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1 Topologische Räume
1.1 Definition. Ein metrischer Raum (X, d) ist eine Menge X mit einer Abbildung, Metrik genannt,
d : X× X→ [0,∞) mit den folgenden Eigenschaften:

(i) ∀x, y ∈ X : d(x, y) = d(y, x),
(ii) ∀x, y ∈ X : d(x, y) = 0 ⇐⇒ x = y und

(iii) ∀x, y, z ∈ X : d(x, z) ⩽ d(x, y) + d(y, z) (Dreiecksungleichung)

1.2 Definition. Sei V ein R-Vektorraum. Eine Norm auf V ist eine Abbildung ∥.∥ : V → [0,∞) mit
den folgenden Eigenschaften:

(i) ∀v ∈ V, λ ∈ R : ∥λ · v∥ = |λ| · ∥v∥,
(ii) ∀v ∈ V : ∥v∥ = 0 ⇐⇒ v = 0

(iii) ∀v,w ∈ V : ∥v+w∥ ⩽ ∥v∥+ ∥w∥ (Dreiecksungleichung)

Durch d(v,w) := ∥v−w∥ erhalten wir eine Metrik auf V wie man sich leicht klarmacht.

1.3 Beispiel. Auf Rn gibt es verschiedene Normen und damit auch verschiedene Metriken: Für
x = (x1, . . . , xn) ∈ Rn definiert man

(i) ∥x∥2 =
√∑n

i=1 x
2
i

(ii) ∥x∥1 =
∑n
i=1|xi|

(iii) ∥x∥∞ = max
{
|xi|
∣∣ i = 1, . . . , n}

1.4 Beispiel. Man kann Metriken auch anderweitig definieren:

(i) Auf der 1-Sphäre S1 := {z ∈ C | |z| = 1} wird durch d(z, z ′) := min
{
|θ|
∣∣ θ ∈ R : z = eiθ · z ′

}
eine Metrik definiert.

(ii) Ist X ein metrischer Raum und A eine Teilmenge von X, so wird A durch die Einschränkung
der Metrik auf A zu einem metrischen Raum. Wir sagen dann A ist ein Unterraum von X.

(iii) Sei X eine beliebige Menge. Durch

d(x, y) :=
{
0, falls x = y
1, falls x ̸= y

wird auf X eine Metrik, die diskrete Metrik, definiert.
(iv) Sei p eine Primzahl. Jedes x ̸= 0 ∈ Q lässt sich eindeutig schreiben als x = a

b
pn mit n, a, b ∈

Z, b ̸= 0 und a, b, p paarweise teilerfremd. Dann heißt

|x|p := p−n

der p-adische Betrag von x. Setzt man |0|p := 0, so erhält man durch dp(x, y) := |x− y|p die
p-adische Metrik auf Q.

1.5 Definition. Seien (X, dX) und (Y, dY) zwei metrische Räume. Eine Abbildung f : X → Y heißt
eine Isometrie, falls für alle x, x ′ ∈ X

dY
(
f(x), f(x ′)

)
= dX(x, x

′)

1 Topologische Räume 1
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gilt. f heißt stetig, falls für alle x0 ∈ X gilt:

∀ε > 0 : ∃δ > 0 : dX(x, x0) < δ =⇒ dY
(
f(x), f(x0)

)
< ε

1.6 Definition. Eine Teilmenge U eines metrischen Raumes X heißt offen, falls gilt

∀x ∈ U : ∃δ > 0 mit Bδ(x) =
{
y ∈ X

∣∣ d(x, y) < δ} ⊆ U

1.7 Lemma. Sei f : X→ Y eine Abbildung zwischen metrischen Räumen. Dann sind äquivalent:

(i) f ist stetig
(ii) Urbilder offener Mengen in Y sind offen in X; also

∀U ⊆ Y offen : f−1(U) ⊆ X offen

Beweis: Siehe Analysis II.

1.8 Definition. Ein topologischer Raum (X,O) ist eine Menge X zusammen mit einer Familie O

von Teilmengen von X, sodass gilt:

(i) ∅, X ∈ O

(ii) U,V ∈ O =⇒ U ∩ V ∈ O

(iii) Ist I eine Indexmenge und Ui ∈ O für i ∈ I, so gilt
∪
i∈IUi ∈ O.

O heißt dann eine Topologie auf X. U ⊆ X heißt offen, falls U ∈ O. A ⊆ X heißt abgeschlossen, falls
X \A offen ist.

1.9 Beispiel. (i) Jeder metrische Raum wird durch

O :=
{
U ⊆ X

∣∣U ist offen im Sinne von Definition 1.6
}

zu einem topologischen Raum.
(ii) Sei X eine beliebige Menge.

(a) Die grobe Topologie ist Ogrob := {∅, X}.
(b) Die diskrete Topologie ist Odiskret := P(X).
(c) Die koendliche Topologie ist Okoendl. := {U ⊆ X | X \U endlich} ∪ {∅}.

1.10 Definition. Eine Abbildung f : X → Y zwischen topologischen Räumen heißt stetig, wenn
Urbilder von offener Mengen offen sind.

1.11 Lemma. Seien f : X→ Y und g : Y → Z stetige Abbildungen. Dann ist auch g◦ f : X→ Z stetig.

Beweis: Sei U ⊆ Z offen. Dann ist g−1(U) ⊆ Y offen, da g stetig ist. Da auch f stetig ist, gilt
(g ◦ f)−1(U) = f−1

(
g−1(U)

)
⊆ X offen.

1.12 Definition. Seien X, Y topologische Räume. Eine bĳektive stetige Abbildung f : X → Y heißt
Homöomorphismus, falls auch ihre Umkehrabbildung f−1 : Y → X stetig ist.

Gibt es einen solchen Homöomorphismus, so heißen X und Y homöomorph und wir schreiben
X ∼= Y, andernfalls X ̸∼= Y.

2 1 Topologische Räume
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1.13 Beispiel. (i) Es gilt (0, 1) ∼= (0,∞) ∼= (−∞, 0) ∼= R. Diese Homöomorphismen kann man
leicht explizit hinschreiben.

(ii) Es gilt (0, 1) ̸∼= [0, 1) ̸∼= [0, 1] ̸∼= (0, 1). Dies zeigen wir in einer Übungsaufgabe.
(iii) Es gilt

Rn ∼= Rm ⇐⇒ n = m.

Im Rahmen dieser Vorlesung werden wir nur Spezialfälle dieser Aussage (topologische Inva-
rianz der Dimension) beweisen können.

1.14 Definition. Sei X ein topologischer Raum. Eine Familie U von offenen Teilmengen von X heißt
eine Basis der Topologie, falls für jede Teilmenge W ⊆ X äquivalent sind:

(1) W ist offen.
(2) ∀x ∈W : ∃U ∈ U mit x ∈ U ⊆W ⇐⇒ W =

∪
U∈U
U⊆W

U.

Man sagt X erfüllt das zweite Abzählbarkeitsaxiom, falls X eine abzählbare Basis der Topologie
besitzt.

1.15 Beispiel. Sei X ein metrischer Raum. Dann ist {Bδ(x) | x ∈ X, δ > 0} eine Basis der Topologie
von X nach Definition 1.6. Gibt es eine abzählbare dichte Teilmenge X0 ⊆ X, so ist{

B1/n(x)
∣∣ x ∈ X0, n ∈N

}
eine abzählbare Basis der Topologie von X und X erfüllt das zweite Abzählbarkeitsaxiom.

1.16 Proposition. Sei X eine Menge und U eine Familie von Teilmengen von X mit X =
∪
U∈UU.

Dann ist U genau dann die Basis einer Topologie O auf X, wenn U die folgende Bedingung erfüllt:

∀U,V ∈ U : ∀x ∈ U ∩ V : ∃W ∈ U mit x ∈W ⊆ U ∩ V [#]

In diesem Fall ist die Topologie O eindeutig bestimmt und es gilt

O = {W ⊆ X∀x ∈W : ∃U ∈ U mit x ∈ U ⊆W}.

Beweis: Sei U die Basis der Topologie O und U,V ∈ U. Per Definition sind U,V offen, also ist
auch U ∩ V offen. Da U eine Basis der Topologie ist, gibt es zu jedem x ∈ U ∩ V ein W ∈ U mit
x ∈W ⊆ U ∩ V . Daher gilt [#].

Sei umgekehrt [#] erfüllt. Definiere eine Topologie O durch

W ∈ O :⇐⇒ ∀x ∈W : ∃U ∈ U : x ∈ U ⊆W.

Dann ist ∅ ∈ O. Wegen X =
∪
U∈UU gilt auch X ∈ O. Weiter ist O offenbar unter Vereinigungen

abgeschlossen. Seien W1,W2 ∈ O und x ∈W1 ∩W2. Dann gilt

x ∈W1,W1 offen =⇒ ∃U1 ∈ U : x ∈ U1 ⊆W1
x ∈W2,W2 offen =⇒ ∃U2 ∈ U : x ∈ U2 ⊆W2

Also x ∈ U1 ∩U2. Mit [#] folgt: ∃W ∈ U mit x ∈W ⊆ U1 ∩U2 ⊆W1 ∩W2.

1.17 Beispiel.  Sei RN der R-Vektorraum aller reellen Folgen. Für eine Konstante δ > 0, eine
Zahl n ∈N und Punkte α1, . . . , αn ∈ R sei

Un,δ,α1,...,αn
:=

{
(xi)i∈N

∣∣ |xi − αi| < δ für i = 1, . . . , n
}

Dann erfüllt U := {Un,δ,α1,...,αn
| n ∈N, αi ∈ R, δ > 0} die Bedingung [#] und ist die Basis

der Topologie der punktweisen Konvergenz.

1 Topologische Räume 3
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 Sei C(R,R) der R-Vektorraum aller stetigen Abbildungen. Zu [a, b] ⊂ R, δ > 0, g : [a, b] → R
stetig sei

Ua,b,δ,g :=
{
f : R → R stetig

∣∣ ∀t ∈ [a, b] :
∣∣f(t) − g(t)∣∣ < δ}.

Dann erfüllt U := {Ua,b,δ,g} die Bedingung [#] und ist die Basis der Topologie der gleichmä-
ßigen Konvergenz auf kompakten Intervallen.

1.18 Definition. Sei Y eine Teilmenge eines topologischen Raums X.
◦
Y := {y ∈ Y | ∃U ⊆ X offen mit y ∈ U ⊆ Y} heißt das Innere von Y.
Y := {x ∈ X | ∀U ⊆ X offen mit x ∈ U : U ∩ Y ̸= ∅} heißt Abschluss von Y.

∂Y := Y \
◦
Y heißt der Rand von Y.

1.19 Bemerkung. Es gilt

1)
◦
Y = X \ (X \ Y), Y = X \ (X \ Y)◦.

2)
◦
Y =

∪
U⊆Y
U offen

U ist offen.

3) Y =
∩
Y⊆A,A abg.A ist abgeschlossen.

4) ∂Y = Y \
◦
Y ist abgeschlossen.

1.20 Definition. Sei X ein topologischer Raum und x ∈ X. V ⊆ X heißt eine Umgebung von x, falls
es U ⊆ X offen gibt mit x ∈ U ⊆ V . Ist V offen, so heißt V eine offene Umgebung von x.

1.21 Definition. Ein topologischer Raum X heißt hausdorffsch (oder ein Hausdorffraum), falls es
zu jedem Paar x, y ∈ X, x ̸= y offene Umgebungen U von x und V von y gibt mit U ∩ V = ∅.

Metrische Räume sind stets hausdorffsch. Ist |X| ⩾ 2 so ist (X,Ogrob) nicht hausdorffsch.

1.22 Definition. Ein Hausdorffraum M, der das zweite Abzählbarkeitsaxiom erfüllt, heißt eine
topologische Mannigfaltigkeit der Dimension n (oder eine n-Mannigfaltigkeit), falls er lokal ho-
möomorph zum Rn ist; d.h. ∀x ∈M existiert eine offene Umgebung U von x mit U ∼= Rn.

4 1 Topologische Räume
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2 Konstruktion topologischer Räume
2.1 Definition. Sei X ein topologischer Raum und A ⊆ X. Achtung: U ⊆ A

offen ≠⇒ U ⊆ X
offen!

Die Spurtopologie, Teilraumtopologie
oder Unterraumtopologie auf A besteht aus allen Teilmengen von A der Form A ∩ U mit U ⊆ X

offen. Mit dieser Topologie heißt A ein Unterraum von X.

2.2 Bemerkung. Sei i : A ↪→ X die Inklusion. Dann ist i stetig und falls Y ein weiterer topologischer
Raum ist und f : Y → A eine Abbildung, so gilt

f stetig ⇐⇒ i ◦ f : Y → X stetig

2.3 Definition. Seien X, Y topologische Räume. Eine Basis für die Produkttopologie auf X× Y ist

U :=
{
U× V

∣∣U ⊆ X offen , V ⊆ Y offen
}
.

Dies können wir auf das Produkt beliebig vieler topologischer Räume verallgemeinern:

2.4 Definition. Seien Xi für i ∈ I topologische Räume. Die Produkttopologie auf ihrem Produkt∏
i∈I
Xi =

{
(xi)i∈I

∣∣ xi ∈ Xi}
hat als Basis alle Mengen der Form

∏
i∈IUi mit

(i) Ui ⊆ Xi ist offen
(ii) Für fast alle i ist Ui = Xi (also für alle bis auf endlich viele i).

2.5 Bemerkung. Seien pj :
∏
i∈I Xi → Xj die Projektionen auf die einzelnen Koordinaten. Dann

sind die pj alle stetig und die folgende universelle Eigenschaft ist erfüllt:
Ist Y ein weiterer topologischer Raum und f : Y →

∏
i∈I Xi eine Abbildung, so gilt:

f stetig ⇐⇒ ∀j : fj := pj ◦ f stetig

2.6 Bemerkung. Die übliche Topologie auf Rn =
∏n
i=1R stimmt mit der eben definierten Pro-

dukttopologie überein.

2.7 Beispiel. Mit Produkten lassen sich viele interessante topologische Räumen „bauen“; setze
zum Beispiel

Tn := S1 × . . .× S1︸ ︷︷ ︸
n

=

n∏
i=1

S1

Tn heißt der n-Torus. Der n-Torus ist eine (glatte) n-Mannigfaltigkeit.

Abbildung 1: Der Torus T2, Quelle

2 Konstruktion topologischer Räume 5
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2.8 Definition. Seien X und Y topologische Räume und (ft)t∈[0,1] eine Familie von stetigen Abbil-
dungen ft : X→ Y. Wir sagen, dass die ft stetig von t abhängen, falls

H : X× [0, 1] −→ Y mit H(x, t) = ft(x)

stetig bezüglich der Produkttopologie ist. In diesem Fall heißen f0 und f1 homotop und H eine
Homotopie zwischen f0 und f1.

Beispielsweise sind je zwei Abbildungen f, g : X → Rn homotop; eine Homotopie wird gegeben
durch H(x, t) := (1 − t) · f(x) + t · g(x). Wir werden später sehen, dass die Identität id : S1 → S1

nicht homotop zu einer konstanten Abbildung ist.

2.9 Definition. Sei X ein topologischer Raum,M eine Menge und q : X→M eine surjektive Abbil-
dung. Die offenen Mengen der Quotiententopologie auf M (bezüglich q) sind alle U ⊆ M für die
q−1(U) ⊆ X offen ist.

Die Quotiententopologie ist gerade so definiert, dass q : X → M stetig ist. Außerdem ist wieder
eine universelle Eigenschaft erfüllt, nämlich die folgende:

Ist Y ein weiterer topologischer Raum und f :M→ Y eine Abbildung, so gilt

f stetig ⇐⇒ f ◦ q stetig

Die Quotiententopologie wird oft wie folgt eingesetzt: Sei ∼ eine Äquivalenzrelation auf dem to-
pologischen Raum X. Dann ist die Äquivalenzklassenabbildung q : X → X/∼, x 7→ [x]∼ surjektiv.
Insbesondere wird X/∼ durch die Quotiententopologie zu einem topologischen Raum.

2.10 Beispiel. Betrachte X = [0, 1]×R.

(i) Definiere (s, t) ∼ (s ′, t ′) :⇔ (s = s ′ und t = t ′) oder (s = 0, s ′ = 1, t = t ′). Dann erhalten wir
einen Zylinder

X/∼ ∼= ∼=

Anschaulich haben wir zwei gegenüberliegende Seiten „zusammengeklebt“.
(ii) Definieren wird stattdessen (s, t) ∼ (s ′, t ′) :⇔ (s = s ′ und t = t ′) oder (s = 0, s ′ = 1 und t =

−t ′). Dann erhalten wir das Möbiusband, siehe Abbildung 2. Hier haben wir anschaulich
gesprochen X verdreht und dann zusammengeklebt.

Abbildung 2: Möbius-Band, Quelle

(iii) Sei RPn die Menge aller 1-dimensionalen Unterräume des Rn+1. Wir erhalten eine surjektive
Abbildung

q : Rn+1 \ {0} → RPn , q(v) := ⟨v⟩
RPn mit der Quotiententopologie bezüglich q heißt der reell projektive Raum der Dimension
n. Er ist eine n-Mannigfaltigkeit.

6 2 Konstruktion topologischer Räume
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(iv) Betrachte auf R × {0, 1} die Äquivalenzrelation die durch

(x, t) ∼ (x ′, t ′) :⇔ x = x ′ und (t = t ′ oder x ̸= 0)

definiert wird. Dann ist R × {0, 1}/ ∼ nicht hausdorffsch (obwohl R × {0, 1} natürlich haus-
dorffsch ist).

(v) Betrachte auf R die Relation x ∼ y :⇔ x − y ∈ Q. Dann ist die Quotiententopologie auf R/ ∼
die grobe Topologie.

(vi) Sei f : X→ X eine stetige Abbildung. Betrachte auf X× [0, 1] die Äquivalenzrelation

(x, t) ∼ (x ′, t ′) :⇐⇒ (x = x ′ und t = t ′) oder (t = 0, t ′ = 1 und x ′ = f(x))

Der Quotient Tf := X× [0,1]/∼ heißt der Abbildungstorus von f.
Beispiel: Betrachte f : R → R gegeben durch f(x) = −x. Dann ist Tf das Möbiusband von
eben.

2 Konstruktion topologischer Räume 7
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3 Konvergenz
3.1 Definition. Sei X ein topologischer Raum und (xn)n∈N eine Folge in X. Dann sagen wir (xn)n∈N
konvergiert gegen x ∈ X, falls gilt:

Zu jeder offenen Umgebung V von x, gibt es N ∈N, sodass xn ∈ V für alle n ⩾ N.

Wir schreiben dann xn −−→ x oder xn n→∞−−−→ x. Der Punkt x heißt Grenzwert von (xn)n∈N.

Wir stellen fest: Bezüglich der groben Topologie ist jeder Punkt Grenzwert jeder Folge.
Betrachte die Topologie der gleichmäßigen Konvergenz auf kompakten Teilmengen (siehe Bei-

spiel 1.17) auf dem Raum C(R,R). Dann gilt für Folgen (fn)n∈N von stetigen Abbildungen fn ∈
C(R,R)

fn −−→ f ⇐⇒ ∀a < b konvergiert fn|[a,b] −−→ f[a,b] gleichmäßig.

