GEOMETRY OF SCALAR CURVATURE Sheet 9

For discussion on 5 July 2022

Exercise 1: Interpretation of Sectional Curvature

Let M be a Riemannian manifold, $p \in M$ and $v, w \in T_pM$. Show that:

- (a) $J(t) := \operatorname{dexp}_{tv}(tw) = t \operatorname{dexp}_{tv}(w)$ (with $\operatorname{dexp}_{tv} : T_{tv}T_{p}M \cong T_{p}M \to T_{\exp(tv)}M$) is a Jacobi vector field along the geodesic $\gamma(t) = \exp(tv)$ with J(0) = 0 and $\dot{J}(0) = \nabla_{\dot{\gamma}(0)}J = w$, near t = 0.
- (b) The Taylor expansion of $|J(t)|^2$ around t=0 is

$$|J(t)|^2 = |w|^2 t^2 - \frac{1}{3} g(R(w, v)v, w)t^4 + \mathcal{O}(t^5)$$
.

To obtain this result, explicitly calculate the derivatives and use the Jacobi field equation $\ddot{J}(t) = R(\dot{\gamma}(t), J(t))\dot{\gamma}(t)$.

(c) For the Taylor expansion of the metric $g_{ij} = g(\partial_i, \partial_j)$ in normal coordinates, this implies

$$g_{ij} = \delta_{ij} - \frac{1}{3} R_{ik\ell j}(0) x^k x^{\ell} + \mathcal{O}(|x|^3)$$

with $\partial_i|_{\exp(tv)} = \exp_{tv}(e_i)$ for an orthonormal base $(e_i)_i$ of T_pM .

Exercise 2: Interpretation of Ricci and Scalar Curvature

In the same situation as before, prove:

(a) In normal coordinates (x^i) near a point p,

$$\det(g_{ij}) = 1 - \frac{1}{3}\operatorname{Ric}_{k\ell} x^k x^\ell + \mathcal{O}(|x|^3)$$

with Ricci curvature $Ric_{k\ell} = g^{ij} R_{ik\ell j}$.

(b) For small balls with center p,

$$\operatorname{Vol}^{g}(B_{r}(p)) = \left(1 - \frac{1}{6(n+2)}\operatorname{Scal} r^{2} + \mathcal{O}(r^{3})\right)\operatorname{Vol}^{\operatorname{eucl}}(B_{r}(0))$$

compared to balls with equal radius in Euclidean space.