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Abstract
In the 1980s Alano Ancona developed a profound potential theory on Gromov hyper-

bolic manifolds of bounded geometry. Since then, such hyperbolic spaces have become
basic in geometry, topology and group theory. This also stimulated a broader interest
into analytic aspects of these spaces. In this paper we make Ancona’s original work,
addressed to a rather advanced audience, approachable for a wider readership without
firm background in potential theory. We streamline the arguments to make the results
depend only on coarse geometro-analytic invariants and we derive useful details not found
in the original sources. Finally, we explain remarkable relations of these results to recent
developments in the potential theory and quasi-conformal geometry of domains in Rn.
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1 Introduction
In this paper we are interested in the elliptic analysis on non-compact complete manifolds

and its relation to the geometry at infinity. Non-compact spaces occur even if one is primar-
ily interested in compact cases, for instance as limit spaces under blow-ups or by deforming
bounded domains. An example are Riemann uniformizations of planar domains which also
turn the boundary of the domain into a boundary at infinity.

It is reasonable to focus on non-compact manifolds of bounded geometry. In simple terms,
bounded geometry excludes a variety of awkward analytic phenomena resulting from degen-
erations towards infinity. For instance, it makes sure that basic analytic controls from local
estimates, most prominently Harnack inequalities, hold uniformly all over the manifold. More-
over, a complete manifold of bounded geometry is stochastically complete. This means that
solutions of stochastic differential equations associated to typical elliptic problems on the man-
ifold exist for an infinitely long time.

However, having bounded geometry alone is not yet enough to gain a control as strong as in
the classical case of harmonic or holomorphic functions on smoothly bounded planar domains.
Finer details in the style of Cauchy’s integral formula over the boundary of the given domain
are reserved to the subclass of Gromov hyperbolic manifolds. For reasonable elliptic operators
there is a contour integral for (positive) solutions formally taken over the so-called Martin
boundary which, and this is a deep insight of Ancona’s potential theory on such hyperbolic
spaces, simply equals the natural geometric boundary at infinity, namely the Gromov boundary.

1.1 Goals of this paper
Our main goals are to explain how bounded geometry paves the way to a controllable

potential theory for suitable elliptic operators and how adding Gromov hyperbolicity refines
these basic controls to a remarkable degree. We will see how even mild violations of Gromov
hyperbolicity can cause a breakdown of these refined controls.

This is also a tour through a variety of beautiful concepts and fundamental results from
geometric hyperbolicity notions over the potential theoretic balayage and the resolvent equation
to (boundary) Harnack inequalities and their associated Martin theory.

The exposition is modelled on the original sources [Anc87] and [Anc90], but we streamline
and replace some of the arguments and derive a priori estimates only depending on coarse
geometric and analytic data such as the hyperbolicity and coercivity constants of the considered
spaces and operators. Our presentation emphasizes the central role of the boundary Harnack
inequality on Gromov hyperbolic spaces and we derive some useful versions of this inequality
not present in earlier literature.

Our second theme is a strategy, also initiated by Ancona [Anc87, Anc90], to transfer the
potential theory on hyperbolic spaces to Euclidean domains, provided they admit conformal
deformations into such a hyperbolic space. The idea is to transform the operator in such a
way that the notion of a solution remains unchanged under the deformation. The effect then is
that the estimates and results derived on the hyperbolic space simply remain valid under this
conformal deformation.

More recent work in quasi-conformal geometry due to Bonk, Heinonen and Koskela [BHK01]
has shown that so-called uniform domains are precisely those domains admitting the type
of hyperbolizing deformations needed here. Remarkably, the particular potential theory on
uniform domains obtained this way also characterizes their uniformity condition. Aikawa
[Aik01, Aik04] has developed an independent analytic argument showing that, under some
weak regularity assumptions, uniform domains are exactly those Euclidean domains which
admit boundary Harnack inequalities for the Laplace operator. In turn, this underlines the
sharpness of Ancona’s results for the Gromov hyperbolic case.
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1.2 Organization of the paper
Section 2 We first recall the concepts of manifolds of bounded geometry and of Gromov

hyperbolicity. We also introduce the ideal boundary of such space at infinity, the Gromov
boundary. Then we discuss some analytic counterparts of these geometric concepts, uniform
ellipticity and coercivity of operators, which are necessary for Ancona’s theory. Finally, we in-
troduce the basic potential theoretic notion of balayage which we use to globalize local potential
theoretic considerations.

Section 3 We use the bounded geometry and uniform ellipticity to derive local estimates
for Green’s functions of elliptic operators on uniformly sized balls and their relation to Har-
nack inequalities. The original sources [Anc87, Anc90] employ advanced analytic tools due
to Stampacchia [Sta65]. We reorganize the arguments and base them on more common and
elementary techniques.

Section 4 Here we additionally use the coercivity properties to formulate resolvent equa-
tions for Green’s functions considered as operators. We apply resolvent equations to derive
local and, by means of chains of Harnack inequalities, also global growth estimates for Green’s
functions.

