] = [n] € TxN, gilt 492®)(0) = dlgon)(g), O

d(fo@ow)
dt

(0) =

17.11 Definition. Ty ¢ heifit die Tangentialabbildung von ¢ in x.

Die Tangentialabbildung ist funktoriell, das heif3t
a) Fiir die Identitat idM2 M—->M gﬂt TX id = idTX M-
b) Fir N & M % w gilt Ty (P o @) = Ty x) b o Tx@. (Kettenregel fiir die Tangentialabbildung.)

17.12Lemma. Seien U C R™ offen, V C R™ offen und ¢: U — V eine C*°-Abbildung mit ¢(x) = y.
Dann ist
Tep: R" =T, U — Ty()V=R™

genau das Differential Dg, von ¢ im Punkt x.
Beweis: Seiv € R™. Unter R™ = T, U ist v = [w,] mit w,(t) =x+t-v. Unter T,V = R™ ist

Tepliwn) = lpo @ = V€2 (6) = Do, o (Dw,)y(1) = Douly 0

17.13 Proposition. a) Sei M eine C*-Mannigfaltigkeit und x € M. Dann gilt es eine eindeutige
R-Vektorraumstruktur auf Ty M mit folgender Eigenschaft:

Ist V C R* offen, ¢: V — M glatt mit @(y) = x, so ist Ty ¢: R* = T,V — TyM R-linear.

b) Ist f: N — M eine C®-Abbildung mit f(x) =y, so ist Txf: TxN — TyM beziiglich der IR-
Vektorraumstruktur aus a) R-linear.

IssM D U BN V/ C R™ eine Karte um x, so legt T,h: M = T,U — Ty()V = R™ die R-
Vektorraumstruktur auf T, M fest.

BewEis: a) Sei M D U how C R™ eine C*-Karte um x. Dann ist Tyh: TM = T, U —
Thx)W = R™ bijektiv mit (Tyh)~! = Th(x)(h_1 ). Wir benutzen diesen Isomorphismus um
die R-Vektorraumstruktur auf T,M zu definieren:

V+wi= (Th(x)hil ) (Txh(v) + Txh(w))

Dies ist die einzige R-Vektorraumstruktur auf Ty M, fiir die Ty (y) (h=1) R-linear ist.

Sei nun @: V — M eine C®-Abbildung mit V C R* offen und ¢(y) = x. Um zu zeigen,
dass Ty @: R* = T,V — TyM R-linear ist, geniigt es zu zeigen, dass die Komposition Ty (h) o
Ty(9): R* — R™ R-linear ist.

Nun gilt aber nach Lemma 17.12
Tx(h)o Ty((P) = Ty(ho ®) = Dy (hoo).
Also ist Tx(h) o Ty (@) R-linear, da Dy (h o @) R-linear ist.
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b) Seien N D U —+ VCR™ und M D U - V C R™ glatte Karten um x bzw. um y. Da
Tyh: TN = T, U — Ty )V =R"
Tyh: TyM = T,U — Ty, )V =R™

Isomorphismen von IR-Vektorrdumen sind, geniigt es zu zeigen, dass (T h) o (Tef) o (Txh) ™!
R-linear ist. Dies folgt mit der Kettenregel:

Lemma 17.12

(Tyh) o (Txf) o (Tyh) ™' = Ty (hofoh™! D(hofoh™! O
y (x) h

(x)

17.14 Bemerkung. Ist f: N — M glatt und x € N, so gilt Rang, f = Rg(T,f). Insbesondere ist x
genau dann regulédr, wenn T, f = T, N — T¢(,)M surjektiv ist.
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18 Das Tangentialbiindel

18.1 Definition. Sei X ein topologischer Raum. Ein n-dimensionales Vektorraumbiindel tiber X ist
eine stetige, surjektive Abbildung 7: E — X, wobei fiir jedes x € X die Faser E, = 7' ({x}) mit
einer n-dimensionalen IR-Vektorraumstruktur versehen ist, so dass gilt:

Fiir alle x € X gibt es eine offene Umgebung U C X von x und einen Homdomorphismus
f:r ' (U) = UxR",
sodass fiir jedesy € U gy = f]E : Ey = {y} x R™ ein R-Vektorraumisomorphismus ist.
Y

Oft sagt man fiir diese Eigenschaft auch, dass E lokal trivial ist. Das Paar (f,U) heifst dann Biin-
delkarte fur E.