3.2 Lemma. Sei X hausdorffsch. Gilt xn −−→ x und xn −−→ y, so folgt x = y.

Beweis: Übung!

3.3 Definition. Eine nichtleere Menge Λ mit einer Relation ⩽ heißt gerichtet, falls gilt
(i) ∀λ ∈ Λ : λ ⩽ λ

(ii) ∀λ1, λ2, λ3 ∈ Λ : (λ1 ⩽ λ2)∧ (λ2 ⩽ λ3) =⇒ λ1 ⩽ λ3 (transitiv)
(iii) ∀λ1, λ2 ∈ Λ : ∃µ : (λ1 ⩽ µ)∧ (λ2 ⩽ µ)

3.4 Definition. Sei X ein topologischer Raum. Ein Netz (xλ)λ∈Λ in X besteht aus einer gerichteten
Menge Λ und Elementen xλ ∈ X für λ ∈ Λ. Für x ∈ X sagen wir (xλ)λ∈Λ konvergiert gegen x, falls
gilt:

∀ Umgebungen U von x : ∃λ0 ∈ Λ : ∀λ ∈ Λ mit λ ⩾ λ0 gilt xλ ∈ U

Wir schreiben dann xλ λ→∞−−−→ x oder xλ −−→ x.

Es sei X ein topologischer Raum und x ∈ X ein Punkt.Dann ist die Menge Λ aller offenen Umge-
bungen von x gerichtet bezüglich

U ⩽ V :⇐⇒ V ⊆ U
Ist nun xU ∈ U für alle U ∈ Λ so gilt xU −−→ x.

3.5 Lemma. Sei X hausdorffsch. Gilt xλ −−→ x und xλ −−→ y, so folgt x = y.

Beweis: Angenommen es gilt x ̸= y. Da X hausdorffsch ist, existiert dann eine Umgebung U von
x und V von y mit U ∩ V = ∅. Da xλ −−→ x finden wir λU, sodass xλ ∈ u für alle λ ⩾ λU. Genauso
finden wir λV , sodass xλ ∈ V für alle λ ⩾ λV . Sei nun µ ∈ Λ mit µ ⩾ λU und µ ⩾ λV . Dann folgt
xµ ∈ U ∩ V = ∅. Widerspruch!

3.6 Definition. Sei (xλ)λ∈Λ ein Netz in X.Ein Teilnetz einer
Folge ist nicht not-

wendig eine Teilfolge!

Ein Teilnetz von (xλ′)λ′∈Λ′ ist eine gerichtete Menge Λ ′

mit einer Abbildung f : Λ ′ → Λ, so dass gilt
i) λ ′1 ⩽ λ ′2 =⇒ f(λ ′1) ⩽ f(λ ′2) (f erhält „⩽“)

ii) ∀λ ∈ Λ : ∃λ ′ ∈ Λ ′ mit λ ⩽ f(λ ′) (f ist kofinal)
Oft schreiben wir dann

(
xf(λ′)

)
λ′∈Λ′ für das entsprechende Teilnetz.

8 3 Konvergenz



Stand: 13. Juli 2017 9:30

4 Kompakte Räume
4.1 Definition. Eine Familie U von offenen Teilmengen von X heißt eine offene Überdeckung, falls∪

U∈U

U = X

V ⊆ U heißt eine Teilüberdeckung, falls immer noch X ⊆
∪
V∈V V gilt.

4.2 Definition. Ein topologischer Hausdorffraum X heißt kompakt, wenn jede offene Überdeckung
von X eine endliche Teilüberdeckung besitzt.

4.3 Satz. Sei X ein Hausdorffraum. Dann sind äquivalent:

1) X ist kompakt.

2) Jedes Netz in X besitzt ein konvergentes Teilnetz.

Beweis: Sei (xλ)λ∈Λ ein Netz in X. Für λ ∈ Λ betrachten wir Aλ := {xλ′ | λ ′ ⩾ λ} und Uλ := X \Aλ.
Wir behaupten zunächst, dass {Uλ | λ ∈ Λ} keine endliche Teilüberdeckung besitzt.

Sei Λ0 ⊆ Λ endlich. Da Λ gerichtet ist, gibt es λ ∈ Λ mit λ ⩾ µ für alle µ ∈ Λ0. Es folgt
xλ ∈ {xλ′ | λ ′ ⩾ µ} für alle µ ∈ Λ0. Insbesondere folgt daraus xλ ∈

∩
µ∈Λ0

Aµ und damit xλ ̸∈ Uµ
für alle µ ∈ Λ0. Der Schnitt ist also nicht leer und damit die Behauptung gezeigt.

Da X kompakt ist kann {Uλ | λ ∈ Λ} keine Überdeckung von X sein und es gibt x ̸∈
∪
λ∈ΛUλ. Mit

anderen Worten x ∈
∩
λ∈ΛAλ.

Sei U die Menge aller offenen Umgebungen von x. Wir setzen

ΛU :=
{
(λ,U)

∣∣ λ ∈ Λ, xλ ∈ U ∈ U
}

Durch (λ,U) ⩽ (λ ′, U ′) :⇔ λ ⩽ λ ′ und U ⊇ U ′ wird ΛU zu einer gerichteten Menge: Für (λ1, U1)
und (λ2, U2) ∈ ΛU betrachteU := U1∩U2 undwähle λ ∈ Λmit λ ⩾ λ1, λ2. Da x ∈ Aλ = {xλ′ | λ ′ ⩾ λ}
ist und U eine offene Umgebung von x ist, folgt

U ∩
{
xλ′

∣∣ λ ′ ⩾ λ} ̸= ∅

Also gibt es λ ′ ⩾ λ mit xλ′ ∈ U und es gilt (λ ′, U) ∈ ΛU sowie (λ1, U1), (λ2, U2) ⩽ (λ ′, U). Damit
ist ΛU gerichtet.

Sei f : ΛU → Λ definiert durch f(λ,U) := λ. Es gilt nun xf(λ,U) → x für (λ,U) → ∞. Daher ist
(xf(λ,U))(λ,U)∈ΛU

das gesuchte konvergente Teilnetz.
Zur anderen Implikation: Sei U eine offene Überdeckung von X. Angenommen U besitzt keine

endliche Teilüberdeckung. Sei Λ := {U0 ⊆ U | U0 ist endlich} die Menge der endlichen Teilmengen
von U. Λ ist gerichtet bezüglich U0 ⩽ U1 :⇔ U0 ⊆ U1.

Zu U0 ∈ Λ wähle
xU0

̸∈
∪
U∈U0

U.

Sei nun (xf(λ))λ∈Λ′ mit f : Λ ′ → Λ ein konvergentes Teilnetz von (xU0
)U0∈Λ und x der Grenzwert

von (xf(λ′))λ′∈Λ′ . Da U eine Überdeckung von X ist gibt es V ∈ U mit x ∈ V . Nun gibt es λ0 ∈ Λ ′

mit xf(λ) ∈ V für alle λ ⩾ λ0. Da f kofinal ist gibt es λ1 mit f(λ1) ⩾ {V} ∈ Λ. Sei µ ⩾ λ0, λ1 in Λ ′.
Dann gilt wegen µ ⩾ λ0

xf(µ) ∈ V

4 Kompakte Räume 9
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und andererseits, wegen µ ⩾ λ1
xf(µ) ̸∈

∪
U∈f(µ)

U ⊃ V.

Widerspruch.

4.4 Bemerkung. Sei X ein Hausdorffraum. Eine Familie A von abgeschlossenen Teilmengen von
X hat die endliche Durchschnittseigenschaft, wenn für jedes A0 ⊆ A mit |A0| <∞ gilt∩

A∈A0

A ̸= ∅.

Dann ist X genau dann kompakt, wenn gilt: Hat eine Familie A von abgeschlossenen Teilmengen
von X die endliche Durchschnittseigenschaft, so gilt∩

A∈A

A ̸= ∅.

{a | a ∈ A}{
a

∣∣∣ a ∈ A
}

(a
b
+ 17

)
(
a

b
+ 17

)

4.5 Bemerkung. Sei X ein metrischer Raum. Dann sind äquivalent:

(1) X ist kompakt.
(2) Jede Folge in X besitzt eine konvergente Teilfolge.

Topologische Räume mit der zweite Eigenschaft heißen folgenkompakt.

4.6 Bemerkung. Man kann auch zeigen, dass sich Stetigkeit in metrischen Räumen über das Fol-
genkriterium charakterisieren lässt, in allgemeinen topologischen Räumen muss man stattdessen
aber Netze benutzen. Bei der Verallgemeinerung von metrischen Räumen hin zu topologischen
Räumen, müssen also auch Folgen zu Netzen verallgemeinert werden.

4.7 Satz (Tychonov). Sei (Xi)i∈I eine Familie von kompakten topologischen Räumen. Dann ist
auch X :=

∏
i∈I Xi kompakt.

4.8 Bemerkung. Seien (Xi, di)i∈N folgenkompakte topologische Räume. Dann ist auch
∏
i Xi fol-

genkompakt:
Sei pj :

∏
i Xi → Xj die Projektion auf den j-ten Faktor. Sei (xn)n∈N eine Folge in

∏
i Xi. Wähle

induktiv N = N0 ⊇ N1 ⊇ N2 ⊇ . . . mit

(i) |Ni| = ∞
(ii) (pi(xn))n∈Ni

ist eine konvergente Folge in Xi.

10 4 Kompakte Räume
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Dies ist möglich, da Xi kompakt ist. Wähle nun nk ∈ Nk induktiv, so dass nk > nk−1. Dann ist
(xnk

)k∈N eine Teilfolge von (xn)n∈N. Für i ∈N ist
(
pi
(
xnk

))
k∈N,k⩾i eine Teilfolge der konvergen-

ten Folge (pi(xn))n∈Ni
und daher konvergent. Damit konvergiert auch (pi(xnk

))k∈N für jedes i.
Daher konvergiert (xnk

)k∈N punktweise, also in der Produkttopologie (Übung).

4.9 Definition. Sei (xλ)λ∈Λ ein Netz in X und A ⊆ X. Wir sagen (xλ)λ∈Λ ist immer wieder in A,
falls gilt:

∀λ ∈ Λ : ∃µ ∈ Λ mit µ ⩾ λ und xµ ∈ A

Wir sagen (xλ)λ∈Λ ist schließlich in A, falls gilt

∃λ ∈ Λ : ∀µ ∈ Λ mit µ ⩾ λ gilt xµ ∈ A

Offensichtlich gilt: xλ −−→ x ⇐⇒ für jede Umgebung U von x ist xλ schließlich in U.

4.10 Definition. Ein Netz (xλ)λ∈Λ in X heißt universell, falls für jede Teilmenge A ⊆ X gilt: Entwe-
der ist (xλ)λ∈Λ schließlich in A oder schließlich in X \A.

4.11 Bemerkung.  Ist (xλ)λ∈Λ universell und immer wieder inA, dann ist (xλ)λ∈Λ schließlich
in A.

 Ist (xλ)λ∈Λ ein universelles Netz in X und f : X → Y eine Abbildung, so ist auch (f(xλ))λ∈Λ
ein universelles Netz in Y.

4.12 Lemma. Ist X kompakt und (xλ)λ∈Λ ein universelles Netz in X, so konvergiert (xλ)λ∈Λ in X.

Beweis: Sei X kompakt und (xλ)λ∈Λ ein universelles Netz in X. Angenommen (xλ)λ∈Λ konvergiert
nicht in X. Dann gibt es zu jedem x ∈ X eine offene Umgebung Ux von x, so dass (xλ)λ∈Λ nicht
schließlich in Ux ist. Da (xλ)λ∈Λ universell ist, ist (xλ)λ∈Λ schließlich in X \ Ux. Da X =

∪
x∈XUx

und X kompakt ist, gibt es x1, . . . , xk ∈ X mit X = Ux1 ∪ . . .∪Uxk . Für jedes i ∈ {1, . . . , k} sei λi ∈ Λ
mit xµ ∈ X \Uxi für µ ⩾ λi. Sei nun µ ∈ Λ mit µ ⩾ λi für i = 1, . . . , k. Es folgt

xµ ∈
k∩
i=1

(X \Uxi) = X \

(
k∪
i=1

Uxi

)
= X \ X = ∅ E

4.13 Proposition. Jedes Netz besitzt ein universelles Teilnetz.

Beweis: Sei (xλ)λ∈Λ ein Netz in X. Sei

M :=
{
B ⊆ P(X)

∣∣∣∣ (1) B ∈ B ⇒ (xλ)λ∈Λ ist immer wieder in B
(2) B,B ′ ∈ B ⇒ B ∩ B ′ ∈ B

}
Dann ist {X} ∈ M, insbesondere gilt M ̸= ∅. Ist M0 ⊆ M eine Kette, also

B,B ′ ∈ M0 =⇒ B ⊆ B ′ oder B ′ ⊆ B

so gilt
∪

B∈M0
B ∈ M. Nach dem Lemma von Zorn enthält M ein maximales Element B. Da B

maximal ist, ist {X} ∈ B. Sei

Λ ′ :=
{
(B, λ)

∣∣ B ∈ B, λ ∈ Λ, xλ ∈ B
}

Durch (B, λ) ⩽ (B ′, λ ′) :⇔ B ⊇ B ′, λ ⩽ λ ′ wird Λ ′ gerichtet. Wir zeigen nun, dass (xλ)(B,λ)∈Λ′

universell ist. Dazu zunächst ein Hilfssatz:
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Sei (xλ)(B,λ)∈Λ′ immer wieder in S. Dann gilt S ∈ B.
Beweis: Wir zeigen: B+ := B ∪ {S ∩ B | B ∈ B} ∈ M. Da B maximal ist und B ⊆ B+, folgt dann

B = B+ und S ∈ B+ = B. Offenbar erfüllt B+ Bedingung (2); es bleibt also (1) zu zeigen.
Wir müssen zeigen, dass für alle B ∈ B das Netz (xλ)λ∈Λ immer wieder in B ∩ S ist. Sei also

λ ∈ Λ beliebig. Gesucht ist nun µ ⩾ λ mit xµ ∈ B ∩ S. Da B ∈ B ∈ M gibt es λ ′ ∈ Λ, λ ′ ⩾ λ mit
xλ′ ∈ B. Also ist (B, λ ′) ∈ Λ ′. Da (xλ)(B,λ)∈Λ′ immer wieder in S ist, gibt es

Λ ′ ∋ (A,µ) ⩾ (B, λ ′)

mit xµ ∈ S. Da (A,µ) ∈ Λ ′ ist xµ ∈ A ⊆ B. Also xµ ∈ B ∩ S, was zu zeigen war.
Sei S ⊆ X beliebig. Ist (xλ)(B,λ)∈Λ′ weder schließlich in S noch schließlich in X \ S, so ist

(xλ)(B,λ)∈Λ′ immer wieder in S und immer wieder in X \ S. Mit dem Hilfssatz folgt nun, dass
S, X \ S ∈ B. Dann gilt aber ∅ = S ∩ (X \ S) ∈ B. E

Beweis (des Satzes von Tychonov): Ist (xλ)λ∈Λ ein Netz in
∏
i Xi, so besitzt dieses Netz ein univer-

selles Teilnetz (xf(µ))µ∈Λ′ nach Proposition 4.13. Für jedes i ist dann pi(xf(µ))µ∈Λ′ ein universelles
Netz in Xi und nach Lemma 4.12 konvergent. Daher ist (xf(µ))µ∈Λ′ bezüglich der Produkttopologie
konvergent.

4.14 Definition. Sei ℓ∞(Z) der R-Vektorraum aller beschränkten Abbildungen f : Z → R. Die
Supremumsnorm

∥f∥∞ := sup
{
|f(n)|

∣∣ n ∈ Z
}

ist eine Norm auf ℓ∞(Z).

4.15 Satz. Es gibt eine Abbildung M : ℓ∞(Z) → R mit

a) M ist R-linear,

b) M ist positiv, d.h. f ⩾ 0 =⇒ M(f) ⩾ 0,

c) M(1) = 1 für die konstante 1-Funktion 1 : Z → R,

d) M ist Z-invariant: Für f ∈ ℓ∞(Z) sei Tf ∈ ℓ∞(Z) gegeben durch (Tf)(n) = f(n+ 1). Dann gilt
M(f) =M(Tf).

Beweis: Sei M die Menge aller AbbildungenM : ℓ∞(Z) → R, die die Punkte a), b) und c) erfüllen.
Für n ∈N sei Mn ∈ M definiert durch Mn(f) =

1
n+1

∑n
i=0 f(i). Dann gilt für f ∈ ℓ∞(Z)

Mn(f) −Mn(Tf) =
1

n+ 1

n∑
i=0

f(i) − Tf(i) =
1

n+ 1

n∑
i=0

(
f(i) − f(i+ 1)

)
=

1

n+ 1

(
f(0) − f(n+ 1)

)
Es folgt

∣∣Mn(f) −Mn(Tf)
∣∣ ⩽ 2·∥f∥∞

n+1 . Wir konstruieren nun eine kompakte Topologie auf M, denn
dann können wir anschließend ein konvergentes Teilnetz der Folge (Mn)n∈N betrachten. Sei

X :=
∏

f∈ℓ∞(Z)

[
−∥f∥∞, ∥f∥∞]

Aus a), b), c) folgt, dass für f ∈ ℓ∞(Z) und M ∈ M gilt: M(f) ∈
[
−∥f∥∞, ∥f∥∞]. Mittels

M ∋M 7−→
(
M(f)

)
f∈ℓ∞(Z)

∈ X
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wird M zu einem abgeschlossenen Unterraum von X. M ist kompakt bezüglich der Produkttopolo-
gie auf X, also bezüglich punktweiser Konvergenz. Sei nun α : Λ→ N, sodass Mα(λ) −−→M ∈ M
(existiert, da M kompakt). Es folgt

∀f ∈ ℓ∞(Z) :Mα(λ)(f) −−→M(f)

WegenMα(λ)(f) −Mα(λ)(Tf)
λ→∞−−−→M(f) −M(Tf) und

∣∣Mα(λ)(f) −Mα(λ)(Tf)
∣∣ ⩽ 2 · ∥f∥

α(λ) + 1

α(λ)→∞−−−−−→ 0

folgtM(f) =M(Tf) für alle f ∈ ℓ∞(Z).

4.16 Definition. Sei X eine Menge. Ein Filter auf X ist eine Familie F von Teilmengen von X die
folgenden Bedingungen erfüllt:

a) ist A ∈ F und A ⊆ B so gilt auch B ∈ F;
b) sind A,B ∈ F so gilt A ∩ B ∈ F;
c) X ∈ F, ∅ ̸∈ F.

Ein Ultrafilter ist ein Filter F der maximal bezüglich Inklusion ist. (Mit anderen Worten ist F ′ ein
Filter der F enthält, so ist F = F ′.) Zu x ∈ X heißt Fx := {A ⊆ X | x ∈ A} der Hauptfilter zu x.

