Selected Topics in Differential Geometry
 Sheet 5

Due on 25 May 2023

Exercise 1: Warped Product

We consider a warped product ($M \times_{f} N, g=g_{M}+f^{2} g_{N}$), for a function $f: M \rightarrow \mathbb{R}^{+}$.
(a) Show that the special case $\mathbb{R} \times_{r} S^{1}$ with $\left(M, g_{M}\right)=\left(\mathbb{R}, \mathrm{d} s^{2}\right),\left(N, g_{N}\right)=\left(S^{1}, \mathrm{~d} \varphi^{2}\right)$ generalizes surfaces of revolution in \mathbb{R}^{3}, with $r(s)$ denoting the distance to the z axis and s the arc length parameter of a curve in the half space $\{(x, 0, z) \mid x>0\}$ to be rotated around the z-axis. Draw a picture.
(b) In the general case, let X, Y be vector fields tangent to M and U, V tangent to N (i.e., $\mathrm{d} \pi_{N}(X)=0$, where $\pi_{N}: M \times N \rightarrow N$ is the natural projection, \ldots). Assume that all commutators of these vector fields vanish, and that $X \cdot\left(g_{N}(U, V)\right)=0$, $U .\left(g_{M}(X, Y)\right)=0, \ldots$. Show that on these vector fields, the covariant derivative ∇ is given by

$$
\begin{array}{ll}
\nabla_{X} Y=\nabla_{X}^{M} Y & \nabla_{U} V=\nabla_{U}^{N} V-f g^{N}(U, V) \operatorname{grad}^{M} f \\
\nabla_{X} V=\frac{X \cdot f}{f} V & \nabla_{U} Y=\frac{Y \cdot f}{f} U .
\end{array}
$$

Exercise 2: Geodesics on Surfaces of Revolution

Consider a surface $\mathbb{R} \times{ }_{r} S^{1}$ as in the previous exercise.
(a) Deduce the geodesic equations for a curve $\gamma(t)=(s(t), \varphi(t))$ in $\mathbb{R} \times_{r} S^{1}$:

$$
\ddot{s}=r r^{\prime} \dot{\varphi}^{2}, \quad \ddot{\varphi}=-\frac{2 r^{\prime}}{r} \dot{s} \dot{\varphi} .
$$

Keep in mind that part (a) of the previous exercise holds for coordinate vector fields $\partial_{s}, \partial_{\varphi}$, but not for arbitrary vector fields with coefficients depending on s and φ !
(b) Check that you obtain the trivial geodesics: The meridians $\varphi=$ const, and the circles $s=$ const if and only if $\dot{\varphi}=0$.
(c) Introducing the orthonormal frame $e_{s}=\partial_{s}, e_{\varphi}=\frac{1}{r} \partial_{\varphi}$, we can write the velocity of a curve γ as

$$
\dot{\gamma}=\dot{s} e_{s}+r \dot{\varphi} e_{\varphi}=|\dot{\gamma}|\left(\cos (\alpha) e_{s}+\sin (\alpha) e_{\varphi}\right),
$$

where $\alpha(t)$ is the angle between γ and the meridian curves ($\varphi=$ const).
Prove Clairaut's Theorem: Along a geodesic γ, the quantity $r^{2} \dot{\varphi}=r \cdot \sin \alpha$ is constant. Conversely, all curves satisfying this condition which are parametrized by arc length and have $\dot{\varphi} \neq 0$ somewhere are geodesics.
(d) We now investigate how far a geodesic can travel in s direction.

Assuming that a geodesic $\gamma(t)=(s(t), \varphi(t))$ is parametrized by arc length, show that

$$
\dot{s}^{2}=1-\frac{C^{2}}{r^{2}},
$$

where $C=r(t) \cdot \sin \alpha(t)$ is the constant from Clairaut's theorem. Under what conditions can \dot{s} change sign, and how does its motion continue after that? Which regions are forbidden for geodesics, depending on the value of C ? What happens if the curve $s=$ const at $r=C$ is also a geodesic?

Exercise 3: Curvature of Warped Products

Starting with the results of Exercise 1 (b), one can show that the scalar curvature on a warped product $M \times_{f} N^{n}$ satisfies

$$
\text { Scal }=\operatorname{Scal}_{M}+f^{-2} \operatorname{Scal}_{N}-2 n \frac{\Delta^{M} f}{f}-n(n-1) \frac{\left|\operatorname{grad}^{M} f\right|^{2}}{f^{2}}
$$

(a) Specialize this to the case of Gauß curvature $K=$ Scal $/ 2$ of surfaces $\mathbb{R} \times{ }_{r} S^{1}$, and construct such a complete surface with $K \equiv-1$, the pseudo-sphere.
(b) Notice that you can realize only a part of this surface as an embedded surface of revolution in \mathbb{R}^{3}. What is the precise condition on the function $r(s)$, where s is the arc length parameter, for this to be possible?
(c) Describe the behavior of geodesics on the pseudo-sphere, taking into account the results of Exercise 2.