Section 5 Now we also use that our manifold is Gromov hyperbolic. We employ this
hyperbolicity in two places, most notably in Proposition 5.2 “growth recovery along Φ-chains”
to derive our main technical result, Theorem 5.1 “Green’s functions along Φ-chains”. Secondly,
the hyperbolicity readily implies the existence of an abundance of Φ-chains which allows us to
deduce the hyperbolic boundary Harnack inequality 5.8 and that the so-called Martin boundary
is homeomorphic to the Gromov boundary. This gives us contour integrals for positive solutions
of Lw = 0 similar to the classical case of harmonic functions on smoothly bounded planar
domains.

Section 6 Manifolds of bounded geometry that are Gromov hyperbolic form a rather
special class of non-compact manifolds. However, many other geometries admit canonical
deformations into such hyperbolic manifolds. Basic examples are the so-called uniform domains
in Rn. This remarkable concept covers smoothly bounded domains but also some classes of
fractals like snowflakes. We show how we can use the hyperbolic theory to gain control over
the classical potential theory on such Euclidean domains from the insights of section 5 .

2 Basic Concepts
2.1 Geometric Structures

We start with a discussion of those properties we assume throughout for our spaces and
operators. Our space (Mn, g) is a connected, complete C∞-smooth Riemannian manifold of
dimension n > 2. We assume the following two conditions. The first one, of having bounded
geometry, is basic for a fine control of the potential theory. It is a homogeneity condition saying
that the space locally looks the same around any point, up to a uniformly controlled deviation:

Bounded Geometry For each ball Bσ(p) ⊂ M there is a smooth `-bi-Lipschitz chart φp to
an open subset of Up of Rn with its Euclidean metric, where σ = σM > 0, ` = `M > 1
are fixed constants for the given manifold M . We call this a space of bounded geometry,
or more precisely, (σ, `)-bounded geometry.

On spaces of bounded geometry one can link any two points p, q ∈M by a sequence of such
balls transferring information inductively from one end to the other. Such configurations are
known as Harnack chains due to their frequent use in the context of Harnack inequalities in
elliptic analysis.
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Harnack Chains For some fixed r ∈ (0, σ) we call a sequence of balls Br(x1), . . . , Br(xk)
with

x1 = p, xk = q and d(xi, xi+1) < r/2 for i = 1, . . . , k − 1

a Harnack chain of length k.

Thus any point xi is contained in the ball Br/2(xi+1). If we link p and q by a curve γp,q with
length(γp,q) = d(p, q) we can cover γp,q by balls forming a Harnack chain. From this we see
that, for given r, we can choose a chain of length proportional to the distance of the endpoints.

Figure 1: Harnack Chains

The second condition, of Gromov hyperbolicity, that we impose on M is, in some sense,
complementary to the bounded geometry assumption. It has no local impact but strong con-
sequences for the geometry near infinity.

Gromov Hyperbolicity A Riemannian manifold (Mn, g), now regarded as a metric space,
is Gromov hyperbolic or, quantitatively, δ-hyperbolic, if all its geodesic triangles are
δ-thin, for some δ = δM > 0. This means that each point on the edge of any geodesic
triangle is within δ-distance of one of the other two edges.

The concept of Gromov hyperbolic spaces embraces a broad range of metric spaces, proto-
types from either side are classical hyperbolic spaces Hn and abstract trees. While the former
can be generalized to simply connected manifolds of sectional curvature less than a negative
constant, δ-hyperbolicity of a graph expresses that it is near to a tree on a large scale. Gromov
hyperbolicity is designed to study the asymptotic behavior of spaces near infinity, cf. [BH99,
ch. III.H] and [KB02] for detailed expositions.

Every compact manifold is Gromov hyperbolic since we can choose δ = diam(M). This
shows that this type of hyperbolicity has no local impact. However, near infinity Gromov
hyperbolicity can be more demanding even than having constant negative sectional curvature.
An instructive example are Z2-coverings of genus > 2 Riemann surfaces equipped with some
hyperbolic metric. They have bounded geometry but they are not Gromov hyperbolic since
we get arbitrarily large geodesic triangles uniformly close to Euclidean triangles in Hausdorff
metric.

The motivating example for Ancona in [Anc87] were Cartan-Hadamard manifolds of sec-
tional curvature pinched between two negative constants, which also ensures bounded geometry.
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A larger and arguably more basic class of further examples for Gromov hyperbolic spaces of
bounded geometry is given by uniform domains in Euclidean space with their quasi-hyperbolic
metric as explained in section 6.

Gromov boundary For a complete Gromov hyperbolic space X we define the set ∂GX of
equivalence classes [γ] of geodesic rays, from a fixed basepoint p ∈ X, where two rays are
equivalent if they have finite Hausdorff distance. ∂GX is called the Gromov boundary
of X. (∂GX does not depend on the choice of the basepoint p.)

To define a topology on X
G = X ∪ ∂GX, we first recall that a generalized geodesic ray

γ : I → X is an isometric embedding of an interval I ⊂ R into X, where either I = [0,∞),
then γ is a proper geodesic ray, or I = [0, R], for some R ∈ (0,∞). Then γ is a geodesic
arc. When we fix a basepoint p ∈ X we can assign to any x ∈ X a (not necessarily unique)
generalized ray γx with endpoint γx(R) = x. For the following discussion we extend the
definition of such a ray to I = [0,∞] setting γx(t) = x for t ∈ [R,∞].