4.17 Bemerkung. a) Ein Filter F ist genau dann ein Ultrafilter, falls für jede Teilmenge A ⊆ X

entweder A ∈ F oder X \A ∈ F ist.
b) Hauptfilter sind Ultrafilter.
c) Zur Konstruktion von Ultrafiltern die keine Hauptfilter sind wird das Zornsche Lemma be-

nötigt.

4.18 Definition. Sei X ein topologischer Raum. Wir sagen ein Filter F auf X konvergiert gegen x ∈ X
falls er den Umgebungsfilter von x

Ux :=
{
U ⊆ X

∣∣U ist Umgebung von x
}

enthält.

4.19 Bemerkung. Ein Hausdorffraum X ist genau dann kompakt wenn jeder Ultrafilter auf X
konvergiert. Diese Charakterisierung von Kompaktheit kann man zu einem weiteren Beweis des
Satzes von Tychonov benutzen. Diesen Beweis werden wir in den Übungen behandeln.
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5 Kompaktifizierungen
5.1 Definition. Sei X ein topologischer Raum. Ein kompakter Raum X heißt eine Kompaktifizierung
von X, falls er X als offenen, dichten Unterraum enthält. (Oft heißt ∂X := X \ X der Rand der
Kompaktifizierung.)

5.2 Beispiel. Beispiele für Kompaktifizierungen:

(i) (−1, 1) ⊆ [−1, 1]

(ii)
◦
Dn :=

{
x ∈ Rn

∣∣ ∥x∥2 < 1} ⊆ Dn =
{
x ∈ Rn

∣∣ ∥x∥2 ⩽ 1}. Für n = 2 sieht das wie folgt aus:

⊆

Es gilt ∂Dn = Sn−1 :=
{
x ∈ Rn

∣∣ ∥x∥2 = 1}.
(iii) f : Rn →

◦
Dn, f(x) := x

1+∥x∥2
ist ein Homöomorphismus. Daher können wir Rn zu

Rn := Rn ∪̇
(
Sn−1 × {∞}

)
∼= Dn

kompaktifizieren.

(iv) Definiere auf Rn ∪ {∞} folgende Topologie

O :=
{
U
∣∣U ⊆ Rn ist offen

}
∪
{
U ∪ {∞}

∣∣U ⊆ Rn offen und ∃R > 0 : Rn \ BR(0) ⊆ U
}

Dann ist Rn ∪ {∞} eine weitere Kompaktifizierung von Rn. Übung: Rn ∪ {∞} ∼= Sn.

5.3 Definition. Ein topologischer Raum X heißt lokalkompakt, wenn für jedes x ∈ X und jede
offene Umgebung U von x eine kompakte Umgebung K von x existiert mit K ⊆ U.

5.4 Beispiel. (i) Rn ist lokalkompakt: Sei x ∈ Rn und U ⊆ Rn eine offene Umgebung von x.
Da U offen ist existiert ε > 0 mit Bε(x) ⊆ U. Es folgt Bε/2(x) ⊆ Bε(x) ⊆ U. Dann ist Bε/2(x)
eine kompakte Umgebung von x, die in U liegt.

(ii) Topologische Mannigfaltigkeiten sind lokalkompakt, da sie lokal homöomorph zum Rn sind.

(iii) Offene Teilräume von lokalkompakten Räumen sind lokalkompakt.

5.5 Proposition. Sei K kompakt und W ⊆ K offen. Dann ist W lokalkompakt. Insbesondere sind
kompakte Räume auch lokalkompakt.

Beweis: Sei x ∈W und U eine offene Umgebung von x inW. K ist Hausdorff, also gibt es für alle
y ∈ K \U offene Umgebungen Vy von y und Wy von x mit Vy ∩Wy = ∅. Dann ist {Vy | y ∈ K \U}

eine offene Überdeckung von K \ U. Da mit K auch K \ U kompakt ist, gibt es Y0 ⊆ K \ U endlich
mit

K \U ⊆
∪
y∈Y0

Vy.

Nun ist L := K\
∪
y∈Y0

Vy kompakt und L ⊆ U. Da
(∩

y∈Y0
Wy

)
∩U offen ist und

(∩
y∈Y0

Wy

)
∩U ⊆

L ist, ist L eine Umgebung von x.
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5.6 Bemerkung. Wegen obiger Proposition können nur lokalkompakte Räume eine Kompaktifi-
zierung besitzen.

5.7 Definition. Sei X ein lokalkompakter Hausdorffraum. Die Einpunktkompaktifizierung, EPK
(EPK) von X ist EPK(X) := X ∪ {∞} mit der folgenden Topologie:

U ⊆ X ∪ {∞} offen : ⇐⇒ U ⊆ X ist offen oder U = (X \ K) ∪ {∞} mit K ⊆ X kompakt

5.8 Proposition. EPK(X) ist kompakt. Ist X nicht kompakt, so ist EPK(X) eine Kompaktifizierung
von X.

Beweis: Sei U eine offene Überdeckung von EPK(X). Sei U0 ∈ U mit ∞ ∈ U0. Dann existiert K ⊆ X
kompakt mit U0 = (X \ K) ∪ {∞}. Da K kompakt ist, gibt es U1, . . . , Un ∈ U mit K ⊆ U1 ∪ . . . ∪Un.
Dann ist U0, U1, . . . , Un eine endliche Teilüberdeckung von EPK(X).

Es bleibt zu zeigen, dass EPK(X) Hausdorff ist. Seien dazu x, y ∈ EPK(X) mit x ̸= y. Gilt x ̸=∞ ̸= y so gibt es U,V ⊆ X mit x ∈ U,y ∈ V und U ∩ V = ∅, da X hausdorffsch ist. Nach Definition
sind dann U,V auch offen in EPK(X). Andernfalls sei o.B.d.A. x = ∞. Da X lokalkompakt ist, gibt
es eine Umgebung K von y mit K ⊆ X kompakt. Dann sind U :=

◦
K und V := (X \K)∪ {∞} disjunkte

offene Umgebungen von x und y.
Sei nun X nicht kompakt. Ist U eine Umgebung von ∞ ∈ EPK(X), so gibt es K ⊆ X kompakt mit

U = (X\K)∪ {∞}. Dann ist U∩X = X\K. Da X nicht kompakt ist, ist X ̸= K, also X\K ̸= ∅. Daher hat
jede Umgebung von∞ ∈ EPK(X) einen nicht-trivialen Schnitt mit X. Also ist X ⊆ EPK(X) dicht.

Frage. Sei f : X→ Y stetig und X, Y lokalkompakt. Gibt es dann eine stetige Fortsetzung

f̄ : EPK(X) → EPK(Y)

mit f̄(∞) = ∞?

5.9 Beispiel. (i) Sei f : R → R, f(x) ≡ 0. Dann ist f̄ : EPK(R) → EPK(R) mit

f̄(x) =

{
f(x) = 0, falls x ∈ R∞, falls x = ∞

sicher nicht stetig. Natürlich ist aber f̃ : EPK(R) → EPK(R) mit f̃(x) = 0 ∀x ∈ EPK(R) stetig.
(ii) Betrachte f : R → R mit

f(x) =


1, falls x ⩾ 1
x, falls x ∈ [0, 1]

0, falls x ⩽ 0

Dann gibt es keine stetige Fortsetzung f̄ : EPK(R) → EPK(R), denn die Folge xn = n kon-
vergiert in EPK(R) gegen ∞. Da f(xn) = 1 ∀n müsste f̄(∞) = 1 sein. Die Folge yn = −n
konvergiert in EPK(R) auch gegen ∞. Da f(yn) = 0 für alle n müsste auch f̄(∞) = 0 sein. E

5.10 Definition. Seien X und Y lokalkompakt. Eine stetige Abbildung f : X → Y heißt eigentlich,
wenn für jede kompakte Teilmenge K ⊆ Y auch f−1(K) ⊆ X kompakt ist.

5.11 Satz. Seien X, Y lokalkompakt und f : X→ Y stetig. Dann sind äquivalent:

(1) f ist eigentlich.
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(2) f̄ : EPK(X) → EPK(Y) mit f̄(x) =
{
f(x), falls x ∈ X∞, falls x = ∞ ist stetig.

Beweis: Wir nehmen zunächst an, dass f eigentlich ist. Sei U ⊆ EPK(Y) offen. Ist ∞ /∈ U, so ist
f̄−1(U) = f−1(U) offen, da f stetig ist. Ist ∞ ∈ U, so gibt es K ⊆ Y mit U = (X \ K) ∪ {∞}. Da f
eigentlich ist, ist auch L := f−1(K) ⊆ X kompakt und f̄−1(U) = (X \ L) ∪ {∞} ist offen in EPK(X).

Für die andere Implikation betrachten wir K ⊆ Y kompakt. Dann ist U = (Y \K)∪ {∞} ⊆ Y offen.
Da f̄ stetig ist, ist auch f̄−1(U) =

(
X \ f−1(K)

)
∪ {∞} offen. Damit ist f−1(K) ⊆ X kompakt.
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6 Der Approximationssatz von Stone-Weierstraß
6.1 Definition. Sei X ein lokalkompakter Hausdorffraum. Eine stetige Funktion f : X → R ver-
schwindet im Unendlichen, falls für jedes ε > 0

Kε :=
{
x ∈ X

∣∣ |f(x)| ⩾ ε}
kompakt ist. Die Algebra aller solchen Funktionen bezeichnen wir mit C0(X). Durch

∥f∥∞ := sup
x∈X

|f(x)| = max
x∈X

|f(x)|

für f ∈ C0(X) erhalten wir eine Norm auf C0(X).

6.2 Bemerkung. Eine Abbildung f : X→ R liegt genau dann in C0(X), wenn wenn f̄ : EPK(X) → R
mit

f̄(x) :=

{
f(x) x ∈ X
0 x = ∞

stetig ist.

6.3 Definition. SeiB ⊆ C0(X). Wir sagen, dassB die Punkte von X streng trennt, falls es zu x, y ∈ X
mit x ̸= y ein f ∈ B gibt mit 0 ̸= f(x) ̸= f(y) ̸= 0.

6.4 Bemerkung. Sei A ⊆ C0(X) eine Unteralgebra. Gilt

a) ∀x, y ∈ X : ∃f ∈ A : f(x) ̸= f(y) und
b) ∀x ∈ X : ∃g ∈ A : g(x) ̸= 0

so trennt A die Punkte von X streng:
Sei x ̸= y ∈ X. Sei f ∈ A mit f(x) ̸= f(y). Dann ist mindestens einer der zwei Funktionswerte

f(x) und f(y) verschieden von Null. Sind beide ̸= 0, so ist nichts mehr zu zeigen. Sei also o.B.d.A.
f(x) = 0 und f(y) ̸= 0. Wähle g ∈ A mit g(x) ̸= 0. Für α ∈ R \ {−g(y)/f(y), (g(x) − g(y))/f(y)} gilt
dann

0 ̸= αf(x) + g(x) ̸= αf(y) + g(y) ̸= 0.

6.5 Beispiel. Die Unteralgebra der reellen Polynome A :=
{
x 7→ p(x)

∣∣p ∈ R[t]
}
⊆ C0([a, b]) trennt

die Punkte von [a, b] streng.

6.6 Satz (Stone-Weierstraß). Sei X ein lokalkompakter Hausdorff-Raum und sei A ⊆ C0(X) eine
Unteralgebra, die die Punkte von X streng trennt. Dann ist A ⊆ C0(X) dicht bezüglich ∥.∥∞.

6.7 Satz (Dini). Sei (fn : [0, 1] → R)n∈N eine punktweise monoton wachsende Folge stetiger Funk-
tionen, die punktweise gegen eine stetige Funktion f konvergiert. Dann konvergiert fn −−→ f gleich-
mäßig, d.h. ∥fn − f∥∞ −−→ 0.

Beweis: Sei ε > 0. Zu jedem t ∈ [0, 1] gibt es nt mit

∀n ⩾ nt : f(t) ⩾ fn(t) ⩾ fnt
(t) ⩾ f(t) − ε.

Da f und fnt
stetig sind, ist Ut :=

{
s ∈ [0, 1]

∣∣ f(s) − fnt
(s) < ε

}
offen. Da [0, 1] kompakt ist,

gibt es t0, . . . , tk ∈ [0, 1] mit [0, 1] = Ut0 ∪ . . . ∪ Utk .. Für alle n ⩾ max{nt0 , . . . , ntk } folgt dann
∥fn − f∥∞ ⩽ ε.
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6.8 Lemma. Sei g(t) =
√
t für t ∈ [0, 1]. Es gibt eine Folge (pn)n∈N von reellen Polynomen so dass

pn → g gleichmäßig auf [0, 1] und pn(0) = 0.

Beweis: Sei p0 ≡ 0 und für n > 0

pn+1(t) := pn(t) −
1

2
·
(
pn(t)

2 − t
)

Dann gilt pn(0) = 0. Per Induktion nach n zeigen wir, dass 0 ⩽ pn(t) ⩽
√
t für alle t ∈ [0, 1] gilt:

Für n = 0 ist die Behauptung offensichtlich erfüllt. Für den Induktionsschritt n 7→ n+1 betrachte

pn+1(t) −
√
t = pn(t) −

√
t−

1

2

(
pn(t)

2 − t
)
=
(
pn(t) −

√
t
)
−
1

2

(
pn(t) −

√
t
)(
pn(t) +

√
t
)

=
(
pn(t) −

√
t
)

︸ ︷︷ ︸
⩽0

(
1−

1

2

(
pn(t) +

√
t
)︸ ︷︷ ︸

IV.: ⩽2√t

)
︸ ︷︷ ︸

⩾0

Also gilt pn+1(t) −
√
t ⩽ 0 wie behauptet. Weiter gilt, dass pn(t) monoton wachsend ist für jedes

t. Wegen pn(t) ⩽
√
t existiert limn→∞ pn(t) für t ∈ [0, 1]. Es folgt

0 = lim
n→∞pn+1(t) − lim

n→∞pn(t) = lim
n→∞

(
pn+1(t) − pn(t)

)
= lim
n→∞−

1

2

(
pn(t)

2 − t
)

= −
1

2

((
lim
n→∞pn(t)

)2
− t

)
Also gilt limn→∞ pn(t) =

√
t. Mit dem Satz von Dini (6.7) folgt, dass pn gleichmäßig gegen g

konvergiert.

6.9 Bemerkung. Sei A ⊆ C0(X) eine Algebra. Ist p ∈ R[t] ein Polynom mit p(0) = 0 und f ∈ A, so
liegt auch p ◦ f ∈ A: Sei dazu p =

∑n
i=1 ait

i, dann gilt

p
(
f(t)

)
=

n∑
i=1

aif(t)
i =

(
n∑
i=1

aif
i

)
(t) ∈ A.

6.10 Lemma. Sei X ein lokalkompakter Hausdorffraum und A ⊆ C0(X) eine Unteralgebra. Sei
Ā := der Abschluss von A bezüglich ∥.∥. Dann gilt: f ∈ A =⇒ |f| ∈ A.

Beweis: Sei f ∈ A. O.B.d.A. sei f(X) ⊆ [−1, 1]. Dann ist f(x)2 ∈ [0, 1] für alle x ∈ X. Sei (pn)n∈N
die Folge von Polynomen aus Lemma 6.8. Dann gilt∣∣∣∣pn(f(x)2)−√f(x)2∣∣∣∣ = ∣∣∣pn(f(x)2)− ∣∣f(x)∣∣∣∣∣ n→∞−−−→ 0

gleichmäßig in x ∈ X. Es folgt
∥∥pn(f2) − |f|

∥∥∞ −−→ 0. Wegen f ∈ A gilt f2 ∈ A und nach Bemer-
kung 6.9 auch pn(f2) ∈ A. Also folgt |f| ∈ A.

6.11 Bemerkung. Für zwei Funktionen f, g ∈ A gilt

max(f, g) = 1

2

(
f+ g+ |f− g|

)
∈ A und min(f, g) = 1

2

(
f+ g− |f− g|

)
∈ A

Wegen A = A gilt auch f, g ∈ A =⇒ min(f, g),max(f, g) ∈ A.
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6.12 Lemma. Sei X ein lokalkompakter Hausdorffraum und A ⊆ C0(X) eine Unteralgebra, die die
Punkte von X streng trennt. Zu x, y ∈ X, x ̸= y, α,β ∈ R gibt es dann f ∈ A mit f(x) = α, f(y) = β.

Beweis: Es gibt g ∈ A mit 0 ̸= g(x) ̸= g(y) ̸= 0. Ansatz: Für λ, µ ∈ R betrachte f := λg+ µg2.

f(x) = α

f(y) = β
⇐⇒

g(x)λ+ g(x)2µ = α

g(y)λ+ g(y)2µ = β

Da
det

(
g(x) g(x)2

g(y) g(y)2

)
= g(x)g(y)2 − g(y)g(x)2 = g(x)g(y)

(
g(y) − g(x)

)
̸= 0

gibt es λ, µ ∈ R, sodass das Gleichungssystem eine Lösung hat.

Beweis (von Satz 6.6): Seien h ∈ C0(X) und ε > 0 beliebig. Wir müssen zeigen, dass ein f ∈ A

existiert mit ∥f− h∥∞ < ε, da A = A gilt.

Schritt 1: Wir konstruieren für y ∈ X eine Funktion fy ∈ A mit fy(y) = h(y) und fy(z) ⩾ h(z) − ε
für alle z ∈ X.
Zu x ∈ K gibt es nach Lemma 6.12 gx ∈ A mit

gx(y) = h(y) und gx(x) = h(x)

Sei Ux :=
{
z ∈ X

∣∣ gx(z) > h(z) − ε}. Da gx und h stetig sind, ist Ux offen. Da gx und h in ∞
verschwinden ist X \ Ux kompakt. Folglich gibt es x1, . . . , xn mit X = Ux1 ∪ . . . ∪ Uxn . Nun
ist fy := max {gx1 , . . . , gxn } die gesuchte Funktion. Wegen Lemma 6.10 bzw. Bemerkung 6.11
gilt fy ∈ A.

Schritt 2: Konstruktion von f: Zu y ∈ X sei Vy :=
{
z ∈ X

∣∣ fy(z) < h(z) + ε}. Wieder ist Vy offen,
X \ Vy kompakt und y ∈ Vy. Also gibt es wieder y1, . . . , yl mit X = Vy1

∪ . . . ∪ Vyn
. Für die

Funktion f := min {fy1
, . . . , fyl

} gilt dann

h(z) − f(z) = max
i
h(z) − fyi

(z) < ε

da fyi
(z) ⩾ h(z) − ε⇒ h(z) − fyi

(z) ⩽ ε nach obiger Konstruktion für jedes i gilt. Weiter gilt

f(z) − h(z) = min
i
fyi

(z) − h(z) < ε

nach Definition der Vyi
. Also gilt insgesamt ∥f− h∥ < ε.
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7 Metrisierbarkeit
7.1 Definition. Ein topologischer Raum X heißt metrisierbar, wenn es eine Metrik auf X gibt, so
dass die von der Metrik induzierte Topologie die Topologie von X ist.

