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1. Introduction

The aim of this Oberseminar is to understand the spectral decomposition theorem of
V. Lafforgue [Laf18] and the ingredients that go into its proof. This theorem fulfills, in
complete generality, the “automorphic-to-Galois” direction of the Langlands program for
function fields.

1.1. Why should we learn [Laf18]? The reciprocity part of the global Langlands program
conjectures that automorphic forms attached to a reductive group G are parametrized by
Galois representations valued in its dual group Ǧ. The conjecture can be formulated both
over a number field and over a function field, the function field version being more amenable
to tools from algebraic geometry.

In the function field context, Langlands reciprocity is known for G = GL2 by the works of
Drinfeld, and for G = GLn by the works of L. Lafforgue. In both cases, one first establishes
the Langlands parametrization of automorphic forms and then deduces their existence from
the “converse theorem”, which is special to GLn.

In [Laf18], the Langlands parametrization is constructed uniformly for all reductive
groups. Although [Laf18] imports the notion of Shtukas introduced by Drinfeld, its method
is radically new (even for GLn) and produces the action of a new commutative algebra B
on the space of automorphic forms. The action of B implies the “automorphic-to-Galois”
direction of Langlands reciprocity. The “Galois-to-automorphic” direction is still unknown
for groups other than GLn, for a lack of tools to construct automorphic forms.

Besides its generality, the method of [Laf18] is remarkably self-contained: it relies on the
geometric Satake equivalence and essentially nothing else (no trace formulas, no compact-
ification of Shtukas, etc.) For the same reason, this construction is extremely flexible and
triggered an avalanche of results of “spectral action type” in various other contexts of the
Langlands program, including the topological case of Nadler–Yun and the p-adic local case
of Fargues–Scholze.

1.2. The main theorem. We will now give a more precise statement of the main theorem
of [Laf18].

1.2.1. Let k be a finite field with q elements. Let X be a smooth, proper, geometrically
connected curve over k. Its field of fractions is denoted by F. Associated to F are the rings
of adèles A and of integral adèles O. We will also fix an algebraic closure F̄ of F.

Let G be a split reductive group.1 We write Z ⊂ G for its center and fix a cocompact
lattice Ξ ⊂ Z(F)/Z(A).

Let N ⊂ X be a closed subscheme finite over k. It determines an open compact subgroup
KN ⊂ G(O) as the kernel of the projection onto G(ON).

1The article [Laf18] also treats nonsplit reductive groups, but we will not worry about them.
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Finally, our field of coefficients is a fixed algebraic closure Q` of Q`, where ` is a prime
not dividing q.2 For the proof, we will actually consider finite extensions E ⊃ Q` contained in
Q` instead, and the Langlands dual group of G will be regarded as a pinned split reductive
group Ǧ over E.

To invoke the Satake isomorphism, we fix a square root q1/2 in Q` and the finite extension
E is supposed to contain it.

1.2.2. With the notations of §1.2.1, we define the space of automorphic forms to be the
vector space of Q`-valued compactly supported functions on G(F)/G(A)/KNΞ:

Cc(G(F)/G(A)/KNΞ,Q`). (1.1)

The vector space (1.1) contains a finite-dimensional subspace:

Ccusp
c (G(F)/G(A)/KNΞ,Q`) (1.2)

consisting of functions f whose constant term:

fP ∶ G(A) ∋ g ↦ ∫
U(F)/U(A)

f(ug)

vanishes for all proper parabolic subgroups P ⊂ G with unipotent radical U.

1.2.3. For each closed point v of X/N and (finite-dimensional, algebraic) representation V
of Ǧ, the Satake isomorphism produces an element in the unramified Hecke algebra:

hV,v ∈ Func(G(Ov)/G(Fv)/G(Ov),Q`),
where Ov, Fv stand for the completed local ring, respectively the local field at v.

The operators hV,v act on (1.1), preserving the subspace of cusp forms (1.2).
The Langlands parametrization of cusp forms amounts to diagonlizing (1.2) simultane-

ously for all the Hecke operators.

1.2.4. The main result of [Laf18] is the construction of a commutative algebra B acting on
(1.2). Consequently, we obtain a decomposition:

Ccusp
c (G(F)/G(A)/KNΞ,Q`) ≅ ⊕

ν∶B→Q`

Hν , (1.3)

where each Hν is the generlized eigenspace for the character ν.
Furthermore, each character ν determines a Ǧ(Q`)-conjugacy class of continuous mor-

phisms σ ∶ Gal(F̄/F) → Ǧ(Q`) which are defined over a finite extension of Q`, semi-simple,
and unramified outside N. Each Hecke operator hV,v acts on Hν as multiplication by the
scalar Tr(σ(Frv) ∣ V), where Frv is a lift of the geometric Frobenius element at v.

