Prof. Dr. Joachim Lohkamp Dr. Matthias Kemper

SELECTED TOPICS IN DIFFERENTIAL GEOMETRY Sheet 2

Due on 27 April 2023

Exercise 1: Schur's Lemma

Let (M^n, g) be a connected Riemannian (or Lorentzian) manifold of dimension $n \ge 3$. The Einstein field equations from general relativity are

$$G + \Lambda g := \operatorname{Ric} -\frac{1}{2}\operatorname{Scal} g + \Lambda g = c_n T$$

with some $c_n > 0$ depending only on the dimension and the cosmological constant $\Lambda \in \mathbb{R}$. Prove:

- (a) div $(G + \Lambda g) = 0$. (Recall that for a symmetric (0,2)-tensor X, the divergence is a (0,1)-tensor, and (div X)(V) is a defined as the trace of the bilinear form $(\nabla X)(\cdot, V)$. Employ the second Bianchi identity $(\nabla_W R)(X, Y) + (\nabla_Y R)(W, X) + (\nabla_X R)(Y, W) = 0.$)
- (b) In the vacuum case T = 0, the field equations are equivalent to Ric $= \frac{2}{n-2}\Lambda g$. Manifolds with constant Ricci curvature in this sense are called *Einstein manifolds*.
- (c) $\operatorname{div}(fg) = \mathrm{d}f$ for $f \in C^{\infty}(M)$.
- (d) If $\operatorname{Ric} = fg$ for an $f \in C^{\infty}(M)$, then M is already an Einstein manifold.
- (e) If for every $p \in M$, the sectional curvature Sec is constant on all planes in T_pM , then Sec is already constant on all of M.
- (f) What happens in the case n = 2?

Exercise 2: Hölder spaces on manifolds

On a manifold M^n , the space of Hölder continuous functions $C^{k,\alpha}(M)$, $k = 0, 1, ..., \alpha \in (0, 1]$, is the subset of all functions $f \in C^k(M)$ such that for every $p \in M$ there is a proper chart (U, φ) around p and a $p \in V \Subset U$ such that $f \circ \varphi^{-1} \in C^{k,\alpha}(\varphi(V))$.

- (a) Show that $C^{k,\alpha}(M)$ can be given the structure of a locally convex topological vector space by stating appropriate semi-norms.
- (b) Argue that it suffices to consider only a fixed cover of M by charts to obtain this topology on $C^{k,\alpha}(M)$.
- (c) Deduce that for compact M, $C^{k,\alpha}(M)$ is a Banach space (albeit without a canonical norm).
- (d) Write down a natural norm for $C^{k,\alpha}(M)$ on a compact connected *Riemannian* manifold M. You can use the powers of covariant derivatives $\nabla^k f$, norms on tensor spaces, and the Riemannian distance function.
- (e) You could try to literally transfer this norm to non-compact Riemannian manifolds. Which $C^{k,\alpha}(M)$ functions would you miss?