Then the topology on XG can be characterized from the following notion of a converging
sequence: xn ∈ X

G converges to x ∈ XG if there exist generalized rays γxn with γxn(0) = p
and γxn(∞) = xn subconverging (on compact sets) to a generalized ray γx with γx(0) = p and
γx(∞) = x. The canonical map X ↪→ X

G is a homeomorphism onto its image, ∂GX is closed
and X

G is compact, see [BH99, III.H.3.7]. XG is called the Gromov compactification of
X. It is a metrizable space.

To exploit Gromov hyperbolicity analytically Ancona introduced the following concept of Φ-
chains. As in the case of bounded geometry versus hyperbolicity, Harnack chains and Φ-chains
act complementary. This is best seen in the discussion preceding Proposition 5.2 “growth
recovery along Φ-chains” where Harnack chains give basic estimates which, however, weaken
the overall control, while Φ-chains can be used to recover the apparently lost details.

Φ-Chains For a monotonically increasing function Φ : [0,∞) → (0,∞) with Φ0 := Φ(0) > 0
and Φ(d) d→∞−→ ∞, a Φ-chain on X is a finite or infinite sequence U1 ⊃ U2 ⊃ · · · ⊃ Um
of open subsets of X together with a sequence of track points x1, x2, . . . , xm such that

(i) Φ0 6 d(xi, xi+1) 6 3Φ0,
(ii) xi ∈ ∂Ui,
(iii) d(x, ∂Ui±1) > Φ(d(x, xi)), for every x ∈ ∂Ui

for every i where applicable.1

Note that a Φ-chain traversed backwards, i.e., with sets X \Um ⊃ X \Um−1 ⊃ · · · ⊃ X \U1,
is again a Φ-chain with the same track points.

The existence of infinite Φ-chains can be considered as a partial hyperbolicity property of
the underlying space. It is easy to see that neither the Euclidean nor asymptotically flat spaces
admit any infinite Φ-chains.

A first non-trivial example can be created as follows: with the coordinates (x, y) ∈ R×Rn−1

we consider the metric (1+|y|2)2 ·gR+gEucl on R×Rn−1. Then the half-spaces Ui := R>i×Rn−1

form a Φ-chain with track points xi = (i, 0) for Φ(t) := 1 + t2. But, as in the Euclidean case,
the half-spaces Ui[k] := Rk × R>i × Rn−k−1, for 1 6 k 6 n− 1, do not make up a Φ-chain.

The hyperbolic n-space Hn carries Φ-chains in all directions and for the same Φ. Namely,
when we think of Hn as the upper half-space and B1/2i(0) is the Euclidean ball of radius 1/2i,
then Ui = B1/2i(0), i > 1, form a Φ-chain for Φ(t) = a+ b · t for suitable a, b > 0 independent

1For notational convenience this is slightly different from Ancona’s version in [Anc90, définitions V.5.1], but
essentially the same.

5



Figure 2: Φ-Chains

even of n. Due to the homogeneity of Hn this also gives a Φ-chain along any hyperbolic geodesic
γ, i.e., with track points on γ.

This ubiquity of Φ-chains which we see already from considering hyperbolic half-spaces
relative to geodesics extends to arbitrary non-homogenous Gromov hyperbolic spaces.

Φ-Chains on Hyperbolic Spaces [BHK01, Section 8] For a general δ-hyperbolic X we
choose a geodesic γ : R→ X, and define

Ui := {x ∈ X | dist (x, γ([22δi,+∞))) < dist (x, γ((−∞, 22δi]))} .

Then the Ui form a Φδ-chain with track points xi = γ ∩ ∂Ui for Φδ(t) = aδ + bδ · t for
suitable aδ, bδ > 0. Moreover, the Ui and the X \ Ui form neighborhood bases in the
topology of XG around the two ideal endpoints of the geodesic γ in ∂GX.

The constants aδ and bδ can be inferred from the proof of [BHK01, Lemma 8.9].

2.2 Analytic Structures
Now we turn to the analytic side. On a complete Riemannian manifold M with bounded

geometry, we consider an operator L with the following properties:

Adaptedness of L L is a linear second order elliptic operator on M such that relative to the
charts φp,

L(u) = −
∑
i,j

aij ·
∂2u

∂xi∂xj
+
∑
i

bi ·
∂u

∂xi
+ c · u

for (2, β)-Hölder continuous aij, (1, β)-Hölder continuous bi and β-Hölder continuous c,
β ∈ (0, 1], with

k−1
∑
i

ξ2
i 6

∑
i,j

aijξiξj 6 k
∑
i

ξ2
i
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for any ξ ∈ Rn and
|aij |C2(Up), |bi|C1(Up), |c|L∞(Up) 6 k

for some k = kL > 1 and any p ∈M .