7.2 Bemerkung. Ist X metrisierbar, so gibt es für jedes x ∈ X eine abzählbare Umgebungsbasis Ux
bei x, also eine abzählbare Menge von offenen Umgebungen von x, sodass jede Umgebung von x
eine Menge aus Ux enthält.

7.3 Definition. Ein topologischer Hausdorffraum X heißt normal, wenn er die folgende Trennungs-
eigenschaft hat: Sind A,B ⊆ X abgeschlossen mit A ∩ B = ∅, so gibt es U,V ⊆ X offen mit A ⊆ U,
B ⊆ V mit U ∩ V = ∅.

7.4 Bemerkung. Metrisierbare Räume sind normal. (Übung.)

7.5 Satz (Urysohn). Sei X ein normaler Raum, der das zweite Abzählbarkeitsaxiom (1.14) erfüllt .
Dann ist X metrisierbar.

Beweis (mit Urysohn’s Lemma, 7.6): Sei U eine abzählbare Basis der Topologie von X. Da X normal
ist, gibt es zu jedem Paar U,V ∈ U mit U ⊆ V (also U ∩ X \ V = ∅) nach Urysohn’s Lemma (7.6)
eine stetige Funktion fU,V : X → [0, 1] mit fU,V(x) = 0 für x ∈ U und fU,V(y) = 1 für y /∈ V . Da U

abzählbar ist, ist das abzählbare Produkt

Z :=
∏
U,V∈U
U⊆V

[0, 1]

metrisierbar (Übung). Wir definieren F : X→ Z durch

F(x) :=
(
fU,V(x)

)
U,V∈U
U⊆V

Da die fU,V stetig sind, ist F bezüglich der Produkttopologie auf Z auch stetig. Es bleibt zu zeigen,
dass F : X→ F(X) ⊆ Z ein Homöomorphismus ist.

Wir konstruieren nun zu x, y ∈ Xmit x ̸= y, offene Mengen U,V ∈ U mit U ⊆ V , x ∈ U, y /∈ V . Da
XHausdorff ist gibt es V ∈ Umit x ∈ V und y ̸∈ V . Nun trennenwir die abgeschlossenenMengen {x}

und X\V . Insbesondere gibt es U ∈ U mit x ∈ U und U∩X\V = ∅. Es ist fU,V(x) = 0 ̸= 1 = fU,V(y).
Insbesondere ist F injektiv; durch Einschränkung auf das Bild also bĳektiv. Es genügt nun zu zeigen,
dass F offene Mengen von X auf offene Mengen in F(X) abbildet. Sei W ⊆ X offen und x ∈W. Wir
müssen eine offene Menge O ⊆ Z finden mit F(x) ∈ O und F−1(O) ⊆ W. Wir können zunächst W
verkleinern und W ∈ U annehmen. Weiter nehmen an, dass eine offene Menge U0 ∈ U mit x ∈ U0
und U0 ⊆W existiert. Damit setzen wir O :=

∏
U⊆V IU,V wobei

IU,V =

{
[0, 1), falls U = U0, V =W

[0, 1], sonst

Dann ist F−1(O) = f−1U0,W

(
[0, 1)

)
⊆W und F(x) ∈ O, da fU0,W(x) = 0.

Wir müssen noch die letzte Annahme rechtfertigen: Da X Hausdorff ist, ist {x} abgeschlossen. Da
auch X \W abgeschlossen ist, gibt es offene mengen U1 und V1 mit U1 ∩ V1 = ∅, x ∈ U1 und
X \W ⊆ V1. Insbesondere ist U1 ⊆ X \ V1 ⊆W. Da U eine Basis ist, gibt es U0 ∈ U mit x ∈ U0 und
U0 ⊆ U1.
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7.6 Lemma. Sei X normal und A,B ⊆ X abgeschlossen mit A ∩ B = ∅. Dann gibt es eine stetige
Funktion f : X→ [0, 1] mit f(a) = 0 für alle a ∈ A und f(b) = 1 für alle b ∈ B.

Beweis: Sei U1 := X \ B. Da X normal ist, gibt es U0 ⊆ X offen mit A ⊆ U0 und U0 ∩ B = ∅, also
U0 ⊆ U1.¹ Ebenso finden wir

 U1/2 ⊆ X offen mit U0 ⊆ U1/2 und U1/2 ⊆ U1,

 U1/4, U3/4 ⊆ X offen mit U0 ⊆ U1/4, U1/4 ⊆ U1/2 und U1/2 ⊆ U3/4, U3/4 ⊆ U1, . . .

Induktiv finden wir für jedes r = m
2n

mit 0 ⩽ m ⩽ 2n eine offene Menge Ur ⊆ X so dass gilt:
Ur ⊆ Us für r < s mit A ⊆ U0 und B = X \U1. Sei nun f : X→ [0, 1] definiert durch

f(x) =

{
1, falls x ∈ B
inf {r | x ∈ Ur}, falls x /∈ B

Für α ∈ [0, 1] ist f−1
(
[0, α)

)
=
∪
r<αUr offen und

f−1
(
(α, 1]

)
=
∪
r>α

X \Ur =
∪
r>α

X \Ur

offen. Damit ergibt sich leicht die Stetigkeit von f.

¹ A ⊆U0 und V0 ⊇ B mit U0 ∩V0 = ∅ =⇒ U0 ∩B = ∅ also U0 ⊆U1
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8 Zusammenhängende topologische Räume
8.1 Definition. Sei X ein topologischer Raum.

(1) X heißt zusammenhängend, falls er nicht als die disjunkte Vereinigung von zwei nicht leeren
offenen Mengen geschrieben werden kann.

(2) X heißt wegzusammenhängend, falls es zu allen x, y ∈ X eine stetige Abbildung ω : [0, 1] → X

gibt mit ω(0) = x und ω(1) = y. ω heißt dann ein Weg von x nach y.
(3) X heißt lokal zusammenhängend, falls es für jedes x ∈ X und jede offene Umgebung U von x

eine zusammenhängende Umgebung V von x gibt mit V ⊆ U.
(4) X heißt lokal wegzusammenhängend, falls es für jedes x ∈ X und jede offene Umgebung U

von x eine wegzusammenhängende Umgebung V von x gibt mit V ⊆ U.

8.2 Bemerkung. Einige Beispiele und Anmerkungen zu obigen Definitionen:

(1) R\{0} = (−∞, 0)∪(0,∞) ist nicht zusammenhängend und auch nicht wegzusammenhängend,
wie man leicht mit dem Zwischenwertsatz zeigen kann.

(2) [0, 1] ist zusammenhängend: Angenommen es wäre [0, 1] = U ∪ V mit U,V offen, U ∩ V = ∅.
Dann sind U = [0, 1] \V und V = [0, 1] \U auch abgeschlossen. O.B.d.A. sei 0 ∈ U. Dann liegt
infV sowohl in V als auch in U. Also U ∩ V = U ∩ V ̸= ∅ E.
Natürlich ist [0, 1] auch wegzusammenhängend: Zu x, y ∈ [0, 1] istω : [0, 1] → [0, 1]mitω(t) =
(1− t) · x+ t · y ein stetiger Weg von x nach y.

(3) Ist f : X→ Y stetig und surjektiv und X zusammenhängend, so ist auch Y zusammenhängend:
Ist Y = U ∪̇V , so ist auch X = f−1(U) ∪̇ f−1(V) und es gilt U ̸= ∅ ⇐⇒ f−1(U) ̸= ∅ und
V ̸= ∅ ⇐⇒ f−1(V) ̸= ∅.

(4) Ist X wegzusammenhängend, so ist X auch zusammenhängend: Sei X = U∪V mit U,V offen
und U ̸= ∅, V ̸= ∅. Sei x ∈ U und y ∈ V . Da X wegzusammenhängend ist, gibt es einen
Weg ω : [0, 1] → X von x nach y. Dann ist [0, 1] = ω−1(U) ∪ ω−1(V). Es ist 0 ∈ ω−1(U)
und 1 ∈ ω−1(V). Also ω−1(U) ̸= ∅ ̸= ω−1(V). Da [0, 1] nach (1) zusammenhängend ist, ist
ω−1(U) ∩ω−1(V) ̸= ∅. Damit ist auch U ∩ V ̸= ∅.

(5) Ist f : X→ Y ein Homöomorphismus, so gelten:

X wegzusammenhängend ⇐⇒ Y wegzusammenhängend
X zusammenhängend ⇐⇒ Y zusammenhängend

8.3 Beispiel. Die eben definierten Begriffe sind nicht äquivalent:

(i) Der sogenannte Polnische Kreis PK, gegeben durch

PK =

(x, y) ∈ R2

∣∣∣∣∣∣∣∣∣∣
(x ∈ [−1, 1] ∧ y = 1)

∨ (x ∈ {−1, 1} ∧ y ∈ [0, 1])
∨ (x ∈ [−1, 0] ∧ y = 0)
∨ (x = 0 ∧ y ∈ [−1/2, 1/2])
∨ (x ∈ (0, 1] ∧ y = 1/2 · sin(π/x))


ist wegzusammenhängend, aber nicht lokal wegzusammenhängend.

(ii) Die folgende Teilmenge ist zusammenhängend, aber nicht wegzusammenhängend.{
(x, y) ∈ R2

∣∣∣∣ x = 0 ∧ y ∈ [−1/2, 1/2]
∨ x ∈ (0, 1] ∧ y = 1/2 · sin(π/x)

}
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PK

Abbildung 3: Der Polnische Kreis und eine nicht wegzusammenhängende Teilmenge davon

Wir können nun einen ersten Spezialfall der topologischen Invarianz der Dimension zeigen:

8.4 Satz. Es gilt: Rn ∼= Rm ⇐⇒ n = m

Beweis (für n = 1): Angenommen es gäbe einen Homöomorphismus f : R → Rm mit m ⩾ 2.
Durch Einschränkung von f erhalten wir dann auch einen HomöomorphismusR\{0} → Rm\{f(0)}.
Nach obiger Bemerkung ist R \ {0} aber nicht wegzusammenhängend und für m ⩾ 2, x ∈ Rm ist
Rm \ {x} wegzusammenhängend E.

Eine Variante dieses Arguments kann benutzt werden, um zu zeigen, dass Rn ∼= Rm genau
dann gilt, wenn n = m. Dafür benötigt man aber höher dimensionale Varianten des Begriffes
„wegzusammenhängend“.
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9 Die Fundamentalgruppe
9.1 Definition. Ein topologischer Raum X heißt einfach zusammenhängend, wenn jede stetige Ab-
bildung f : S1 → X eine stetige Fortsetzung F : D2 → X besitzt.

Er heisst lokal einfach zusammenhängend falls es zu jedem x und jeder offenen Umgebung von
x eine einfach zusammenhängende Umgebung V von x mit V ⊆ U gibt.

9.2 Bemerkung. Ein topologischer Raum X ist genau dann wegzusammenhängend, wenn jede
stetige Abbildung f : S0 → X ein stetige Fortsetzung F : D1 → X besitzt.

9.3 Bemerkung. (i) Rn ist einfach zusammenhängend: Sei f : S1 → Rn stetig. Dann erhält man
eine Fortsetzung F : D2 → Rn durch

F(t · v) := t · f(v) für t ∈ [0, 1], v ∈ S1

(ii) Ist X ∼= Y dann gilt: X einfach zusammenhängend ⇐⇒ Y einfach zusammenhängend.

(iii) Wir werden später sehen: R2 \ {0} ist nicht einfach zusammenhängend.

9.4 Definition. Seien ω0,ω1 : [0, 1] → X Wege in X. Eine Homotopie mit festen Endpunkten (oder
relativ {0, 1}) zwischen ω0 und ω1 ist eine stetige Abbildung H : [0, 1]× [0, 1] → X, so dass gilt:

(i) H(s, 0) = ω0(s) ∀s ∈ [0, 1]

(ii) H(s, 1) = ω1(s) ∀s ∈ [0, 1]

(iii) H(0, t) = ω0(0) = ω1(0) ∀t ∈ [0, 1]

(iv) H(1, t) = ω0(1) = ω1(1) ∀t ∈ [0, 1]

ω0

ω1x

y

Abbildung 4: Homotopie relativ {0, 1}

Durch
ω0 ∼ ω1 : ⇐⇒ ∃ Homotopie relativ {0, 1} zwischen ω0 und ω1

wird eine Äquivalenzrelation auf der Menge aller Wege in X erklärt. Die Äquivalenzklassen heißen
Homotopieklassen, wir schreiben [ω] für die Homotopieklasse von ω.

9.5 Definition. Ein Weg ω : [0, 1] → X heißt eine Schleife in X, falls ω(0) = ω(1) gilt.

9.6 Lemma. X ist genau dann einfach zusammenhängend, wenn jede Schleife in X homotop relativ
{0, 1} zu einer konstanten Schleife ist.

Beweis:

9.7 Notation. Für x ∈ X bezeichne cx : [0, 1] → X die konstante Schleife bei x, d.h. cx(t) = x für
alle t ∈ [0, 1].
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9.8 Definition. Seien ω und ω ′ Wege in X mit ω ′(0) = ω(0). Dann ist der Kompositionsweg
ω ∗ω ′ : [0, 1] → X definiert durch

ω ∗ω ′(t) =

{
ω ′(2t), falls t ∈ [0, 1/2]

ω(2t− 1), falls t ∈ [1/2, 1]

9.9 Lemma. Kompositionswege haben die folgenden Eigenschaften:

a) Seien ω,ω ′,ω ′′ Wege in X mit ω ′′(1) = ω ′(0) und ω ′(1) = ω(0). Dann gilt[
(ω ∗ω ′) ∗ω ′′] = [ω ∗ (ω ′ ∗ω ′′)

]
b) Seien ω0,ω ′

0,ω1,ω
′
1 Wege in X mit ω ′

0(1) = ω0(0), ω ′
1(1) = ω1(0) und [ω0] = [ω1] und

[ω ′
0] = [ω ′

1]. Dann gilt
[ω0 ∗ω ′

0] = [ω1 ∗ω ′
1]

c) Sei ω ein Weg in X und ω : [0, 1] → X der umgekehrte Weg, also ω(t) := ω(1 − t). Dann gilt
[ω ∗ω] = [cω(1)] und [ω ∗ω] = [cω(0)].

d) Sei ω ein Weg in X. Dann gilt [
ω ∗ cω(0)

]
= [ω] =

[
cω(1) ∗ω

]
Beweis: Wir zeigen an dieser Stelle nur a), die anderen Beweise funktionieren ähnlich.

ϕ

1
2

3
4

1

1
4

1
2

1

Abbildung 5: Funktion φ aus dem Beweis von Lemma 9.9

Sei φ : [0, 1] → [0, 1] gegeben wie in Abbildung 5 gezeichnet. Dann gilt((
ω ∗ω ′) ∗ω ′′

)
(s) =

(
ω ∗

(
ω ′ ∗ω ′′))(φ(s))

Die gesuchte Homotopie mit festen Endpunkten wird durch

H(s, t) :=
((
ω ∗ω ′) ∗ω ′′

)(
(1− t)s+ tφ(s)

)
definiert.

9.10 Korollar. Sei X ein topologischer Raum und x0 ∈ X fest. Dann wird

π1(X, x0) :=
{
[ω]

∣∣ω ist eine Schleife in X mit ω(0) = x0
}

durch die Komposition von Wegen zu einer Gruppe mit neutralem Element e = [cx0 ].
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9.11 Definition. π1(X, x0) heißt die Fundamentalgruppe von X bezüglich des Basispunktes x0.

9.12 Bemerkung. Wegen Lemma 9.6 gilt: X ist genau dann einfach zusammenhängend, wenn
π1(X, x0) für alle x0 ∈ X die triviale Gruppe ist.

9.13 Bemerkung. Sei η ein Weg in X von x1 nach x0. Dann definiert

π1(X, x0) ∋ [ω]
conjη7−−−→ [(η ∗ω) ∗ η] ∈ π1(X, x1)

einen Isomorphismus zwischen π1(X, x0) und π1(X, x1).

Beweis: Wir zeigen nur, dass conjη ein Gruppenhomomorphismus ist. Unter Benutzung der ein-
zelnen Aussagen von Lemma 9.9 erhalten wir:

conjη([ω] ∗ [ω ′]) = conjη
(
[ω ∗ω ′]

)
=
[(
η ∗ (ω ∗ω ′)

)
∗ η
]

conjη([ω]) · conjη([ω
′]) =

[
(η ∗ω) ∗ η

]
·
[
(η ∗ω ′) ∗ η

]
=
[(
(η ∗ω) ∗ η

)
∗
(
(η ∗ω ′) ∗ η

)]
a)
=

[(
η ∗
(
ω ∗ (η ∗ η)

)
∗ω ′

)
∗ η
]

c)
=

[(
η ∗
(
(ω ∗ cω(1)) ∗ω ′)) ∗ η]

d)
=
[(
η ∗ (ω ∗ω ′)

)
∗ η
]

Insbesondere hängt der Isomorphietyp von π1(X, x0) für wegzusammenhängende Räume nicht von
der Wahl des Basispunktes ab.
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10 Die Windungszahl
Frage. π1

(
R2 \ {0}, x0

)
= ? π1

(
S1, x0

)
= ?

10.1 Proposition. Sei p : R → S1 definiert durch p(t) = e2πit. Sei ω : [0, 1] → S1 stetig und t0 ∈ R
mit p(t0) = ω(0). Dann gibt es eine eindeutige stetige Abbildung ω̂ : [0, 1] → R mit ω̂(0) = t0 und
p ◦ ω̂ = ω.

{0} R

[0, 1] S1

t0

p

ω

ω̂

Ist η : [0, 1] → S1 eine weitere Abbildung mit [η] = [ω] und η̂ : [0, 1] → R mit η̂(0) = t0, p ◦ η̂ = η so
gilt η̂(1) = ω̂(1).

Beweis: Mit dem Homotopiehebungssatz (siehe Satz 10.7).

10.2 Definition. Sei ω : [0, 1] → S1 eine Schleife in S1 mit ω(0) = ω(1) = 1. Sei
ω̂ : [0, 1] → R mit p ◦ ω̂ = ω und ω̂(0) = 0. Dann heißt ω̂(1) ∈ Z = p−1(1) die
Windungszahl von ω.

10.3 Satz. Die Windungszahl definiert einen Isomorphismus d : π1(S1, 1) → Z,
[ω] 7→ ω̂(1).

Beweis: Nach Proposition 10.1 ist d eine wohldefinierte Abbildung.
Für die Surjektivität betrachten wir stetige Abbildungen ω̂n : [0, 1] → R gegeben
durch ω̂n(t) = t · n für n ∈ Z. Dann ist

d
(
[p ◦ ω̂n]

)
= ω̂n(1) = n

und d somit surjektiv.
Wir zeigen nun, dass d ein Gruppenhomomorphismus ist. Seien dazu ω,η : [0, 1] →
S1 zwei Schleifen mit ω(0) = η(0) = 1. Seien ω̂, η̂ : [0, 1] → R Hebungen mit η̂(0) =
0, ω̂(0) = 0, p◦ω̂ = ω, p◦η̂ = η. Es gilt also d([ω]) = ω̂(1) und d([η]) = η̂(1). Sei nun
ω̂+ : [0, 1] → R gegeben durch ω̂+(s) = ω̂(s) + η̂(1). Dann ist ω̂+ ∗ η̂ wohldefiniert
und es gilt (ω̂+ ∗ η̂)(0) = 0 sowie (ω̂+ ∗ η̂)(1) = η̂(1) + ω̂(1). Also folgt

d
(
[ω ∗ η]

)
= (ω̂+ ∗ η̂)(1) = η̂(1) + ω̂(1) = d([ω]) + d([η]).