The description of the Hecke action on these summands shows that (1.3) fulfills the
“automorphic-to-Galois” direction of Langlands reciprocity.

1.3. Suggestions to the speakers. There is an English version of the introduction https:

//arxiv.org/abs/1404.6416 which might be helpful.
The notations of [Laf18] are sometimes heavy, and we recommend that you drop some of

the indices, especially when they are constant during your talk.
The program below is not meant to be followed strictly. To the contrary, you are highly

encouraged to present your own understanding of the material instead.

2. Program

2.1. Overview (April 14). The organizers will handle this.

2The article [Laf18] also treats the case with F`-coefficients. This will also be omitted from the seminar.

https://arxiv.org/abs/1404.6416
https://arxiv.org/abs/1404.6416
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2.2. Geometric players (April 21). Introduce the moduli stack of G-bundles, the inter-
ated Hecke stacks, as well as the Beilinson–Drinfeld affine Grassmannian. All the objects of
[Laf18, §1] are supposed to appear in this talk, excluding Theorem 1.17.

Two essential things to explain are the Weil uniformization and the finite-dimensionality
of the space of cusp forms [Har74, Theorem 1.2.1].

We recommend that you prove as many properties of these geometric objects as possible
(Are they smooth? Are they ind-schematic? Are they quasi-compact? What are the natural
maps among them?). Other references include [Zhu17, §3-4] and [Xue20a, §1].

2.3. Geometric Satake I (April 28). Define the Satake category at a k̄-point of X and
understand it on the level of abelian category, i.e. prove that it is semisimple and describe
its irreducible objects.

Ultimately, we will need the Satake category over multiple copies of X, but this talk plays
an important pedagogical role as it gives us concrete objects to play with.

Please define `-adic perverse sheaves and give some examples. You will also need to define
them on ind-schemes of ind-finite type and deal with some quotient situations, as explained
in [Zhu17, §5.1, Appendix A.1]. The proof of semisimplicity is documented in [BR18, §4],
the key ingredient being Lusztig’s parity vanishing.

2.4. Geometric Satake II (May 5). Equip the Satake category with the structure of a
symmetric monoidal category.

You may first define the convolution monoidal structure [Zhu17, §5.1], but it is fine to
leave out Lusztig’s theorem that convolution preserves perversity [Zhu17, Proposition 5.1.4].
(This important fact will follow from “convolution = fusion”, as explained there).

The main topics in this talk are the construction of the fusion symmetric monoidal struc-
ture [Zhu17, §5.4] (or the original [MV07, §5]), and the proof of “convolution = fusion”.
These results involve the Beilinson–Drinfeld affine Grassmannian in the most essential way.

The argument in [Zhu17] uses the notion of universal local acyclicity, which is a wonderful
concept to explain. You may also systematically substitute perversity by relative perversity
[HS21], as you see fit.

2.5. Geometric Satake III (May 12). Construct the fiber functor and prove that the
Satake category is equivalent to Rep(Ǧ) via Tannaka duality.

You may follow [BR18, §5, 8-9] for example. It is not necessary to introduce the functor
of total cohomology: what op.cit. calls “weight functor” is a more natural candidate for the
fiber functor. (It is the constant term functors for the Satake category.) Please explain why
it is symmetric monoidal (after tweaking the commutativity constraint), conservative, and
perverse t-exact. The t-exactness uses Braden’s hyperbolic localization theorem, which is a
nice thing to explain.

The reconstruction of Ǧ is not so important3, and you may say as much or as little about
it as you like. It is perfectly fine to do everything over a k̄-point of X, but if you are more
ambitious, you could also do things over XI and reconstruct ǦI directly, as done in [FS21,
VI.10-11].

2.6. Cohomology of Shtukas (May 19). Introduce the moduli stack of (global, iterated)
Shtukas ([Laf18, §2], [Var04, §2]) and construct the family of functors indexed by finite sets
I, as in [Laf18, Définition 4.7, Proposition 4.12]:

Rep(ǦI)→ Ind(Shvc(XI)), W ↦HI,W. (2.1)

3As a wise man once said: geometric Satake is the definition of Ǧ.
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Here, Shvc(XI) stands for the category of constructible E-sheaves, and Ind(Shvc(XI)) its
ind-completion. What we denote by HI,W here is the direct limit of Lafforgue’s (4.9) over
the Harder–Narasimhan strata. For our purposes, only the degree-0 piece plays a role.

