Selected Topics in Differential Geometry Sheet 1

For discussion on 13 April 2023

Exercise 1: Famous Theorems, in Two Dimensions

The following statements are true (and hard to prove) in dimension ≥ 3. Prove them in dimension 2 using Gauß-Bonnet or provide a counterexample.
(a) Bonnet-Myers: A compact Riemannian manifold with positive Ricci curvature has finite fundamental group.
(b) Cartan-Hadamard: A compact manifold with negative sectional curvature has \mathbb{R}^{n} as universal covering space.
(c) Synge: An even-dimensional compact manifold with positive sectional curvature is simply connected if it is orientable, and has fundamental group $\mathbb{Z} / 2 \mathbb{Z}$ otherwise.
(d) Negative Ricci curvature: On every Riemannian manifold there is a complete metric with negative Ricci curvature.
(e) Ric $<\mathbf{0}$ Islands: There is a metric on \mathbb{R}^{n} which is Euclidean outside a non-empty compact set K and has negative Ricci curvature everywhere on K.
(f) No Scal $>\mathbf{0}$ Islands: If there is a metric on $M=K \# \mathbb{R}^{n}$ for some compact K which is Euclidean outside a compact set and has scalar curvature ≥ 0 everywhere, then M is already isometric to Euclidean \mathbb{R}^{n}.
(g) Gromov-Lawson: On compact manifolds $M \# T^{n}$ with torus T^{n} as summand there is no metric with positive scalar curvature.

Exercise 2: Conformal Deformations

Let $\left(M^{n}, g\right), n \geq 3$, be a Riemannian manifold.
(a) For a smooth function $f: M \rightarrow \mathbb{R}$, show that the conformally deformed metric $g^{\prime}=\mathrm{e}^{2 f} g$ has Ricci curvature

$$
\operatorname{Ric}^{g^{\prime}}=\operatorname{Ric}^{g}-(n-2)\left(\nabla^{g} \mathrm{~d} f-\mathrm{d} f \otimes \mathrm{~d} f\right)+\left(-\Delta^{g} f-(n-2)|\mathrm{d} f|_{g}^{2}\right) g .
$$

(b) Deduce that this metric has scalar curvature

$$
\text { Scal }^{g^{\prime}}=\mathrm{e}^{-2 f}\left(\text { Scal }^{g}-2(n-1) \Delta^{g} f-(n-2)(n-1)|\mathrm{d} f|_{g}^{2}\right) .
$$

(c) For a smooth function $u: M \rightarrow(0, \infty)$, show that the metric $g^{\prime \prime}=u^{4 /(n-2)} g$ has scalar curvature

$$
\mathrm{Scal}^{g^{\prime \prime}}=4 \frac{n-1}{n-2} u^{-\frac{n+2}{n-2}}\left(-\Delta^{g}+\frac{n-2}{4(n-1)} \mathrm{Scal}^{g}\right) u .
$$

Exercise 3: Blow-up

When enlarging a Riemannian manifold around a fixed point, the metric converges to the flat metric. Make this statement precise using the exponential map and prove it.