Kommen wir schließlich zur Injektivität: Seiω : [0, 1] → S1 eine Schleife mit d([ω]) =
0. Dann gibt es ω̂ : [0, 1] → R mit ω̂(0) = 0 = ω̂(1) und p ◦ ω̂ = ω. Nun ist
H : [0, 1]× [0, 1] → R mit

H(s, t) := (1− t) · ω̂(s)

eine Homotopie mit festen Endpunkten zwischen ω̂ und c0. Dann ist p ◦ H eine
Homotopie mit festen Endpunkten zwischenω und c1. Also [ω] = e ∈ π1(S1, 1).

ω
1 ∈ S1

ω

p

0

1

2

3

4

R

Abbildung 6: Schleifeωmit
der Windungszahl 1

10.4 Definition. Eine surjektive stetige Abbildung p : X̂→ X heißt eine Überlagerung, falls es zu je-
dem x ∈ X eine Umgebung U gibt, so dass sich p−1(U) schreiben lässt als die disjunkte Vereinigung
von offenen Mengen Ui ⊆ X̂ und für jedes i die Einschränkung p

∣∣
Ui

: Ui → U ein Homöomorphis-
mus ist. Eine solche Umgebung U heißt eine elementare Umgebung.
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10.5 Beispiel. (1) p : R → S1, t 7→ e2πit ist eine Überlagerung.
(2) pn : S1 → S1, z 7→ zn ist eine Überlagerung.

(3) Sind p : X̂ → X, q : Ŷ → Y Überlagerungen, so ist p × q : X̂ × Ŷ → X × Y eine Überlagerung.
Man erhält so zum Beispiel einer Überlagerung des Torus: R2 → T2 = S1 × S1.

(4) Die Quotientenabbildung S2 → RP2 = S2/x ∼ −x ist eine Überlagerung. (Übung!)

10.6 Definition. Sei p : X̂ → X eine Überlagerung und f : Z → X eine stetige Abbildung. Eine
Hebung oder ein Lift von f (bezüglich p) ist eine stetige Abbildung f̂ : Z→ X̂ mit p ◦ f̂ = f.

X̂

Z X

p

f

f̂

10.7 Satz (Homotopiehebungssatz). Sei p : X̂→ X eine Überlagerung, H : Z× [0, 1] → X eine Homo-
topie und f̂ : Z → X̂ eine Hebung von f = H(−, 0) := H

∣∣
Z×{0}

. Dann gibt es eine eindeutige Hebung
Ĥ von H mit Ĥ(−, 0) = f̂.

Z× {0} X̂

Z× [0, 1] X

i

f̂

p
Ĥ

H

Beweis: Sei U eine Überdeckung von X durch elementare Umgebungen. Wir können U mittels H
zurückziehen und erhalten eine offene Überdeckung H−1(U) :=

{
H−1(U)

∣∣U ∈ U
}
von Z× [0, 1].

Sei z0 ∈ Z fest. Da {z0}× [0, 1] kompakt ist, gibt es 0 = t0 < t1 < . . . < tn = 1 und U1, . . . , Un ∈ U

mitdie H−1(Ui) über-
decken {z0}× [0,1]

H
(
{z0}× [ti, ti+1]

)
⊆ Ui

Da die Ui offen sind gibt es zu jedem i eine offene Umgebung Vi von z0 mit H
(
Vi× [ti, ti+1]

)
⊆ Ui.

Sei V :=
∩n
i=1 Vi, dann ist H

(
V × [ti, ti+1]

)
⊆ Ui. Da alle Ui elementar sind, finden wir induktiv

eindeutige Hebungen ĤVi von H
∣∣
V×[ti,ti+1]

mit

ĤVi (−, 0) = f̂
∣∣
V

und ĤVi (−, ti) = Ĥ
V
i−1(−, ti).

Nun erhalten wir mit ĤV(z, t) := ĤVi (z, t) für z ∈ V , t ∈ [ti, ti+1] eine eindeutige Hebung von
H
∣∣
V×[0,1]

mit ĤV(−, 0) = f̂
∣∣
V
. Dabei bleibt ĤV eindeutig auch wenn wir V verkleinern. Nun fin-

den wir für jedes z ∈ Z eine Umgebung Vz und eine eindeutige Hebung ĤVz von H
∣∣
Vz×[0,1]

mit
ĤVz(−, 0) = f̂

∣∣
Vz

. Wegen der Eindeutigkeit gilt

ĤVz(ξ, t) = ĤVz′ (ξ, t)

für alle ξ ∈ Vz ∩ Vz′ . Daher definiert Ĥ(z, t) := ĤVz(z, t) die gesuchte eindeutige Hebung.
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11 Induzierte Abbildungen
11.1 Lemma. Sei f : X→ Y stetig mit f(x0) = y0. Dann definiert f∗([ω]) := [f ◦ω] einen Gruppen-
homomorphismus f∗ : π1(X, x0) → π1(Y, y0).

Beweis: Wir zeigen nur, dass f∗ wohldefiniert ist. Seien ω,η : [0, 1] → X Schleifen mit ω(0) =
x0 = η(0) und [ω] = [η]. Es gibt also eine Homotopie H : [0, 1] × [0, 1] → X mit festen Endpunkten
zwischen ω und η.Dann ist f ◦H eine Homotopie mit festen Endpunkten zwischen f ◦ω und f ◦ η.
Also

f∗([ω]) = [f ◦ω] = [f ◦ η] = f∗([η]) ∈ π1(Y, y0)

11.2 Definition. f∗ heißt die von f induzierte Abbildung. Manchmal schreibt man auch π1(f) für
f∗, um f∗ von anderen induzierten Abbildungen zu unterscheiden.

11.3 Bemerkung. Es gelten:

(i) Für f : Y → Z, g : Y → Y gilt (f ◦ g)∗ = f∗ ◦ g∗.
(ii) Es gilt (idX)∗ = idπ1(X,x0).

Damit ist π1 ein sogenannter Funktor.

11.4 Definition. Ein topologischer Raum X zusammen mit einem Basispunkt x0 ∈ X, (X, x0)
heißt ein punktierter Raum. Eine punktierte Abbildung zwischen punktierten Räumen f : (X, x0) →
(Y, y0) ist eine stetige Abbildung f : X → Y mit f(x0) = y0. Punktierte Abbildungen f, g : (X, x0) →
(Y, y0) heißen punktiert homotop, falls es eine Homotopie H : X× [0, 1] → Y von f nach g gibt mit

H(x0, t) = y0 ∀t ∈ [0, 1].

Wir schreiben dann f ≃ g.

11.5 Proposition (Homotopieinvarianz von π1). Seien f, g : (X, x0) → (Y, y0) homotop. Dann gilt

f∗ = g∗ : π1(X, x0) → π1(Y, y0)

Beweis: Sei H eine Homotopie zwischen f und g. Für [ω] ∈ π1(X, x0) ist H ◦ω eine Homotopie
mit festen Endpunkten zwischen f ◦ω und g ◦ω. Also

f∗([ω]) = [f ◦ω] = [g ◦ω] = g∗([ω])

11.6 Definition. Seien X, Y topologische Räume. Dann heißen X und Y homotopieäquivalent, falls
es stetige Abbildungen f : X→ Y, g : Y → X gibt, so dass

f ◦ g ≃ idY und g ◦ f ≃ idX .

Wir schreiben dann X ≃ Y oder X f−→
≃
Y. g heißt Homotopie-Inverse von f. Entsprechendes benutzen

wir auch für punktierte Räume. Falls X ≃ {0}, so sagen wir: X ist zusammenziehbar.

11.7 Beispiel. (1) Sn−1 ist homotopieäquivalent zu Rn \ {0}:
Betrachte dazu die Inklusion i : Sn−1 ↪→ Rn \ {0} und die Normierung p : Rn \ {0} → Sn−1,
v 7→ v

∥v∥ . Dann gilt
p ◦ i = idSn−1 , i ◦ p ≃ idRn\{0}

mit der Homotopie H(v, t) = t · v+ (1− t) v∥v∥ .
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(2) Sei K ⊆ Rn eine konvexe Teilmenge und x0 ∈ K. Dann ist (K, x0) zusammenziehbar:

i : ({x0}, x0) → (K, x0) die Inklusion
p : (K, x0) → ({x0}, x0) die konstante Abbildung

p ◦ i = id({x0},x0) und i ◦ p ≃ id(K,x0) mit der Homotopie H(x, t) = t · x+ (1− t)x0.

11.8 Satz. Ist f : (X, x0) → (Y, y0) eine Homotopieäquivalenz, so ist f∗ : π1(X, x0) → π1(Y, y0) ein
Isomorphismus. Insbesondere ist π1(X, x0) = {1}, falls (X, x0) zusammenziehbar ist.

Beweis: Sei g : (Y, y0) → (X, x0) eine Homotopie-Inverse zu f, also g ◦ f ≃ idX, f ◦ g ≃ idY . Dann
ist g∗ = (f∗)

−1 (und f∗ ein Isomorphismus):

f∗ ◦ g∗ = (f ◦ g)∗ = (idY)∗ = idπ1(Y,y0)

g∗ ◦ f∗ = (g ◦ f)∗ = (idX)∗ = idπ1(X,x0)

11.9 Satz (Fixpunktsatz von Brouwer). Jede stetige Abbildung f : Dn → Dn hat einen Fixpunkt.

Beweis (für n ⩽ 2): Für n = 1 ist dies eine Folgerung aus dem Zwischenwertsatz.
Angenommen f : Dn → Dn habe keinen Fixpunkt, also f(x) ̸= x für alle x ∈ Dn. Wir konstruieren

eine stetige Abbildung F : Dn → Sn−1 mit F
∣∣
Sn−1 = idSn−1 wie in Abbildung 7, sodass gilt

(i) F(x) = t
(
x− f(x)

)
+ x , t ⩾ 0

(ii) F(x) ∈ Sn−1 f(x)

F(x)

x

Abb. 7: Konstruktion von F
Sei x0 ∈ Sn−1. Wir haben also

(
Sn−1, x0

) (
Sn−1, x0

)

(Dn, x0)

id

i
F

π1
(
Sn−1, x0

)
π1
(
Sn−1, x0

)

π1(D
n, x0)

(id)∗=id

i∗
F∗

Da (Dn, x0) zusammenziehbar ist, gilt π1(Dn, x0) = {e}. Für n = 2 ist das zweite Diagramm also

Z Z

{e}

(id)∗=id

i∗
F∗

Daher folgt id = F∗ ◦ i∗ = triviale Null-Abbildung. E

Für n ⩾ 3 ist π1(Sn−1, x0) trivial. In diesem Fall benutzt der Beweis eine andere Invariante als
die Fundamentalgruppe.
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11.10 Proposition. Für n ∈ Z sei fn : S1 → S1, z 7→ zn.Dann ist (fn)∗ : π1(S1, 1) → π1(S
1, 1) durch

Multiplikation mit n gegeben:

(fn)∗([ω]) = n · [ω] ∈ π1(S1, 1) = Z

Weiter sind die fn paarweise nicht homotop zueinander.

Beweis: Sei p : R → S1, t 7→ e2πit. Zu jeder Schleifeω : [0, 1] → S1 mitω(0) = ω(1) = 1 gibt es eine
eindeutige Hebung ω̂ : [0, 1] → R zu einem Weg mit ω̂(0) = 0. Der Isomorphismus d : π1(S1, 1) →
Z bildet [ω] auf ω̂(1) ∈ Z ⊆ R ab. Sei f̂n : R → R, t 7→ n · t. Dann gilt p◦ f̂n = fn ◦p und f̂n(0) = 0.
Ist ω̂ eine Hebung von ω, so ist f̂n ◦ ŵ eine Hebung von fn ◦ω, da

(f̂n ◦ ω̂)(0) = f̂n(0) = 0

p ◦ f̂n ◦ ω̂ = fn ◦ p ◦ ω̂ = fn ◦ω

Es folgt
d
(
[fn ◦ω]

)
= (f̂n ◦ ω̂)(1) = f̂n

(
ω̂(1)

)
= f̂n(d[ω]) = n · d[ω]

Da d ein Isomorphismus ist, folgt die Behauptung.
Mit der Homotopieinvarianz von induzierten Abbildungen folgt, dass die fn : (S1, 1) → (S1, 1)

als punktierte Abbildungen paarweise nicht punktiert homotop sind. Mit dem nächsten Lemma
folgt das die fn paarweise nicht homotop sind.

11.11 Lemma. Seien f, g : (X, x0) → (S1, 1) stetig. Sei H : X× [0, 1] → S1 eine (unpunktierte) Homo-
topie zwischen f und g. Dann ist H̃ : X× [0, 1] → S1,

H̃(x, t) =
H(x, t)

H(x0, t)

ein punktierte Homotopie zwischen f und g.

Beweis: Es ist H̃(x0, t) = H(x0,t)
H(x0,t)

= 1 für alle t. Da H(x0, 0) = f(x0) = 1 = g(x0) = H(x0, 1) gilt, ist

H̃(x, 0) = H(x, 0) = f(x) und H̃(x, 1) = H(x, 1) = g(x).

11.12 Satz (Hauptsatz der Algebra). Jedes Polynom p = Xn + an−1X
n−1 + . . . + a0 ∈ C[X] von

gradp = n ⩾ 1 hat eine Nullstelle.

Beweis: Angenommen p habe keine Nullstelle.Man kann zeigen, dass dann fn : S1 → S1, z 7→ zn

homotop zu einer konstanten Abbildung ist (Übung). Aus Proposition 11.10 folgt dann aber n =
0.
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12 Eigentlich diskontinuierliche Wirkungen
12.1 Definition. Sei G eine Gruppe und X ein topologischer Raum.

(1) Eine Wirkung G↷ X von G auf X ist eine Abbildung G× X→ X, (g, x) 7→ g.x, so dass gilt
 Für g ∈ G ist λg : X→ X, x 7→ g.x stetig.
 Für g, h ∈ G gilt g.(h.x) = (g.h).x

 Für das neutrale Element e ∈ G gilt e.x = x für alle x ∈ X
(2) Eine Wirkung heißt frei, falls g.x = x =⇒ g = e. (G→ Sym(X) ist injektiv)
(3) Eine Wirkung heißt eigentlich diskontinuierlich (e.d.k.), falls es zu jedem x ∈ X eine Umge-

bung U von x gibt mit gU ∩U = ∅ für alle g ∈ G \ {e}.
(4) Durch x ∼ y :⇔ ∃g ∈ G : g.x = y(⇔ Gx = Gy) wird eine Äquivalenzrelation auf X erklärt.

Die Äquivalenzklassen dieser Äquivalenzrelation sind genau die Bahnen Gx = {g.x | g ∈ G}
der Wirkung. Die Menge der Äquivalenzklassen bezeichnen wir mit G\X := X/∼. Durch die
Quotiententopologie bezüglich der Quotientenabbildung X → G\X, x 7→ Gx wird G\X zu
einem topologischen Raum.

12.2 Lemma. Sei G↷ X eine e.d.k Wirkung. Dann ist p := X→ G\X, x 7→ Gx eine Überlagerung.

Beweis: Offenbar ist p surjektiv und stetig. Sei x := Gx ∈ G\X. Sei U eine offene Umgebung von
x ∈ X, für die gU ∩U = ∅ für alle g ̸= e ist. Dann ist

p−1
(
p(U)

)
=
∪
g∈G

gU

die disjunkte Vereinigung der gU, g ∈ G. Weiter ist p : U → p(U) ein Homöomorphismus. Da p
offenbar stetig und bĳektiv ist müssen wir nur noch zeigen, dass p offen ist. Sei V ⊆ U offen. Dann ist
p−1(p(V)) =

∪
g∈G gU die Vereinigung offener Mengen also offen. Da G\X die Quotiententopologie

trägt, ist auch p(V) offen. Insgesamt ist p(U) nun eine elementare Umgebung von x.

12.3 Beispiel. (1) Zn ↷ Rn mit z.x := x+ z ist eine e.d.k. Wirkung: Ist ε < 1
2
so gilt

Bε(x) ∩ Bε(x) + z = Bε(x) ∩ Bε(x+ z) = ∅

für alle x ∈ Rn, z ∈ Zn \ {0}. Da Z\R ∼= S1 folgt Zn\Rn ∼= (Z\R)n ∼= (S1)n = Tn. Wir
erhalten eine Überlagerung Rn → Tn des n-Torus.

(2) Sei Z/2 = {e, τ}. Durch τ.v := −v erhalten wir eine e.d.k. Wirkung Z/2↷ Sn. Dann gilt
Z/2\Sn ∼= RPn

und wir erhalten eine Überlagerung Sn → RPn.
(3) Zu m,n ∈ Z sei fn,m : R2 → R2 mit fn,m(x, y) =

(
x+ n, (−1)ny+m

)
. Dann ist

G :=
{
fn,m

∣∣ n,m ∈ Z
}

eine Gruppe bezüglich der Verknüpfung von Abbildungen. Man rechnet nun nach, dass
fn,m ◦ fn′,m′ = fn+n′,m+(−1)nm′ gilt. Die kanonische Wirkung von G auf R2 gegeben durch
fn,m.x := fn,m(x) ist e.d.k., da

fn,m
(
Uε(x)

)
∩Uε(x) = ∅

für (n,m) ̸= (0, 0) und ε < 1
2
. Der Quotient G\R2 =: K heißt die Kleinsche Flasche.Wir

erhalten eine Überlagerung R2 → K.
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Abbildung 8: Kleinsche Flasche, Quelle

12.4 Satz. Sei X wegzusammenhängend und einfach zusammenhängend. Sei G ↷ X eine e.d.k.
Wirkung. Für jedes x0 ∈ G\X ist dann

π1(G\X, x0) ∼= G

Beweis: Sei x0 ∈ X ein Urbild von x0, also x0 = Gx0. Zu jeder Schleife ω : [0, 1] → G\X mit
ω(0) = ω(1) = x0 gibt es eine Hebung ω̂ : [0, 1] → X mit ω̂(0) = x0. Hier heben wir bezüglich der
Überlagerung p : X→ G\X, x 7→ Gx, also p ◦ ω̂ = ω.

Da p(ω̂(1)) = ω(1) = x0 folgt ω̂(1) ∈ p−1(x0) = Gx0. Es gibt also gω ∈ G mit gω · x0 = ω̂(1).
Wie im Fall der Überlagerung R → S1 zeigt man mit Hilfe des Homotopiehebungssatzes, dass
[ω] 7→ g−1ω ein Gruppenhomomorphismus φ : π1(G\X, x0) → G definiert.