18.2 Beispiel. Sei 1: R — R, t(v) = —v. Dann ist der Abbildungstorus T(t) von T ein 1-dimen-
sionales Vektorraumbiindel tiber [0,1]/0 ~ 1 = S, es heisst auch das Mébiusband.

18.3 Definition. Seien E und E’ Vektorraumbiindel tiber X und X'. Sei f: X — X’ stetig. Eine lineare
Abbildung iiber f ist eine stetige Abbildung F: E — E’, so dass

E—F5 F
i) J{n lﬂ, kommutiert.

X — X
(ii) Vx € Xist F, = F’E Ex — E;(X) R-linear.

Das Paar (F, f) heisst dann eine Vektorraumbiindelabbildung.

18.4 Bemerkung. Ist (F,f): (E,X) — (E’/,X’) eine Vektorraumbiindelabbildung, so ist x — Rg(Fy)
nicht notwendig eine stetige Abbildung auf X. (Z.B., da die Matrizen von Rang k nicht offen in
R™*™ sind.) Insbesondere ist kerF := {v € E | v € ker F(v)} kein Vektorraumbiindel. (Ebenso ist
das Bild einer Vektorraumbiindelabbildung nicht notwendig ein Vektorraumbiindel.)

18.5 Definition. Sei E ein Vektorraumbiindel tiber X. Ein stetiger Schnitt von E ist eine stetige
Abbildung s: X — E mit mo s = idx.

18.6 Bemerkung. In jedem Vektorraumbiindel gibt es den Nullschnitt der x € X den Nullvektor
in Ey zuordnet. Mittels des Nullschnitts wird B oft als Unterraum von E aufgefasst.

18.7 Beispiel. Sei E := T(t1) das M&biusband iiber S" und E’ := S! x R das trivial Vektorraum-
biindel iiber S'. Dann hat jede lineare Abbildung F: E — E’ {iber idg: eine Nullstelle, das heisst, es
gibt x € S' so dass Fy: E, — E/ die Nullabbildung ist. Denn andernfalls wire jedes Fy ein lineare
Isomorphismus (da E und E’ von Dimension 1 sind) und damit F: E — E’ ein Hom&omorphismus.
Da F den Nullschnitt in E identisch auf den Nullschnitt in E’ abbildet, erhalten wir dann auch
einen Homéomorphimus E\ S’ — E’\ S'. In den Ubungen haben wir aber gesehen, dass E \ S'
wegzusammenhéngend ist, wogegen E’\ S! = S x (R \ {0}) offenbar nicht wegzusammenhéangend
ist.

50 18 Das Tangentialbiindel



K

18.8 Definition. Sei M eine C*°-Mannigfaltigkeit. Das Tangentialbiindel von M ist
™ := |_| T, M.
xeM

Wir werden im Folgenden eine Topologie auf TM konstruieren, sodass TM mit der kanonischen
Projektion 7t: TM — M ein Vektorbiindel ist.

18.9 Definition. Sei M eine C*-Mannigfaltigkeit. Sei M O U L) V C R™ eine C*-Karte von M.
Dann heifst Th: TU — V x R™ mit

die von h induzierte Biindelkarte von TM.

18.10 Bemerkung. Seien M D U; LN Vi € R™, i =0,1zwei C*-Karten von M. Dann ist der
Biindelkartenwechsel zwischen den Biindelkarten Thy und Th;

Thi o (Tho) ™" ho(Up NU;) x R™ — hy (U NU;) x R™

gegeben durch (x,v) — (h1 (h51 (x)), D(h; o h(j] )X(V)>. Insbesondere ist der Biindelkartenwechsel
stetig und sogar C*.

18.11 Proposition. Sei M eine C*°-Mannigfaltigkeit.

a) U:= {(Th)""(W) | h: U — V Karten fiir M, W C V x R™ offen} ist die Basis einer Topologie
auf TM.

b) Mit dieser Topologie ist TM ein Vektorraumbiindel.

Bewers (grobe Skizze): (i) Folgt aus der Stetigkeit der Biindelkartenwechsel.

(ii) Die Biindelkarten liefern die lokale Trivialitat. O

18.12 Bemerkung. » Ist : M — N eine C*-Abbildung, so ist To: TM — TN mit Te(v) =
(Tr(v)@)(v) eine lineare Abbildung tiber ¢.

» Schnitte des Tangentialbiindels heiffen Vektorfelder. Ein differenzierbares Vektorfeld ist ein
Vektorfeld s: M — TM, so dass Th o s|u: U — V x R™ fiir jede C*-Karte h: U — V von M
eine C*-Abbildung ist.
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