Solutions of the equation Lw = 0 are called L-harmonic functions. We also consider L-sub-
and superharmonic functions satisfying, in the smooth case, Lw 6 0 or Lw > 0, respectively.
More general notions of L-sub/superharmonicity will be introduced later on.

The adaptedness assumption is a generalized form of uniform ellipticity. It is a compromise
between generality and readability, trimmed to ensure that one can apply the usual maximum
principles, all weak solutions are classical C2,β-regular solutions, the coefficients are bounded
and that the adjoint operator L∗ shares (even quantitatively) the same properties because it
still has Hölder continuous coefficients bounded by 3k, cf. [GT98, Chapter 8]. For more general
conditions, see [Anc87].

Towards the potential theory of such operators, we need the existence of a Green’s func-
tion G for L. This is a function G(x, y) > 0 on M ×M which is singular on the diagonal
{(x, x) | x ∈ M} and satisfies the equation LG(·, y) = δy, in a distributional sense, where δy
is the Dirac delta function with basepoint y. Put differently, for any y ∈ M , G(·, y) > 0 is a
(singular) function so that for a given function f , the function u(x) =

∫
M
G(x, y) f(y) dVol(y)

is a solution of Lu = f , where dVol is the volume measure on M . Then a Green’s function
associated to L∗ is given by G∗(x, y) = G(y, x).

The existence of a Green’s function is not always granted. As a quite typical example for
our further discussion we consider the Laplacian −∆ on the flat Rn. The operator −∆− λ Id
admits a Green’s function if and only if λ 6 0. Moreover, we will see later on that there is a
fine distinction between the cases λ = 0 and λ < 0. The following assumption we make for our
operator L means that we are focussing on the second case.

Weak Coercivity For some t > 0, Lt := L− t Id admits a Green’s function Gt.

The weak coercivity condition is generic as soon as a Green’s function exists. More precisely
there is a generalized principal eigenvalue τ = τL such that for all t < τ the Green’s function
Gt exists, while for t > τ there is no globally defined positive Lt-harmonic function. In the
borderline case t = τ , the Green’s function Gτ might or might not exist, but in any case there
is a globally defined positive Lτ -harmonic function [Pin95, sec. 4.3]. Then weak coercivity
amounts to τ > 0.

Another way to express weak coercivity is to say that there is a positive supersolution u of
the equation Lu = 0 with the quantitative estimate Lu > ε · u, for some ε > 0.

Note that with L the operator Lt is again adapted and for t < τ even weakly coercive.

2.3 Potentials and Balayage
The sum of a Green’s function and a positive solution of Lu = 0 is again a Green’s function.

Therefore one usually focusses on the uniquely determined minimal Green’s function which
does not admit a sum decomposition into another Green’s function and a positive solution.
More generally, any Green’s function is an L-superharmonic function, that is a lower semi-
continuous function with values in (−∞,∞] that is larger than the Dirichlet solution on any
ball with the same boundary conditions and finite on a dense set. On smooth parts, this is
equivalent to Lu > 0. An L-superharmonic function p > 0 without a minorizing positive L-
harmonic function h, that is with p > h > 0, is called a potential. Minimal Green’s functions
are not only examples for potentials, but also the basic building blocks:
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Theorem 2.1 (Integral Representation of Potentials) [Her62, 22.], [Hel14, Thm. 6.18]
Every potential p on M can be represented by a unique (positive) Radon measure µp as

p(x) = G(µp)(x) :=
∫
M

G(x, y) dµp(y) .

The support of p (i.e. the complement of the largest open set where p is L-harmonic) equals
the support of µp.

The fact that every positive L-superharmonic function is uniquely representable as the sum
of a potential and a positive L-harmonic function is known as the Riesz representation theorem.
Hence, to get an integral representation for positive L-superharmonic functions, only the L-
harmonic part is left. The corresponding measures are supported on the Martin boundary
which is defined exactly for this purpose. Its identification in terms of more common geometric
boundaries is the subject of subsections 5.3 and 6.3.

Later we want to control L-superharmonic functions along Φ-chains. Here we shift the part
of the defining measure supported in M \ Ui onto ∂Ui without changing the function on Ui.
This strategy is called sweeping or, due to its French origin (Poincaré, Cartan), balayage.

Concretely, for an L-superharmonic function u > 0 on M and a subset A ⊂M we consider

RAu := inf{v > 0 | v is L-superharmonic on M with v > u on A} .

This is called the reduit (reduced). It enjoys the following properties we will need later:

• RAu is L-harmonic outside of Ā and equal to u in A.

• The reduit is always L-superharmonic.

• If A is relatively compact, RAu is a potential.

• RAλu = λRAu for a constant λ > 0, if u is a positive function.

• RAu+v = RAu +RAv for functions u, v.

• RA∪Bu 6 RAu +RBu for sets A,B ⊂M .

• Denoting the reduit with respect to the adjoint operator L∗ of L by ∗R, we have
RAG(·,y)(x) = ∗RAG(x,·)(y) [Anc90, I.5.1, p. 19].