Surjektivität von φ: Sei g ∈ G. Sei ω̂ : [0, 1] → X ein Weg von x0 nach g · x0 (Solch einen Weg gibt
es, da X wegzusammenhängend ist). Dann ist ω̂ die Hebung von ω := p ◦ ω̂ und es folgt
φ([ω]) = gω = g, da ω̂(1) = g · x0. Also g ∈ imφ.

Injektivität von φ: Sei ω := [0, 1] → G\X eine Schleife mit ω(0) = ω(1) = x0, für die φ([ω]) = e.
Sei ω̂ : [0, 1] → X die Hebung von ω mit ω̂(0) = x0. Da φ([ω]) = e ist, gilt ω̂(1) = x0, ω̂ ist
also eine Schleife in X. Da X einfach zusammenhängend ist, ist [ω̂] = e ∈ π1(X, x0). Es folgt

[ω] = [p ◦ ω̂] = p∗[ω̂] = p∗(e) = e.

12.5 Bemerkung. Für n ⩾ 1 ist Sn wegzusammenhängend (einfache Übung). Für n ⩾ 2 ist Sn
einfach zusammenhängend (weniger einfache Übung).

Nach Satz 12.4 ist daher π1(RPn, x0) = Z/2 für n ⩾ 2. Es folgt RPn ̸∼= Sn für n ⩾ 2. (Andererseits
ist RP1 ∼= S1.)

12.6 Definition. Sei p : X̂ → X eine Überlagerung. Eine Decktransformation von p ist ein Homöo-
morphismus f : X̂→ X̂, sodass p ◦ f = p. Die Decktransformationen von p bilden eine Gruppe ∆(p).
Diese Gruppe wirkt in kanonischer Weise auf X̂.
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13 Klassifikation von Überlagerungen
13.1 Definition. Sei G eine Gruppe. Eine G-Menge ist eine Menge mit einer Wirkung von G. Eine
G-Menge S heisst transitiv, wenn es zu s, s ′ ∈ S immer g ∈ G gibt mit gs = s ′. Zu s ∈ S heisst,
Gs := {g ∈ G | g.s = s} die Standgruppe von s. Eine G-Abbildung zwischen G-Mengen S und T , ist
eine Abbildung f : S → T die mit der G-Wirkung vertauscht, also f(g.s) = g.f(s) für g ∈ G, s ∈ S.
Wir schreiben MapG(S, T) für die Menge aller G-Abbildungen von S nach T .

13.2 Bemerkung. Ist H eine Untergruppe von G, so bilden die Linksnebenklassen von G nach H
eine G-Menge: g.(aH) = gaH. Diese G-Menge ist transitiv.

Sei umgekehrt S eine transitive G-Menge und s ∈ S. Dann definiert gGs 7→ gs eine bĳektive
G-Abbildung G/Gs → S.

13.3 Proposition. Sei p : Y → X eine Überlagerung. Sei x0 ∈ X ein Basispunkt. Sei ω eine Schleife
in X bei x0. Zu y ∈ p−1(x0) sei der Weg ω̃y in Y bestimmt durch ω̃y(0) = y und p ◦ ω̃y = ω.

Dann definiert [ω].y := ω̃y(1) eine Wirkung von π1(X; x0) auf p−1(x0).

Beweis: Nach demHomotopiehebungssatz 10.7 existiert ω̃y eindeutig. Da p◦ω̃y = ω eine Schleife
bei x0 ist, gilt ω̃y(1) ∈ p−1(x0). Wieder nach dem Homotopiehebungssatz 10.7 hängt ω̃y(1) nur
von [ω] ∈ π1(X; x0) ab. Seien ω und η zwei Schleifen bei x0. Zu y ∈ p−1(x0) sei y ′ := η̃y(1). Dann
ist ρ := ω̃y′ ∗ η̃y ein Weg mit ρ(0) = y und p ◦ ρ = ω ∗ η. Es folgt [ω ∗ η].y = ρ(1) = ω̃y′(1) =
[ω].y ′ = [ω].([η].y).

13.4 Definition. Seien p : Y → X und q : Z → X zwei Überlagerungen. Mit MapX(Y, Z) bezeichen
wir die Menge aller stetigen Abbildungen f : Y → Z mit q ◦ f = p. Die Überlagerungen p und q von
X heissen isomorph falls es f ∈ MapX(Y, Z), g ∈ MapX(Z, Y) gibt mit f ◦ g = idZ, g ◦ f = idY .

13.5 Satz. Sei X wegzusammenhängend und lokal wegzusammenhängend. Seien p : Y → X und
q : Z→ X zwei Überlagerungen. Dann ist die durch f 7→ f|p−1(x0 definierte Abbildung

MapX(Y, Z) → Mapπ1(X;x0)(p
−1(x0), q

−1(x0))

bĳektiv.

13.6 Korollar. Sei Xwegzusammenhängend und lokal wegzusammenhängend. Zwei Überlagerun-
gen p : Y → X und q : Z→ X sind genau dann isomorph, wenn p−1(x0) und q−1(x0) isomorph als
π1(X; x0)-Mengen sind.

Beweis (von Satz 13.5): Sei f ∈ MapX(Y, Z). Wir überzeugen uns zunächst davon, dass f|p−1(x0)

eine π1(X; x0)-Abbildung ist. Sei g = [ω] ∈ π1(X; x0) und y0 ∈ p−1(x0). Sei ω̃ die eindeutige
Hebung von ω zu einem Weg in Y, der in y0 beginnt. Dann ist g.y0 = ω̃(1). Weiter ist f ◦ ω̃ die
eindeutige Hebung von ω zu einem Weg in Z, der in f(y0) beginnt. Daher ist g.f(y0) = f(ω̃(1)) =
f(g.y0).

Zu y ∈ Y seiω ein Weg von p(y) nach x0 in X. Sei ω̃ die eindeutige Hebung vonω zu einem Weg
in Y, der in y beginnt. Sei y0 ∈ p−1(x0) der Endpunkt von ω̃. Dann ist f ◦ ω̃ die eindeutig Hebung
von ω zu einem Weg in Z der in f(y0) endet. Sein Anfangspunkt, f(y), ist also schon durch ω und
f(y0) eindeutig festgelegt. Folglich ist f durch f|p−1(x0) schon eindeutig bestimmt.

Zur Surjektivität. Sei f0 ∈ Mapπ1(X;x0)(p
−1(x0), q

−1(x0)) gegeben. Zu y ∈ Y sei ωy ein Weg von
p(y) zu x0 in X. Sei ω̃y die eindeutige Hebung von ωy zu einem Weg in Y, der in y beginnt. Sei
y0 ∈ p−1(x0) der Endpunkt von ω̃y. Sei ηy die eindeutige Hebung von ω zu einem Weg in Z, der
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in f0(y0) endet. Wir setzen f(y) := ηy(0). Es ist offenbar q(f(y)) = p(y). Wir müssen zeigen, dass f
wohldefiniert ist (also unabhängig von der Wahl von ωy ist) und dass f stetig ist.

Zur Wohldefiniertheit. Sei ω ′
y ein weitere Weg von p(y) zu x0 in X. Sei ω̃ ′

y die die eindeutige
Hebung von ω ′

y zu einem Weg in Y, der in y beginnt. Sei y ′
0 der Endpunkt von ω̃ ′

y. Sei η ′
y die

eindeutige Hebung von ω ′
y zu einem Weg in Z, der in f0(y ′

0) endet. Zu zeigen ist η ′
y(0) = ηy(0).

Wir benutzten · um umgekehrte Wege zu bezeichnen, also z.B. ω ′
y(t) = ω

′
y(1 − t). Wir erhalten

eine Schleife ωy ∗ ω ′
y in X, die in x0 startet und endet. Es ist ω̃y ∗ ω̃ ′

y die Hebung von ωy ∗ ω ′
y

mit Anfangspunkt y ′
0. Daher gilt g.y ′

0 = y0 für g := [ωy ∗ ω ′
y] ∈ π1(X; x0). Es folgt g.f0(y ′

0) =

f0(g.y
′
0) = f0(y0). Sei ρ die Hebung von ω ′

y ∗ωy zu einem Weg in Z, der in f0(y ′
0) beginnt. Der

Endpunkt von ρ ist dann g.f0(y ′
0), also f0(y0). Da ηy eine Hebung von ωy mit Endpunkt f0(y0)

ist und η ′
y eine Hebung von ω ′

y mit Anfangspunkt f0(y ′
0) folgt, dass ρ, nach Reparametrisierung,

je zur Hälfte mit ηy und η ′
y übereinstimmt. Also

ρ(t) =

{
η ′
y(2t) 0 ⩽ t ⩽ 1/2
ηy(2t− 1) 1/2 ⩽ t ⩽ 1

.

Insbesondere ist η ′
y(0) = η

′
y(1) = ηy(0).

Zur Stetigkeit. Sei y ∈ Y und U eine offene Umgebung von f(y) in Z. Da q eine Überlagerung ist,
können wir, nach verkleinern von U, annehmen, dass q|U : U → q(U) ein Homöomorphismus ist
und q(U) in X offen ist. Dann ist q(U) eine offene Umgebung von q(f(y)) = p(y) in X. Da p eine
Überlagerung ist, gibt es eine offene Umgebung V von y mit p(V) ⊆ f(U) so dass p|V : V → p(V)
ein Homöomorphismus ist und p(V) in X offen ist. Da X lokal wegzusammenhängend ist, gibt
es eine offene wegzusammenhängende Umgebung W von p(y) mit W ⊆ p(V). Dann ist auch
V ′ := V ∩ p−1(W) eine offene wegzusammenhängende Umgebung von y.

Wir können nun zeigen: f(V ′) ⊆ U. Sei zunächst ωy ein Weg von p(y) nach x0, ω̃y eine Hebung
von ωy zu einem Weg in Y der in y beginnt, und ηy eine Hebung von ωy zu einem Weg in Z der
in f0(ω̃y(1)) endet. Dann ist f(y) der Startpunkt von ηy. Zu y ′ ∈ V ′ gibt es nun einen Weg ω̃+

y′ von
y ′ zu y in V ′ ⊆ Y. Sein Bild ω+

y′ in X hat eine Hebung η+y′ zu einem Weg in U, der in y endet. Nun
ist, ωy′ := ωy ∗ω+

y′ ein Weg von p(y ′) nach x0, ω̃y′ := ω̃y ∗ ω̃+
y′ eine Hebung von ωy′ zu einem

Weg in Y der in y ′ beginnt, und ηy′ := ηy ∗ η+y′ eine Hebung von ωy′ zu einem Weg in Z der in
f0(ω̃y′(1)) endet. Es ist also f(y ′) = ηy′(0) = η+y′(0). Da η+y′ ein Weg in U ist, ist f(y ′) ∈ U.

13.7 Satz. Sei X wegzusammenhängend, lokal wegzusammenhängend und lokal einfach zusam-
menhängend. Sei x0 ∈ X ein Basispunkt. Dann gibt es eine wegzusammenhängende und einfach
zusammenhängende Überlagerung X̃ p−→ X. Weiter gibt es eine eigentlich diskontinuierliche Wir-
kung von π1(X; x0) auf X̃, so dass p einen Homöomorphismus π1(X; x0)\X̃ → X induziert. Sie ist
frei und transitiv.

Beweis (Skizze): Sei x0 ∈ X. Sei P =
{
ω : [0, 1] → X Weg

∣∣ω(1) = x0
}
. Sei

X̃ := P/Homotopie mit festen Endpunkten

Dann induziert ω 7→ ω(0) eine wohldefinierte Abbildung p : X̃→ X. Sei ω ∈ P und V eine wegzu-
sammenhängende, einfach zusammenhängende Umgebung von ω(0) in X. Setze

U(V,ω) =
{
[ω ∗ η]

∣∣ η : [0, 1] → V Weg mit η(1) = ω(0)
}

Die U(V,ω) bilden die Basis der Topologie von X̃. Da V wegzusammenhängend und einfach zu-
sammenhängend ist, ist

p

∣∣∣
U(V,ω)

: U(V,ω) → V

13 Klassifikation von Überlagerungen 35



Überarbeitete Mitschrift Analysis, Topologie, Geometrie

bĳektiv. Da X lokal wegzusammenhängend und lokal einfach zusammenhängend ist, ist p
∣∣
U(V,ω)

sogar ein Homöomorphismus. Damit ist V eine elementare Umgebung von ω(0). Da X wegzusam-
menhängend ist, ist p auch surjektiv und p : X̃→ X eine Überlagerung.

Wir zeigen, dass X̃wegzusammenhängend ist: Sei x̃0 : [cx0 ] ∈ X̃. Sei x̃ = [ω] ∈ X̃. Seiωs : [0, 1] → X

mit

ωs(t) =

{
ω(t), falls t ⩾ s
ω(s), falls t ⩽ s

Dann ist α : [0, 1] → X̃ mit α(s) = [ωs] ein Weg von x̃0 nach x̃. Damit ist X̃ wegzusammenhängend.
Dass X̃ einfach zusammenhängend ist, zeigen wir an dieser Stelle nicht.

Die Wirkung von π1(X; x0) auf X̃ ist wie folgt definiert. Sei η eine Schleife in X am Basispunkt
x0. Sei ω eine Weg in X mit Endpunkt x0. Die Wirkung ist definiert durch [η].[ω] := [η ∗ω]. Wir
weisen hier nicht nach, dass diese Wirkung die behaupteten Eigenschaften hat.

13.8 Definition. Die Überlagerung X̃ p−→ X aus Satz 13.7 heißt die universelle Überlagerung von X.

13.9 Satz. Sei X wegzusammenhängend, lokal wegzusammenhängend und lokal einfach zusam-
menhängend. Sei S eine π1(X; x0)-Menge. Dann gibt es eine Überlagerung q : Y → X, so dass p−1(x0)
und S als π1(X; x0)-Mengen isomorph sind.

Beweis (Skizze): Sei X̃ p−→ X die universelle Überlagerung. Auf X̃× S betrachte die durch

(x, s) ∼ (x ′, s ′) : ⇐⇒ ∃g ∈ π1(X; x0) with(x, s) = (gx ′, g−1s ′)

definierte Äquivalenzrelation. Die Abbildung X̃ × S → X definiert durch (x, s) 7→ p(x) induziert
eine Abbildung q : Y := X̃× S/ ∼→ X ; dies ist die gesucht Überlagerung.

13.10 Bemerkung. In der Sprache der Kategorien und Funktoren lassen sich die Aussagen von
Satz 13.5 und Satz 13.9 wie folgt zusammenfassen.

Sei X wegzusammenhängend, lokal wegzusammenhängend und lokal einfach zusammenhän-
gend. Dann ist der Funktor (p : Y → X) 7→ p−1(x0) eine Äquivalenz von der Kategorie der Überla-
gerungen von X in die Kategorie der π1(X; x0)-Mengen.

Streng genommen enthält Satz 13.5 etwas mehr Information, da wir dort nicht annehmen muss-
ten, dass X lokal einfach zusammenhängend ist.

13.11 Satz (Hebungssatz). Sei p : X̂ → X eine Überlagerung. Sei x0 ∈ X, x̂0 ∈ X̂, p(x̂0) = x0. Sei Z
wegzusammenhängend und lokal wegzusammenhängend. Sei z0 ∈ Z, f : Z → X stetig mit f(z0) =
x0. Dann gibt es eine Hebung f̂ : Z→ X̂ mit f̂(z0) = x̂0 genau dann, wenn

f∗
(
π1(Z, z0)

)
⊆ p∗

(
π1(X̂, x̂0)

)
[⋆]

als Untergruppe von π1(X, x0) gilt. In diesem Fall ist f̂ eindeutig.

X X̂

Z

p

f
f̂

Beweis: Übung.
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14 Differenzierbare Mannigfaltigkeiten
SeiM eine topologische Mannigfaltigkeit. Welche Funktionen f : M→ R sind differenzierbar? Was
sind Richtungsableitungen für solche Funktionen? Was sind Richtungen in M?

Da topologische Mannigfaltigkeiten lokal homöomorph zum Rn wäre folgendes ein naheliegen-
der Ansatz für eine Definition im obigen Sinne: f : M→ R heißt C∞ genau dann, wenn

∀x ∈M : ∃U ⊆M offen mit x ∈ U und h : U ≈−→ V ⊆ Rn : f ◦ h−1 : V → R ist C∞
Dieser Ansatz hat aber noch die folgenden Probleme:

a) Ob f ◦ h−1 : V → R C∞ ist oder nicht, hängt von der Wahl von h ab.
b) Jeder Homöomorphismus f : R → R ist in dieser Definition C∞!

14.1 Definition. Sei Mn eine topologische n-Mannigfaltigkeit.

a) Eine Karte für M ist ein Homöomorphismus h : U ≈−→ V mit U ⊆ M offen, V ⊆ Rn offen. U
heißt das Kartengebiet von h. Ist x ∈ U, so heißt h eine Karte um x.

b) Sind hi : Ui
≈−→ Vi, i = 0, 1 zwei Karten, so heißt

h1 ◦ h−10
∣∣
h0(U0∩U1)

: h0(U0 ∩U1)
⊆V0⊆Rn

→ h1(U0 ∩U1)
⊆V1⊆Rn

der Kartenwechsel zwischen h0 und h1. Ein Kartenwechsel ist ein Homöomorphismus zwi-
schen offenen Teilmengen des Rn.

c) EineMenge von Karten
{
hα : Uα → Vα

∣∣α ∈ A
}
heißt ein Atlas fürM, wenn die Kartengebiete

Uα die Mannigfaltigkeit überdecken:M =
∪
α∈AUα

d) Ein Atlas A heißt C∞ (oder glatt), wenn alle Kartenwechsel zwischen Karten aus A C∞-Ab-
bildungen sind.

14.2 Definition. Eine C∞-Mannigfaltigkeit ist eine topologische Mannigfaltigkeit zusammen mit
einem C∞-Atlas A.

14.3 Beispiel. Viele interessante topologische Räume sind differenzierbare Mannigfaltigkeiten:
(1) U ⊆ Rn offen ist eine C∞-Mannigfaltigkeit mit Atlas {idU}.
(2) Sn ist eine C∞-Mannigfaltigkeit: Definiere Kartengebiete Uk,j :=

{
x ∈ Sn

∣∣ (−1)jxk > 0} für
k = 0, . . . , n, j = 0, 1. Sei

hk,j : Uk,j →
◦
D
n
=

{
x ∈ Rn

∣∣ ∥x∥2 < 1}
mit

hk,j(x0, . . . , xn) = (x0, . . . , xk−1, xk+1, . . . , xn)

Dann ist A =
{
hk,j

∣∣ k = 0, . . . , n j = 0, 1
}
ein C∞-Atlas für Sn.