To construct (2.1), you will first have to bootstrap the geometric Satake equivalence to
the Satake functors of [Laf18, Théorème 1.17]. An alternative to Lafforgue’s way of doing
it appears in [NY19, Remark 6.1.2].

The point of this talk is to really get into the geometry of the moduli stack of Shtukas and
justify why (2.1) is well-defined. In particular, the role of this lattice Ξ will be explained.
You are also encouraged to give some examples with GLn-Shtukas.

2.7. Structures on HI,W (May 26). Equip the sheaves HI,W with the following pieces
of structure:

(1) actions of partial Frobenii [Laf18, §3, §4.3];
(2) actions of the “trace-of-Frobenius” operators SV,v [Laf18, §6.1];
(3) action of the Hecke algebra [Laf18, Construction 2.20, §4.4];
(4) the constant term morphism [Xue20a, §3.5];

It is nice to make explicit the notion of cohomological correspondences [Laf18, §4.1], as
they will come in handy in during the next two talks.

Note that (4) uses the compatibility of the geometric Satake equivalence with the constant
term functors, but this follows from the way we built the fiber functor in Talk 2.5.

Finally, we ask you to define the cuspidal cohomology H cusp
I,W of the moduli of Shtukas

[Xue20a, §3.5] and explain how it recovers the space of cusp forms when the Hecke modifi-
cation is trivial [Xue20a, Example 3.5.15].

2.8. “S = T” I (June 9). This talk and the next are devoted to the proof of the “S = T”
Theorem [Laf18, Proposition 6.2]. It shows that SV,v extends the Hecke operator T(hV,v)
to points where the latter is not defined (at the paws).

The goal of this talk is to reduce [Laf18, Proposition 6.2] to [Laf18, Lemme 6.11].
We recommend that you start by explaining the Grothendieck–Lefschetz trace formula

[Laf18, §6.2] (and see the referenced parts of [Var07].)

2.9. “S = T” II (June 16). Prove [Laf18, Lemme 6.11] and state the Eichler–Shimura
relation [Laf18, Proposition 7.1].

According to [Laf18, Remarque 6.19], the proof of Lemme 6.11 is not optimal. We suspect
that the “arguments généraux” alluded to in Remarque 6.19 are closely related to [Var07]
and we invite the speaker to try and figure them out with us. Ideally, this talk would then
deal with a general framework of cohomological correspondences. Regardless, looking at the
minuscule case [Laf18, 0.16] first could help to clarify the ideas and the principal difficulties.

The Eichler–Shimura relation is rather formal (especially after one recognizes the analogy
with Cayley–Hamilton), so we do not anticipate too much explanation here.

2.10. Drinfeld’s Lemma (June 23). Using the partial Frobenii equivariance of the
sheaves HI,W, equip their geometric generic fibers with an action of Weil(η, η̄)I [Xue20c,
Proposition 1.3.4].

The proof of the proposition combines two ingredients: Drinfeld’s Lemma and the Eichler–
Shimura relation (to salvage the non-constructibility of HI,W).

The proof of Drinfeld’s Lemma is documented in [Xue20b, §3.2] and we think it is worth-
while to both present the proof and to explain why the partial Frobenii equivariance is
necessary (see [HRS20, Example 1.13].)
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This talk and the next are essentially a study of Xue’s work [Xue20b] [Xue20c], which we
will use to replace some arguments in [Laf18, §8-9].

2.11. Smoothness (June 30). The goal of this talk is to prove that the Weil(η, η̄)I-action
constructed in the last talk factors through Weil(X/N, η̄)I [Xue20c, Proposition 5.0.4].

In doing so, you will have to prove that HI,W is an ind-lisse sheaf over (X/N)I [Xue20c,
Theorem 4.2.3]. This theorem uses much of the material of [Xue20c, §2-3].

Finally, deduce the analogous results for the cuspidal cohomology sheaves H cusp
I,W , follow-

ing [Xue20c, §7].

2.12. Excursion (July 7). Define the excursion operator:

SI,W,x,ξ,(γi)i∈I ∈ End Ccusp
c (BunG,N(k)/Ξ,E)

of [Laf18, Définition-Proposition 9.1]. Note that, thanks to Xue’s smoothness theorem for
H cusp

I,W , you may define these operators without referring to Hecke-finiteness and also directly

taking (γi)i∈I from π1(X/N, η̄)I.
Then you could explain some properties of excursion operators in [Laf18, §10], the most

important one being their pairwise commutativity. These are formal consequences of the
definition, so you could be brief about them.

Your goal from there will be to prove the main theorem [Laf18, Théorème 11.11]. Only
one new ingredient is needed now: [Laf18, Proposition 11.7]. It involves a nice discussion of
geometric invariant theory.
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