• If G(µ) is a potential, RAG(µ)(x) =
∫
M
RAG(·,y)(x) dµ(y) for any x /∈ Ā [Her62, Théorème

22.4].

For general sets A, it may happen that RAu is not lower semi-continuous, but it always
admits a canonical regularization R̂Au , the balayée (sweeped). For open sets or in general
outside of Ā the two concepts coincide. We can even recover the classical Perron solution u of
the Dirichlet problem on a ball B with (say, continuous) boundary value f as

u(x) = R∂Bf (x) .

Also useful in this context are global variants of the maximum principle.

Theorem 2.2 (Global Maximum Principle) [Her62, p. 429]

(i) If u is L-superharmonic on an open set V ⊂M , u > 0 on ∂V , and there is a potential p
such that u > −p, then u > 0 on V .
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(ii) Let p a potential, L-harmonic on an open set V and locally upper bounded near every
point of ∂V . If u > p on ∂V for some positive L-superharmonic function u, then u > p
in all of V .

Proof. For (i), the function ū defined as min(u, 0) on V and 0 on M \ V is L-superharmonic
and > −p. Now the supremum of the family {L-subharmonic functions 6 ū} is L-harmonic,
> −p, and 6 0, hence by the definition of potentials it is 0 which implies u > 0.

(ii) follows from (i) by considering the function u− p.

3 Local Maximum Principles and Harnack Inequalities
We derive estimates for positive solutions and Green’s functions of Lt on uniformly sized

balls BR := Bσ/` := Bσ/`(0) ⊂ Rn in the adapted charts. For notational convenience, in this
chapter, all balls are measured in the Euclidean distance. The required assumptions on Locally
defined, Adapted operators with a Green’s function will be called

Assumption (LAG) We say that a differential operator L on BR(0) ⊂ Rn fulfills assumption
(LAG) for R > 0, k > 0 and n > 2 if

• L is k-adapted on BR(0) and
• there is a Green’s function for L on BR(0).

Later all results can be transferred to the manifold using the bi-Lipschitz charts with only a
small loss in constants. Weak coercivity will not yet be used explicitly, but the results and
estimates apply to all operators Lt with 0 6 t 6 τ , where the constants now depend on τ as
well (via k), but not on t.

3.1 Maximum Principles
The following version of the weak maximum principle does not require positivity of the

“potential” term c in L, the existence of a Green’s function (or equivalently, a positive L-
superharmonic function) is sufficient, but the result is weaker. It can easily be obtained from
the version for c > 0 using the h-transform, see [Pin95], where the sign convention for L is
different from ours.

Theorem 3.1 (Local Minimum-Zero Principle) [Pin95, Theorem 3.2.2, p. 81] If L satis-
fies assumption (LAG), u is continuous on BR, L-superharmonic on a domain D b BR and
u|∂D > 0, then u > 0 in all of D.

With help of the uniform bounds on the coefficients, this can be upgraded to quantitative
bounds in terms of the boundary values.

Lemma 3.2 (Local Almost-Maximum Principle) If L satisfies (LAG), there are constants
0 < ram < R and m > 0 depending only on k and n, such that any L-subharmonic function u
on Br, r < ram, with u|∂Br 6 m satisfies u 6 1 on Br.

Proof. In polar coordinates, L applied to a radial function f(r) can be written as

Lf = −αf ′′(r) + α− tr a
r

f ′(r) + bf(r) + cf(r)

with k−1 6 α := aij(x)xixj
r2 6 k, nk−1 6 tr a 6 nk and |b|, |c| bounded by k.

Consider the function f(r) = sech(βr) with some β > 0. We want to have the following
properties:
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• Lf > 0 for r < ram,

• f 6 1, and

• f |∂Br > sech(βram) =: m for r < ram.

Only the first property is not obvious and we need to tune the parameters ram and β to achieve
it. We can calculate

Lf =
[
αβ2 (1− sinh2(βr)

)
sech2(βr) + (tr a− α)β2 tanh(βr)

βr
− bβ tanh(βr) + c

]
sech(βr) .

Here the first two terms behave as β2 for large β and βr < 1. But in leading order in βr the α
terms cancel, while the positive tr a term survives. Using the uniform bounds on α and tr a in
terms of k and n, we first fix a small βram so that the β2 terms are positively bounded below
and then make β large to kill the remaining terms and get Lf > 0 for r < ram where ram and
β depend only on k and n.

Now we can apply the local minimum-zero principle 3.1 to f −u, because L(f −u) > 0 and
(f − u)|∂Br > 0. This yields u 6 f 6 1 on Br.

With completely different methods we can see that Green’s functions behave for small
distances like the Euclidean Green’s function

GEucl(x, y) =
{

1
2π log |x− y| , if n = 2

1
(n−2) VolSn−1

1
|x−y|n−2 , if n > 3 .

Lemma 3.3 (Local Bound for Some Green’s Function) For L satisfying (LAG) there
are constants rgb > 0, q̃ > 1 depending only on k and n and some (not necessarily minimal)
Green’s function G̃(x, y) such that

q̃−1 Geucl(x, y) 6 G̃(x, y) 6 q̃ Geucl(x, y) for x, y ∈ Brgb .