(3) RPn = Sn
/x∼−x ist eine C∞-Mannigfaltigkeit: Setze

Uk :=
{[

(x0, . . . , xn)
]
∈ RPn

∣∣ xk ̸= 0
}

und definiere hk : Uk →
◦
D
n

durch

hk
(
[x0, . . . , xn]

)
=
xk

|xk|
(x0, . . . , xk−1, xk+1, . . . , xn)

Dann ist {hk | k = 0, . . . , n} ein C∞-Atlas für RPn.
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x2

x3

x1

S2

U3,0

h3,0(U3,0) = {x20 + x21 < 1}

Abbildung 9: Die C∞-Mannigfaltigkeit S2 mit dem Kartengebiet U3,0

(4) Sind (M,A) und (N,B) C∞-Mannigfaltigkeiten, so ist {h× k | h ∈ A, k ∈ B} ein C∞-Atlas für
M×N.

14.4 Bemerkung. Sei (M,A) eine C∞-Mannigfaltigkeit. Eine Karte h : U → V für M (nicht not-
wendig in A) heißt eine C∞-Karte, wenn alle Kartenwechsel zwischen h und einer Karte aus A C∞
sind. Offenbar besteht A aus C∞-Karten. Es ist auch Amax :=

{
h
∣∣ h ist C∞-Karte

}
ein C∞-Atlas für

M. Dieser Atlas ist maximal, d.h. man kann keine weiteren Karten zu Amax hinzufügen und immer
noch einen C∞-Atlas erhalten.

14.5 Definition. Seien M,N C∞-Mannigfaltigkeiten. Sei f : M→ N eine stetige Abbildung.

a) Sei x ∈M. f heißt C∞ oder glatt in x, wenn es eine Karte h0 : U0 → V0 vonM um x und eine
Karte h1 : U1 → V1 von N um f(x) gibt, sodass

h1 ◦ f ◦ h−10

auf einer Umgebung von h0(x) eine C∞-Abbildung ist.

b) Ist f in allen x ∈ M glatt, so heißt f eine C∞-Abbildung. Wir schreiben C∞(M,N) für die
Menge der C∞-Abbildungen von M nach N.

c) M und N heißen diffeomorph, wenn es f ∈ C∞(M,N) und g ∈ C∞(N,M) gibt mit f ◦g = idN
und g ◦ f = idM.
In diesem Fall heißen f und g Diffeomorphismen.

Ein etwas künstliches Beispiel: (M,A) und (M,Amax) sind diffeomorph mittels der Identität
idM : (M,A) → (M,Amax).

14.6 Bemerkung. a) Ist f : M → N glatt in x, so ist h1 ◦ f ◦ h−10 glatt in einer Umgebung von
h0(x) für alle Wahlen von C∞-Karten h0 um x und h1 um f(x).

b) Die Komposition von C∞-Abbildungen ist wieder eine C∞-Abbildung.

c) Ist f : M→ N bĳektiv und C∞ ist, so ist f noch nicht notwendigerweise ein Diffeomorphismus.
(betrachte z.B. f : R → R, x 7→ x3)

14.7 Bemerkung. Beim Unterscheiden zwischen Homöomorphismen und Diffeomorphismen ist
Vorsicht geboten:
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a) Es gibt C∞-Mannigfaltigkeiten M und N, sodass M und N zueinander homöomorph sind,
aber nicht diffeomorph sind. Dabei kann man sogarM = S7 wählen.

b) Es gibt topologische Mannigfaltigkeiten, auf denen kein C∞-Atlas existiert.

Diese Aussagen liegen aber weit ausserhalb der Reichweite dieser Vorlesung.

14.8 Definition. Eine Teilmenge N ⊆ Mn+k einer (n + k)-dimensionalen C∞-Mannigfaltigkeit
M, heißt eine n-dimensionale C∞-Untermannigfaltigkeit, wenn es um jedes x ∈ N eine Karte
h : U → V ⊆ Rn+k für M gibt, so dass h(N ∩ U) = V ∩ (Rn × {0}). k = dimM − dimN heißt die
Kodimension von N in M. Durch Einschränkung dieser Karten von M auf N erhalten wir einen
C∞-Atlas für N. Insbesondere ist N eine n-dimensionale C∞-Mannigfaltigkeit.

V ⊆ R2

N

x
R × {0}

h(x)

h

Abbildung 10: Skizze einer Untermannigfaltigkeit N der MannigfaltigkeitM = R2

14.9 Definition. Eine C∞-Abbildung f : N → M heißt eine Einbettung, wenn f(N) ⊆ M eine C∞-
Untermannigfaltigkeit ist und f : N→ f(N) ein Diffeomorphismus ist.
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15 Reguläre Werte
Man betrachte, die in Abbildung 11 gezeichnete Höhenfunktion auf dem Torus T2. Wie angedeu-
tet, scheinen die Urbilder einzelner Punkte Mannigfaltigkeiten zu sein, die entweder S1 oder eine
disjunkte Vereinigung von zwei Kopien der S1 sind. An zwei Punkten (einer davon der grün ge-
zeichnete) findet ein Wechsel zwischen diesen beiden Typen von Urbildern statt und das Urbild ist
keine Mannigfaltigkeit, da eine Umgebung des Klebepunktes der beiden 1-Sphären nicht homöo-
morph zum R1 ist.

R

h

Abbildung 11: Höhenfunktion beim T2 Torus

15.1 Definition. Sei U ⊆ Rn offen und f : U→ Rm eine C∞-Abbildung. Für x ∈ U sei Dfx : Rn →
Rm das Differential von f in x. Der Rang der linearen Abbildung Dfx : Rn → Rm heißt der Rang
von f in x.

15.2 Definition. Seien Nn und Mm glatte Mannigfaltigkeiten mit dimN = n,dimM = m. Sei
f : N→M glatt und x ∈ N. Seien h0 : U0 → V0 ⊆ Rn und h1 : U1 → V1 ⊆ Rm Karten von N um x

und M um f(x). Der Rang von f in x ist erklärt als

Rgx f := Rang
(

D
(
h1 ◦ f ◦ h−10

)
h0(x)

)
.

N = S2

U0

x
h0

V0

h0(x)

f

M = S1

U1

f(x)

V1

h1

(
f(x)

)
h1

Abbildung 12: Diagramm zur Definition des Ranges einer glatten Abbildung f : N→M
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15.3 Lemma. Sind ĥ0 : Û0 → V̂0 und ĥ1 : Û1 → V̂1 zwei weitere Karten um x und f(x), so gilt:

Rang
(

D
(
h1 ◦ f ◦ h−10

)
h0(x)

)
= Rang

(
D
(
ĥ1 ◦ f ◦ ĥ−10

)
ĥ0(x)

)
Insbesondere hängt Rgx f nicht von der Wahl von Karten ab.

Beweis: Es gilt

D
(
ĥ1 ◦ f ◦ ĥ−10

)
ĥ0(x)

= D
(
ĥ1 ◦ h−11 ◦ h1 ◦ f ◦ h−10 ◦ h0 ◦ ĥ−10

)
ĥ0(x)

= D
(
ĥ1 ◦ h−11

)
h1

(
f(x)
) ◦ D

(
h1 ◦ f ◦ h−10

)
h0(x)

◦ D
(
h0 ◦ ĥ−10

)
ĥ0(x)

Da ĥ1 ◦ h−11 und h0 ◦ ĥ−10 Diffeomorphismen (um h1
(
f(x)

)
bzw. ĥ0(x)) sind, sind die Differentiale

D
(
ĥ1 ◦ h−11

)
h1(f(x))

und D
(
h0 ◦ ĥ−10

)
ĥ0(x)

invertierbar. Es folgt die Behauptung.

15.4 Definition. Sei f : N→M eine C∞-Abbildung.

a) x ∈ N heißt regulär für f, wenn Rgx f = dimM.

b) y ∈M heißt ein regulärer Wert für f, falls alle x ∈ f−1(y) regulär sind.

15.5 Satz (über reguläre Werte). Sei f : N→M eine C∞-Abbildung und y ∈M ein regulärer Wert.
Dann ist f−1(y) eine Untermannigfaltigkeit der Kodimension dimM von N.

15.6 Beispiel. Sei O(n) = {A ∈ Rn×n |At ·A = 1n} die Gruppe der orthogonalen n×n-Matrizen.
Sei

S =
{
B ∈ Rn×n

∣∣ B = Bt
}

Dann ist S ∼= R
n(n+1)

2 . Nun ist f : Rn×n → S mit f(A) = At · A eine C∞-Abbildung und es ist
O(n) = f−1(1n). Behauptung: 1n ist regulärer Wert von f und somit folgt, dass O(n) eine Unter-
mannigfaltigkeit von Rn×n ∼= Rn

2 ist.

Beweis: Sei A ∈ O(n) und B ∈ Rn×n. Für λ ∈ R ist dann

f(A+ λB) = (A+ λB)t(A+ λB) = AtA+ λBtA+ λAtB+ λ2BtB

= AtA+ λ(BtA+AtB) + λ2BtB.

Es folgt, dass die Richtungsableitung in Richtung B von f in A genau BtA+AtB ist. Die Richtungs-
ableitungen von f sind genau das Bild des Differentials von f in A. Für C ∈ S ist mit B := 1

2
A · C,

C = BtA+AtB. Also ist das Differential surjektiv und A regulär für f.

15.7 Satz (über implizite Funktionen). Seien U1 ⊆ Rn und U2 ⊆ Rm offen. Seien x1 ∈ U1, x2 ∈ U2
und f : U1 ×U2 → Rm eine C∞-Abbildung, für die

Df(x1,x2)
∣∣∣
{0}×Rm

invertierbar ist. Dann gibt es eine C∞-Abbildung g : V1 → V2 mit x1 ∈ V1 ⊆ U1, x2 ∈ V2 ⊆ U2,
g(x1) = x2 und{

(y1, y2) ∈ V1 × V2
∣∣ f(y1, y2) = f(x1, x2)} =

{(
y1, g(y1)

) ∣∣ y1 ∈ V1}
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15.8 Satz (von der Umkehrfunktion). Seien U1, U2 ⊆ Rn offen. Sei x ∈ U1 und f : U1 → U2 eine
C∞-Abbildung für die Dfx ein Isomorphismus ist. Dann gibt es offene Umgebungen V1 ⊆ U1 von
x und V2 ⊆ U2 von f(x), so dass f|V1

: V1 → V2 ein Diffeomorphismus ist.

Beweis (des Satzes über reguläre Werte 15.5): Sei x ∈ f−1(y). Wir müssen zeigen, dass eine Karte
φ : U→ V ⊆ Rk ×Rm um x existiert mit{

u ∈ U
∣∣ f(u) = y} =

{
φ−1(x, 0)

∣∣ (x, 0) ∈ V}
Da es Karten um x und y gibt, können wir o.B.d.A. annehmen, dass N ⊆ Rk ×Rm und M ⊆ Rm
offene Teilmengen sind. Weiter können wir annehmen, dass x = 0, y = 0 gilt. Nach Voraussetzung
ist Df0 : Rk × Rm → Rm surjektiv. Indem wir f – falls nötig – um einen linearen Isomorphismus
von Rk+m = Rk ×Rm ändern, können wir erreichen, dass Df0({0}×Rm) = Rm gilt.

Seien nun 0 ∈ U1 ⊆ Rk und 0 ∈ U2 ⊆ Rm offen mit U1 ×U2 ⊆ N. Mit dem Satz über implizite
Funktionen folgt, dass offene Menge V1, V2 existieren mit 0 ∈ V1 ⊆ U1, 0 ∈ V2 ⊆ U2 und eine C∞-
Abbildung g : V1 → V2, sodass gilt: Für (x1, x2) ∈ V1 × V2 ist

f(x1, x2) = 0 ⇐⇒ x2 = g(x1).

Betrachte nun
V1 × V2 M

Rk ×Rm

f

φ

mit φ(x1, x2) =
(
x1, x2 − g(x1)

)
. Für (x1, x2) ∈ V1 × V2 gilt dann

f(x1, x2) = 0 ⇐⇒ φ(x1, x2) ∈ Rk × {0}.

Weiter ist Dφ0 =
( id 0
−Dg0 id

)
invertierbar. Mit dem Satz von der Umkehrfunktion folgt wieder die

Existenz offener Umgebungen 0 ∈ U ⊆ V1 × V2 und 0 ∈ V ⊆ Rk × Rm, sodass φ
∣∣
U
: U → V ein

Diffeomorphismus ist. Dies ist die gesuchte Karte.

15.9 Bemerkung. Nach dem Satz von Sard ist die Menge der kritischen Werte, also der nicht
regulären Werte einer C∞-Abbildung f : N→M eine Menge mit Lebesgue-Maß Null. Insbesondere
gibt es immer reguläre Werte.
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16 Approximation durch C∞-Abbildungen
16.1 Proposition. Sei M eine C∞-Mannigfaltigkeit. Dann ist C∞

0 (M,R) := C∞(M,R) ∩ C0(M,R)
dicht in C0(M,R) bezüglich ∥.∥∞.

16.2 Beispiel (Glockenfunktionen). Seien ψ,φε : R → R für ε > 0 gegeben durch

ψ(t) :=
{
0, falls t ⩽ 0
e−t

−2

, falls t > 0
, φε(t) =

ψ(t)

ψ(t) +ψ(ε− t)

ψ undφε sind C∞-Funktionen. Für r > 0 sei nun eine weitere Familie von Funktionen fε,r : Rn → R

1
ψ

1
ϕε

ε = 1

Abbildung 13: Die Funktionen ψ und φε für ε = 1

gegeben durch fε,r(x) = 1 − φε(∥x∥ − r). Es ist fε,r ∈ C∞(Rn) und es gilt fε,r(x) ⊆ [0, 1] für alle

1
fε,r

r = 1.5 ε = 1 −2
0

2 −2

0

20

0.5

1

Abbildung 14: Glockenfunktion fε,r für R und R2, wobei ε = 1, r = 1.5

x ∈ Rn. Weiter ist fε,r(x) = 1 für |x| ⩽ r, fε,r(x) = 0 für |x| ⩾ r + ε. Abbildung 14 zeigt eine der
Funktionen für n = 1 und eine für n = 2.

Beweis (von Proposition 16.1): Wir wollen den Approximationssatz von Stone-Weierstraß (6.6)
anwenden: Dazu müssen wir zeigen:

∀x, y ∈M : ∃f ∈ C∞
0 (M,R) mit f(x) ̸= f(y) und f(x) ̸= 0 ̸= f(y)

Wähle dazu Karten φ : U → V und φ̂ : Û → V̂ von M mit x ∈ U, y ∈ Û und U ∩ Û = ∅. Indem
wir, wenn nötig, einen Isomorphismus von Rn anwenden, können wir außerdem fordern, dass
φ(x) = 0, φ̂(y) = 0, B2(0) ⊆ V und B2(0) ⊆ V̂ gilt. Dann ist fx ∈ C∞

0 (M,R) mit

fx(z) =

{
0, falls z /∈ U
f1/2,1

(
φ(z)

)
, sonst
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Dann gilt fx(x) = 1 und fx(y) = 0. Ebenso gibt es fy ∈ C∞
0 (M,R) mit fy(x) = 0 und fy(y) = 1.

Nun ist f := 2fx + fy die gesuchte Funktion.

16.3 Korollar. SeiM eine kompakte C∞-Mannigfaltigkeit und φ : M→ Rn stetig. Dann gibt es zu
jedem ε > 0 eine C∞-Abbildung f : M→ Rn mit ∥φ(x) − f(x)∥2 ⩽ ε für alle x ∈M.

Beweis: Schreibe φ = (φ1, . . . , φn) und approximiere die φi durch C∞-Funktionen.

16.4 Korollar. Sei M eine kompakte C∞-Mannigfaltigkeit und φ : M→ Sn stetig. Dann gibt es zu
jedem ε > 0 eine C∞-Abbildung f : M→ Sn mit ∥f(x) −φ(x)∥2 ⩽ ε für alle x ∈M.

Beweis: Da Sn ⊆ Rn+1, gibt es nach Korollar 16.3 eine C∞-Abbildung f0 : M→ Rn+1 mit ∥f0(x)−
φ(x)∥2 ⩽ ε ∀x ∈M. O.B.d.A. sei ε < 1. Wegen φ(x) ∈ Sn folgt

1− ε ⩽ ∥f0(x)∥2 ⩽ 1+ ε

Sei f : M→ Sn die durch f(x) := f0(x)
∥f0(x)∥2

definierte C∞-Abbildung. Dann gilt:

∥f(x) −φ(x)∥2 ⩽ ∥f(x) − f0(x)∥2 + ∥f0(x) −φ(x)∥2

⩽
∥∥∥∥ f0(x)

∥f0(x)∥2
− f0(x)

∥∥∥∥
2

+ ε

=

∣∣∣∣1− 1

∥f0(x)∥2

∣∣∣∣ · ∥f0(x)∥2 + ε
=

∣∣∣∣∥f0(x)∥2 − 1∥f0(x)∥2

∣∣∣∣ · ∥f0(x)∥2 + ε
⩽ ε

1− ε
(1+ ε) + ε

ε→0−−−→ 0

Damit folgt die Behauptung.

16.5 Bemerkung. Allgemein lässt sich jede stetige Abbildung zwischen C∞-Mannigfaltigkeiten
durch C∞-Abbildungen approximieren. Dazu zeigt man:

(i) Jede (kompakte) C∞-Mannigfaltigkeit lässt sich in den RN für N≫ dimM einbetten.

(ii) M ⊆ RN besitzt eine Tubenumgebung². Dies erlaubt es, eine C∞-Retraktion K→M auf einer
kompakten Umgebung K von M ⊆ RN zu konstruieren.

16.6 Proposition. Sei U ⊆ Rn offen und f : U→ Rm eine C∞-Abbildung. Ist m > n, so ist f(U) ⊆
Rm eine Nullmenge bezüglich des Lebesgue-Maßes.

Beweis: Jede offene Teilmenge des Rn ist die abzählbare Vereinigung von kompakten Teilmengen.
Die abzählbare Vereinigung von Nullmengen ist wieder eine Nullmenge. Daher genügt es zu zeigen:
Ist K ⊆ U kompakt, so ist f(K) ⊆ Rm eine Nullmenge.

Da K kompakt ist , ist ∥Dfx∥ für x ∈ K beschränkt. Insbesondere ist f auf K Lipschitz-stetig. Es
gibt also α > 0 mit

∀ε > 0 : f(Bε(x) ∩ K) ⊆ Bαε
(
f(x)

)
² Wikipedia: https://de.wikipedia.org/wiki/Tubulare_Umgebung
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Sei nun R > 0 mit K ⊆ [−R, R]n. Zu ε > 0 gibt es dann eine Überdeckung von K durch
(
2
⌈
R
ε

⌉)n
viele Bälle Bε(xi) ⊆ Rn. Es folgt

VolRm

(
f(K)

)
⩽
(
2

⌈
R

ε

⌉)n
· VolRm

(
Bαε(0)

)
=

(
2

⌈
R

ε

⌉)n
· (αε)m · Cm

mit Cm := VolRm

(
B1(0)

)
. Wegenm > n gilt

(
2
⌈
R
ε

⌉)n ·(αε)m ·Cm
ε→0−−−→ 0. Also VolRm

(
f(K)

)
= 0.

16.7 Korollar. Sei f : N → M eine C∞-Abbildung. Sei dimM > dimN. Dann ist M \ f(N) ⊆ M

dicht und insbesondere ist f nicht surjektiv.

Beweis: Sei y ∈ M. Sei U eine offene Umgebung von y. Zu zeigen: U \ f(N) ̸= ∅. O.B.d.A. sei U
das Kartengebiet einer Karte h : U→ V . Da N das zweite Abzählbarkeitsaxiom erfüllt, können wir
f−1(U) durch abzählbar viele C∞-Kartengebiete Ui von Karten ki : Ui → Vi von N überdecken, für
die wir Ui ⊆ f−1(U) annehmen dürfen. Nun ist

h
(
f(N) ∩U

)
= h

(∪
i

f
(
h−1i (Vi)

))
=
∪
i

h ◦ f ◦ h−1i (Vi)

Nach Proposition 16.6 ist jedes h ◦ f ◦h−1i (Vi) eine Nullmenge in V . Da die abzählbare Vereinigung
von Nullmengen eine Nullmenge ist, ist auch h

(
f(N) ∩ U

)
eine Nullmenge in V . Insbesondere ist

V \ h
(
f(N) ∩U

)
̸= ∅. Da h bĳektiv ist, folgt auch U \ f(N) ̸= ∅.

16.8 Satz. Für n < m ist jede stetige Abbildung Sn → Sm homotop zu einer konstanten Abbildung.
Insbesondere ist Sm für m > 1 einfach zusammenhängend.

Beweis: Wir müssen zeigen, dass jede stetige Abbildung f : Sn → Sm homotop zu eine konstanten
Abbildung ist. Nach Korollar 16.4 gibt es eine C∞-Abbildung φ : Sn → Sm mit ∥f(x) − φ(x)∥ ⩽ 1

2

für alle x ∈ Sn. Sei nun H : Sn × [0, 1] → Sm definiert durch

H(x, t) := t · f(x) + (1− t)φ(x)

∥t · f(x) + (1− t)φ(x)∥

H ist eine Homotopie von φ nach f. Mit Korollar 16.7 folgt, dass f nicht surjektiv ist. Sei y ∈
Sm \ f̃(Sn). Nun ist Sm \ {y} ∼= Rm. Daher ist jede stetige Abbildung Sn → Sm \ {y} punktiert
homotop zur konstanten Abbildung. Daher ist f punktiert homotop zur konstanten Abbildung.

Proof (Beweis der Invarianz der Dimension für n = 2.): Sei f : R2 → Rm ein Homöomorphismus.
Wir können ohne Einschränkung annehmen f(0) = 0 (andernfalls ersetzten wir f durch x 7→ f(x) −
f(0)). Durch Einschränkung von f erhalten wir eine Homotopieäquivalenz R2 \ {0} → Rm \ {0}.
Wegen R2 \ {0} ≃ S1, Rm \ {0} ≃ Sm−1 erhalten wir eine Homotopieäquivalenz S1 ≃ Sm−1. Nun
ist Sk genau dann zusammenhängend und einfach zusammenhängend wenn k = 1 ist. Es folgt
m− 1 = 1, also m = 2.
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17 Der Tangentialraum
17.1 Beispiel. Betrachte Sn ⊆ Rn+1. Zu x ∈ Sn betrachten wir den Unterraum

TnxSn :=
{
v ∈ Rn+1

∣∣ ⟨v | x⟩ = 0}
Diesen können wir als R-Vektorraum von „Richtungen“ von Sn in x auffassen. Die Vereinigung
der TnxSn, TnSn =

∪
x∈Sn TnxSn ist ein natürlicher Weise ein Unterraum des topologischen Raumes

Sn ×Rn+1, also
TnSn =

{
(x, v)

∣∣ x ∈ Sn, v ∈ x⊥}
Insbesondere ist TnSn ein topologischer Raum.

17.2 Bemerkung. Sn heißt parallelisierbar, falls es einen Homöomorphismus Θ : TnSn → Sn×Rn
gibt, so dass für jedes x ∈ Sn die Einschränkung

Θ
∣∣
Tn
xS

n : TnxSn → {x}×Rn

ein R-Vektorraumisomorphismus ist. Unter den Sphären sind genau S1, S3 und S7 parallelisierbar,
siehe Bott, Milnor u. a. [B+58].

17.3 Beispiel. Sei M ⊆ Rn+k eine n-dimensionale C∞-Untermannigfaltigkeit. Sei x ∈ M. Dann
gibt es eine an M angepasste Karte

Rn+k ⊇ U h−−→
∼=

V ⊆ Rn ×Rk

um xmit h(M∩U) = (Rn×{0})∩V . Das Urbild vonRn×{0} unter Dhx ist der Tangentialraum TuxM
vonM im Punkt x. Da h ein Diffeomorphismus ist, ist Dhx ein Isomorphismus vonR-Vektorräumen.
Insbesondere ist dim TuxM = dimRn = n.

TuxM ist unabhängig von der Wahl der Karte h: Ist k eine zweite an M angepasste Karte, so ist

D
(
h ◦ k−1

)
k(x)

=

(
A ∗
0 ∗

)
mit A ∈ GL(n,R). Das Tangentialbündel vonM ist

TnM :=
{
(x, v)

∣∣ x ∈M,v ∈ TuxM}
⊆M×Rn+k

Ist V ⊆ Rn eine Untermannigfaltigkeit der Kodimension 0, also V ⊆ Rn offen, so ist TnV = V×Rn.

17.4 Lemma. Sei M ⊆ Rn+k eine C∞-Untermannigfaltigkeit. Sei x ∈ M. Für v ∈ Rn+k sind
äquivalent:

(1) v ∈ TuxM.
(2) Es gibt einen C∞-Weg ω : (−ε, ε) →M mit ω(0) = x und dω

dt (0) = v.

Beweis: Sei Rn+k ⊇ U
h−→ V ⊆ Rn × Rk eine Karte mit h(M ∩ U) = V ∩ (Rn × {0}). Ohne

Einschränkungen können wir h(x) = 0 annehmen.
Ist v ∈ TuxM, so gilt Dhx(v) ∈ Rn×{0}. Seiω : (−ε, ε) →M definiert durchω(t) := h−1(t · Dhx(v)).

Dann gilt

dω
dt (0) =

d
dth

−1
(
t · Dhx(v)

)
=
(
Dh−1

)
h(x)

(
Dhx(v)

)
= v
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Im umgekehrten Fall ist

Dhx
(

dω
dt (0)

)
= Dhω(0)(Dω0(1)) = D(h ◦ω)0(1)

Da h ◦ω : (−ε, ε) → Rn × {0}, folgt auch D(h ◦ω)0(1) ∈ Rn × {0}.

17.5 Lemma. Seien ω,η : (−ε, ε) → Rn zwei C∞-Abbildungen, mit ω(0) = η(0). Dann sind äqui-
valent:

(1) dω
dt (0) =

dη
dt (0)

(2) Für alle f ∈ C∞(Rn,R) gilt d(f◦ω)
dt (0) = d(f◦η)

dt (0)

Beweis: Nach der Kettenregel gilt

d(f ◦ω)

dt (0) = (Df)ω(0)

(
dω
dt (0)

)
und somit die erste Implikation.

Sei nun Pi : Rn → R die Projektion auf die i-te Koordinate. Dann gilt

d(Pi ◦ω)

dt (0) = Pi

(
dω
dt (0)

)
.

und es folgt die andere Implikation.

17.6 Definition. Sei M eine C∞-Mannigfaltigkeit. Sei x ∈ M. Sei TxM die Menge der C∞-Abbil-
dungen ω : (−ε, ε) →M mit ω(0) = x. Durch

ω ∼ η :⇔ ∀f ∈ C∞(M,R) :
d(f ◦ω)

dt (0) =
d(f ◦ η)

dt (0)

erhalten wir eine Äquivalenzrelation auf TxM. Der Tangentialraum zu M im Punkt x ist definiert
als die Menge der Äquivalenzklassen TxM := TxM/∼.

17.7 Bemerkung. Sei M ⊆ Rn+k eine Untermannigfaltigkeit und x ∈ M. Wegen Lemma 17.4 ist
die Abbildung TxM→ TuxM, ω 7→ dω

dt (0) surjektiv und induziert wegen Lemma 17.5 eine bĳektive
Abbildung αux : TxM→ TuxM.

17.8 Bemerkung. Sei V ⊆ Rn offen und x ∈ V . Dann erhalten wir aus Bemerkung 17.7 eine
Bĳektion

αux : TxV −−−→ Rn

[ω] 7−−−→ dω
dt (0)

denn V ⊆ Rn ist eine C∞-Mannigfaltigkeit der Kodimension 0. Oft werden wir diesen Isomorphis-
mus unterschlagen und einfach TxV = Rn schreiben.

17.9 Bemerkung. Sei U eine offene Umgebung von x ∈ M. Dann gilt TxU = TxM. Genauer
induziert die Inklusion U ⊆ M eine Inklusion TxU → TxM, die wiederum einen kanonischen
Isomorphismus TxU

∼=−→ TxM induziert.
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17.10 Lemma. Sei φ : N → M eine C∞-Abbildung und x ∈ N. Dann definiert [ω] 7→ [φ ◦ω] eine
wohldefinierte Abbildung Txφ : TxN→ Tφ(x)M.

Beweis: Seien ω,η : (−ε, ε) → N glatte Wege mit ω(0) = x = η(0) und [ω] = [η] ∈ TxN. Sei
f ∈ C∞(M,R) eine Testfunktion. Zu zeigen ist:

d(f ◦φ ◦ω)

dt (0) =
d(f ◦φ ◦ η)

dt (0)

Sei g := f ◦φ ∈ C∞(N,R). Da [ω] = [η] ∈ TxN, gilt d(g◦ω)
dt (0) = d(g◦η)

dt (0).

17.11 Definition. Txφ heißt die Tangentialabbildung von φ in x.

Die Tangentialabbildung ist funktoriell, das heißt

a) Für die Identität idM : M→M gilt Tx id = idTxM.

b) Für N φ−→M
ψ−→W gilt Tx(ψ ◦φ) = Tφ(x)ψ ◦ Txφ. (Kettenregel für die Tangentialabbildung.)

17.12 Lemma. SeienU ⊆ Rn offen, V ⊆ Rm offen undφ : U→ V eineC∞-Abbildungmitφ(x) = y.
Dann ist

Txφ : Rn = TxU→ Tφ(x)V = Rm

genau das Differential Dφx von φ im Punkt x.

Beweis: Sei v ∈ Rn. Unter Rn = TxU ist v = [ωv] mit ωv(t) = x+ t · v. Unter TyV = Rm ist

Txφ([ωv]) = [φ ◦ωv] =
d(φ ◦ωv)

dt (0) = Dφx ◦ (Dωv)0(1) = Dφx(v)

17.13 Proposition. a) SeiM eine C∞-Mannigfaltigkeit und x ∈M. Dann gilt es eine eindeutige
R-Vektorraumstruktur auf TxM mit folgender Eigenschaft:
Ist V ⊆ Rk offen, φ : V →M glatt mit φ(y) = x, so ist Tyφ : Rk = TyV → TxM R-linear.

b) Ist f : N → M eine C∞-Abbildung mit f(x) = y, so ist Txf : TxN → TyM bezüglich der R-
Vektorraumstruktur aus a) R-linear.

Ist M ⊇ U
h−−→ V ⊆ Rn eine Karte um x, so legt Txh : TxM = TxU → Th(x)V = Rn die R-

Vektorraumstruktur auf TxM fest.

Beweis: a) Sei M ⊇ U
h−→ W ⊆ Rn eine C∞-Karte um x. Dann ist Txh : TxM = TxU →

Th(x)W = Rn bĳektiv mit (Txh)−1 = Th(x)(h−1). Wir benutzen diesen Isomorphismus um
die R-Vektorraumstruktur auf TxM zu definieren:

v+w :=
(
Th(x)h−1

)(
Txh(v) + Txh(w)

)
Dies ist die einzige R-Vektorraumstruktur auf TxM, für die Th(x)(h−1) R-linear ist.
Sei nun φ : V → M eine C∞-Abbildung mit V ⊆ Rk offen und φ(y) = x. Um zu zeigen,
dass Tyφ : Rk = TyV → TxM R-linear ist, genügt es zu zeigen, dass die Komposition Tx(h) ◦
Ty(φ) : Rk → Rn R-linear ist.
Nun gilt aber nach Lemma 17.12

Tx(h) ◦ Ty(φ) = Ty(h ◦φ) = Dy(h ◦φ).

Also ist Tx(h) ◦ Ty(φ) R-linear, da Dy(h ◦φ) R-linear ist.
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b) Seien N ⊇ U h−−→ V ⊆ Rn und M ⊇ Û ĥ−−→ V̂ ⊆ Rn glatte Karten um x bzw. um y. Da

Txh : TxN = TxU→ Th(x)V = Rn

Tyĥ : TyM = TyÛ→ Tĥ(y)V̂ = Rm

Isomorphismen von R-Vektorräumen sind, genügt es zu zeigen, dass (Tyĥ) ◦ (Txf) ◦ (Txh)−1
R-linear ist. Dies folgt mit der Kettenregel:

(Tyĥ) ◦ (Txf) ◦ (Txh)−1 = Th(x)
(
ĥ ◦ f ◦ h−1

) Lemma 17.12
= D

(
ĥ ◦ f ◦ h−1

)
h(x)

17.14 Bemerkung. Ist f : N → M glatt und x ∈ N, so gilt Rangxf = Rg(Txf). Insbesondere ist x
genau dann regulär, wenn Txf ∼= TxN→ Tf(x)M surjektiv ist.
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18 Das Tangentialbündel
18.1 Definition. Sei X ein topologischer Raum. Ein n-dimensionales Vektorraumbündel über X ist
eine stetige, surjektive Abbildung π : E → X, wobei für jedes x ∈ X die Faser Ex := π−1({x}) mit
einer n-dimensionalen R-Vektorraumstruktur versehen ist, so dass gilt:

Für alle x ∈ X gibt es eine offene Umgebung U ⊆ X von x und einen Homöomorphismus

f : π−1(U)
≈−−−→ U×Rn,

sodass für jedes y ∈ U gy := f
∣∣
Ey

: Ey → {y}×Rn ein R-Vektorraumisomorphismus ist.

Oft sagt man für diese Eigenschaft auch, dass E lokal trivial ist. Das Paar (f,U) heißt dann Bün-
delkarte für E.

18.2 Beispiel. Sei τ : R → R, τ(v) = −v. Dann ist der Abbildungstorus T(τ) von τ ein 1-dimen-
sionales Vektorraumbündel über [0, 1]/0 ∼ 1 ∼= S1, es heisst auch das Möbiusband.

18.3 Definition. Seien E und E ′ Vektorraumbündel über X und X ′. Sei f : X→ X ′ stetig. Eine lineare
Abbildung über f ist eine stetige Abbildung F : E→ E ′, so dass

(i)
E E ′

X X ′

F

π π′

f

kommutiert.

(ii) ∀x ∈ X ist Fx := F
∣∣
Ex

: Ex → E ′
f(x) R-linear.

Das Paar (F, f) heisst dann eine Vektorraumbündelabbildung.

18.4 Bemerkung. Ist (F, f) : (E, X) → (E ′, X ′) eine Vektorraumbündelabbildung, so ist x 7→ Rg(Fx)
nicht notwendig eine stetige Abbildung auf X. (Z.B., da die Matrizen von Rang k nicht offen in
Rn×n sind.) Insbesondere ist ker F := {v ∈ E | v ∈ ker Fπ(v)} kein Vektorraumbündel. (Ebenso ist
das Bild einer Vektorraumbündelabbildung nicht notwendig ein Vektorraumbündel.)

18.5 Definition. Sei E ein Vektorraumbündel über X. Ein stetiger Schnitt von E ist eine stetige
Abbildung s : X→ E mit π ◦ s = idX.

18.6 Bemerkung. In jedem Vektorraumbündel gibt es den Nullschnitt der x ∈ X den Nullvektor
in Ex zuordnet. Mittels des Nullschnitts wird B oft als Unterraum von E aufgefasst.

18.7 Beispiel. Sei E := T(τ) das Möbiusband über S1 und E ′ := S1 × R das trivial Vektorraum-
bündel über S1. Dann hat jede lineare Abbildung F : E→ E ′ über idS1 eine Nullstelle, das heisst, es
gibt x ∈ S1 so dass Fx : Ex → E ′

x die Nullabbildung ist. Denn andernfalls wäre jedes Fx ein lineare
Isomorphismus (da E und E ′ von Dimension 1 sind) und damit F : E→ E ′ ein Homöomorphismus.
Da F den Nullschnitt in E identisch auf den Nullschnitt in E ′ abbildet, erhalten wir dann auch
einen Homöomorphimus E \ S1 → E ′ \ S1. In den Übungen haben wir aber gesehen, dass E \ S1

wegzusammenhängend ist, wogegen E ′ \ S1 = S1× (R \ {0}) offenbar nicht wegzusammenhängend
ist.
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18.8 Definition. Sei M eine C∞-Mannigfaltigkeit. Das Tangentialbündel von M ist

TM :=
⊔
x∈M

TxM.

Wir werden im Folgenden eine Topologie auf TM konstruieren, sodass TM mit der kanonischen
Projektion π : TM→M ein Vektorbündel ist.

18.9 Definition. Sei M eine C∞-Mannigfaltigkeit. Sei M ⊇ U
h−→ V ⊆ Rn eine C∞-Karte von M.

Dann heißt Th : TU→ V ×Rn mit

Th(v) =
(
h
(
π(v)

)
,Tπ(v)h(v)

)
die von h induzierte Bündelkarte von TM.

18.10 Bemerkung. Seien M ⊇ Ui
hi−→ Vi ⊆ Rn, i = 0, 1 zwei C∞-Karten von M. Dann ist der

Bündelkartenwechsel zwischen den Bündelkarten Th0 und Th1

Th1 ◦ (Th0)−1 : h0(U0 ∩U1)×Rn −→ h1(U0 ∩U1)×Rn

gegeben durch (x, v) 7→
(
h1
(
h−10 (x)

)
,D(h1 ◦ h−10 )x(v)

)
. Insbesondere ist der Bündelkartenwechsel

stetig und sogar C∞.

18.11 Proposition. Sei M eine C∞-Mannigfaltigkeit.

a) U :=
{
(Th)−1(W)

∣∣ h : U→ V Karten für M,W ⊆ V ×Rn offen
}
ist die Basis einer Topologie

auf TM.
b) Mit dieser Topologie ist TM ein Vektorraumbündel.

Beweis (grobe Skizze): (i) Folgt aus der Stetigkeit der Bündelkartenwechsel.
(ii) Die Bündelkarten liefern die lokale Trivialität.

18.12 Bemerkung.  Ist φ : M → N eine C∞-Abbildung, so ist Tφ : TM → TN mit Tφ(v) :=(
Tπ(v)φ

)
(v) eine lineare Abbildung über φ.

 Schnitte des Tangentialbündels heißen Vektorfelder. Ein differenzierbares Vektorfeld ist ein
Vektorfeld s : M → TM, so dass Th ◦ s

∣∣
U
: U → V × Rn für jede C∞-Karte h : U → V von M

eine C∞-Abbildung ist.
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