Proof. We sketch the argument for aij = δij and n > 3. The general case is merely notationally
more involved and can be found in [Mir70, pp. 61–63].

As distributions, we have LxGEucl(x, y) = δ(x−y)+R(x, y), where R(x, y) has a singularity
at x = y of orderO(r−(n−1)). This means that we can choose rgb > 0 so that

∫
Brgb
|R(x, y)|dy <

1/2 for x ∈ Brgb because the integral scales as O(rgb) and all involved constants depend only
on the bounds on the coefficients k. This in turn implies the finiteness of all iterates Rn where
the product of kernels is defined as R2(x, y) =

∫
Brgb

R(x, z)R(z, y)dz. The bound ensures also
the summability of

G̃ := GEucl

∞∑
i=0

(−R)n ,

again as products of kernels. Application of L yields

LG̃ = (δ +R)
∞∑
i=0

(−R)n =
∞∑
i=0

(−R)n −
∞∑
i=1

(−R)n = δ ,

so that G̃ is indeed a Green’s function. G̃−GEucl has a singularity at x = y of quantitatively
lower order than GEucl, hence the explicit bounds.
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Corollary 3.4 (Local Bound for the Minimal Green’s Function) If L fulfills (LAG),
there are constants q > 0 and 0 < rmgbi < rmgbo := min(ram, rgb) depending only on k and
n such that the minimal Green’s function g(x, y) of Brmgbo (i.e., vanishing on the boundary
∂Brmgbo) satisfies

q−1 Geucl(x, y) 6 g(x, y) 6 q Geucl(x, y) for x, y ∈ Brmgbi .

Proof. For fixed y ∈ Brmgbo/2, g can be represented as g(x, y) = G̃(x, y)− u(x) where u is the
solution of the Dirichlet problem Lu = 0 in Brmgbo and u(x) = G̃(x, y) on ∂Brmgbo . By the
local bound for some Green’s function 3.3 we know

u(x) 6 q̃

|x− y|n−2 6
q̃

(rmgbo/2)n−2 for x ∈ ∂Brmgbo

(and similarly for n = 2). Thus we can apply the local almost-maximum principle 3.2 to get
u 6 q̃/(m(rmgbo/2)n−2), whence

g(x, y) > q̃−1

|x− y|n−2 −
q̃

m(rmgbo/2)n−2 for x ∈ Brmgbo .

From this equation, q > q̃ and rmgbi can be determined to obtain the lower bound. For the
upper bound, note that G̃ is positive and thus g 6 G̃ by the local minimum-zero principle
3.1.

3.2 Harnack Inequalities
This standard result can be found e.g. in [GT98, Theorem 8.20], but we include a proof

here because it is an easy consequence of the previous results.

Theorem 3.5 (Harnack Inequalities) For L satisfying (LAG), there is an H(k, n,R) > 1
such that if u > 0 is L-harmonic on Br(x0) ⊂ BR, for some 0 < r 6 R, then

H−1u(x0) 6 u(x) 6 Hu(x0) for any x ∈ Br/2(x0) .

Proof. We start with the case r 6 rmgbi.
The potential RBr(x0)

u (on the total space Brmgbo) can be represented as RBr(x0)
u = g(µu)

for some positive measure µu with support in ∂Br(x0). On Br(x0), RBr(x0)
u coincides with u

and we have u = g(µu). Now for y ∈ Br/2(x0), we can apply both estimates from Corollary 3.4
“local bound for the minimal Green’s function” to get

u(y) =
∫
∂Br(x0)

g(y, z) dµu(z) 6
∫
∂Br(x0)

q

(r/2)n−2 dµu(z)

6 2n−2q2
∫
∂Br(x0)

g(x0, z) dµu(z) = 2n−2q2 u(x0) .

The other inequality is analogous.
For the case of larger r, we can employ the Harnack chains introduced in subsection 2.1

with radius rmgbi. With every ball the estimate collects the constant for that case, but the
total number of balls needed is bounded above by R/rmgbi, so we can just use the resulting
power of 2n−2q2 as H in every case.

The Harnack chain tactic just demonstrated will be used in the following to get estimates
for even larger distances. The result are exponential bounds (with fixed constants) for the
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growth of L-harmonic functions—that is not especially satisfying, but a good starting point
for improvement.

This Harnack inequality always needs a little more space around the balls where it holds,
but for instance on bounded domains, it would be useful to have a similar result near points
on the boundary. A blueprint is the following classical result.

Theorem 3.6 (Boundary Harnack Inequality on a Disc) There exist constants A, C > 1
such that for any point ξ ∈ ∂B1(0) ⊂ R2 and 0 < R < 1 the following is true: For any two
harmonic functions u, v > 0 (with respect to the Laplacian) on BA·R(ξ) ∩ B1(0) that vanish
along BA·R(ξ) ∩ ∂B1(0),

u(x)
v(x) 6 C

u(y)
v(y) for all x, y ∈ BR(ξ) ∩B1(0) .

In the non-boundary version, the appearance of another function v is obscured by the fact
that the constant function 1 is (nearly) harmonic. Furthermore, the restriction to functions
vanishing on the relevant part of the boundary is unavoidable, yet in combination with balayage
techniques there are powerful applications as we will see after the proof of a much more general
boundary Harnack inequality in subsection 5.2.

4 Global Results from Resolvent Equations and Bounded
Geometry

Now we use that our manifold M has Bounded geometry and L is Adapted and weakly
Coercive, more precisely:

Assumption (BAC) We say that the pair (M,L) fulfills assumption (BAC) for σ > 0, ` > 1,
k > 0, n > 2 and τ > 0 if L is a differential operator on a connected complete noncompact
Riemannian manifold Mn such that

• M is of (σ, `)-bounded geometry,
• L is k-adapted in the bounded geometry charts, and
• L is weakly coercive with generalized principal eigenvalue τ =: 2θ.

This gives us global growth estimates for the minimal Green’s function G of L. The basic
idea is to combine the local estimates we derived in the last chapter with the resolvent equation
for Green’s functions viewed as operators.

While the boundedness of geometry and adaptedness of L allow to carry over all results
from section 3 with constants now depending on k, n, σ, ` and τ , as explained in the beginning
of that section, the weak coercivity assumption is the most important new ingredient in this
section. Note that we do not yet make use of Gromov hyperbolicity.

4.1 Resolvent Equation
For a closed operator L defined on a dense set of a Banach space the set ρ(L) of all λ, so

that the resolvent Rλ = (L− λ Id)−1 exists and is continuous, is called the resolvent set. ρ(L)
known to be an open set. For λ, µ ∈ ρ(L) we have the resolvent equation

Rλ ◦Rµ = (λ− µ)−1 · (Rλ −Rµ).

One of the main applications of this identity in the context of elliptic operators is the
comparison of solutions of Rλw = 0 with those of Rµw = 0. We will use this idea in the special
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case of the minimal Green’s functions Gt corresponding to the operators Lt = L− t Id on M ,
viewed as resolvents. We include the simple proof of the resolvent equation in our context and
note some of its consequences.

Lemma 4.1 (Resolvent Equation) Assume (M,L) satisfies assumption (BAC). For any
0 6 t < τ , the minimal Green’s function Gt, viewed as an operator on the space of positive
Radon measures µ with Gtµ <∞, satisfies

Gt = G+ tG ◦Gt .

Since all involved operators are positive, this yields the inequalities

G 6 Gt and (1)

G ◦Gt 6 1
t
Gt . (2)

In particular, these results hold in the cases of characteristic functions of bounded measurable
sets or Dirac measures.

Proof. Consider an increasing sequence of relatively compact, smoothly bounded open sets
(Ui) with

⋃
Ui = M . On each Ui, the corresponding Dirichlet Green’s function Gi (i.e.,

Gi(·, y)|∂Ui ≡ 0) satisfies the resolvent equation in the form

Gi(x, y) = Gti(x, y)− t
∫
Ui

Gi(x, z)Gti(z, y)dz

because the right-hand side fulfills the properties of a Green’s function (application of L yields
δy) and has the correct boundary behavior. To see that the integral is finite for x 6= y, notice
that any Green’s function is integrable near its pole by the same arguments as in the proof of
Corollary 3.4 “local bound for the minimal Green’s function”.

For i → ∞, the Gi and Gti converge to G and Gt, respectively, uniformly on compact sets
away from the pole because they are increasing and bounded above by the minimal Green’s
function. The same is true if the first argument is fixed because then one has the Green’s
function for the adjoint operator. It is easy to see that the equation survives in the limit
i→∞.

By integration and Fubini’s theorem one obtains the resolvent equation for arbitrary Radon
measures µ, as soon as Gtµ <∞ (and thereby Gµ <∞).

Recall from subsection 2.2 that unlike Lt, for t < τ , the operator Lτ is no longer weakly
coercive. In turn, we observe from (2) that using resolvents loses its strength when t approaches
0. This suggests to work with Lθ, for

θ := τ/2.

4.2 Behavior of Green’s functions
We combine the resolvent equation with Harnack inequalities 3.5 to derive growth estimates

of minimal Green’s functions.

Proposition 4.2 (Bound for the Green’s Function) Given (M,L) satisfying (BAC), there
is a constant c1(σ, `, k, n, τ) > 1 such that for the minimal Green’s function of L,

c−1
1 6 G(x, y) if d(x, y) 6 σ, and

G(x, y) 6 c1 if d(x, y) = σ .
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Proof. The lower bound is directly obtained from the local bound for the minimal Green’s
function 3.4 because we have G(·, y) > g(·, y) for any Green’s function g on a smaller domain
and iterated application of the Harnack inequalities 3.5 (a number depending on σ, ` and
rmgbi).

For the upper bound, consider the ball B := Bσ/3(x). The function Gθ(χB) =
∫
B
Gθ(·, ζ)dζ

is bounded on B, where χB denotes the characteristic function of B, because we can apply the
lower bound 1 6 c1 ·G(ζ, z′) to some z′ with d(x, z′) = 2σ/3 and arrive at∫

B

Gθ(z, ζ)dζ 6 c1

∫
M

Gθ(z, ζ)G(ζ, z′)dζ 6
c1

θ
Gθ(z, z′)

for all z ∈ B. In the second inequality we used (2) for the Dirac function in z′. By continuity
of Gθ(·, z′) on the compact B this is uniformly bounded.

Thus we can integrate the resolvent equation 4.1 applied to χB over B and get

∞ >

∫
M

χBG
θ(χB) =

∫
M

χBG(χB) + θ

∫
M

χBG(Gθ(χB)) .

When G∗ denotes the minimal Green’s function for the adjoint operator L∗ this means

0 <
∫
M

χBG(χB) =
∫
M

Gθ(χB) [χB − θG∗(χB)] .

Hence, there must be an x′ ∈ B such that (χB − θG∗(χB)) (x′) > 0 and therefore∫
B

G(ζ, x′)dζ = G∗(χB)(x′) < 1/θ

which in turn shows the existence of an x′′ ∈ B with d(x′, x′′) > σ/12 and

G(x′′, x′) 6 θ−1 (Vol(B \Bσ/12(x′))
)−1

.

Now the bounded geometry assumption assures that the volume can be bounded below by a
constant Vσ,`,n depending only on σ, the Lipschitz constant ` and the dimension n.

Fom the bounded geometry constraint, we observe that a Harnack chain of at most d24+π`e
balls Br(pi), i = 1, ..., d24 + π`e, of radius r = σ/12 with d(pi, pi+1) < r/2 and d(pi, x′′) > r
suffices to link x′ with either x or y. We get similar chains starting from x′′ to y or x,
respectively. Applying the Harnack inequalities 3.5 on each of these balls and multiplying the
Harnack constants step by step to get Hi on Br(pi) we get the assertion for c1 = H2·d24+π`e ·
θ−1V −1

σ,` .

Note that we could now easily get more explicit growth estimates for G by comparison
with the local bound for the minimal Green’s function 3.4, but for the following these coarse
estimates are sufficient.

4.3 Relative Maximum Principles
We start with an elementary comparison result which already visualizes the central effect

of weak coercivity: with the same boundary conditions, compared to Lθ-harmonic functions,
L-harmonic functions sag, imagine a rope2 or a rubber blanket where you apply less and less
tension. To see this, we start with a paraboloid that fits in between.

2This analogy is quite precise, a suspended rope forms a hyperbolic cosine, a solution of the shifted one-
dimensional Laplace equation.
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Lemma 4.3 Under the local assumptions (LAG), there is a constant m(R = σ/`, k, n) > 0
such that we can find a smooth function f defined on BR/2(0) with

f(x) = −m , f |∂BR/4(0) > 0 and Lf > −1 .

Proof. In polar coordinates, L applied to a radial function f(r) can be written as

Lf(r) = −af ′′(r) + b

r
f ′(r) + cf(r)

with functions a, b, c bounded by a constant depending only on k, n and R.
With the ansatz f(r) = s(r2− ρ) we have Lf(r) = −2as+ 2bs+ cs(r2− ρ) and first choose

ρ > 0 sufficiently small to assure f > 0 outside of BR/4(0) and then make s > 0 small to
achieve Lf > −1. This only uses the bounds on coefficients such that f(0) = −sρ =: −m < 0
depends only on k, n and R.

Proposition 4.4 (Relative Maximum Principle, Local Version) Under assumption
(LAG) for L and Lθ = L − θ Id, assume further we have two functions u and ū > 0 on
BR = BR(0), u L-subharmonic (Lu 6 0) and ū Lθ-harmonic on BR with ū|∂BR/4 > u|∂BR/4 .
Then there is a constant η̃ = η̃(R, k, n, τ) ∈ (0, 1) such that

u(0) 6 η̃ ū(0) .

Proof. Consider the function h(z) := ū(z)+θf(z) infw∈BR/4 ū(w)−u(z) where f is the function
from the previous lemma on BR/4. On BR/4, we have Lū = Lθū + θū > θū, Lf > −1 and
therefore

Lh(z) > θ

(
ū(z)− inf

w∈BR/4
ū(w)

)
> 0 .

The boundary condition together with f |∂BR/4 > 0 yields h|∂BR/4 > 0 and we can apply the
local minimum-zero principle 3.1 for L to see h > 0 in the interior of BR/4 and especially
h(0) > 0, with f(0) = −m we have

u(0) = ū(0)−mt inf
w∈BR/4

ū(w) 6 (1−mθH−1)ū(0) .

The harmonicity on the full ball BR was used only in the last step to apply the Harnack
inequalities 3.5.

Applied globally, this describes the relative growth of L-harmonic versus Lθ-harmonic func-
tions.

Proposition 4.5 (Relative Maximum Principle, Global Version) If (M,L) satisfies
(BAC), there is a constant η = η(σ, `, k, n, τ) ∈ (0, 1) such that the following holds:
Assume we have two functions u and ū defined on Br+3(x) for some x ∈ M and r > σ, u
L-subharmonic and ū Lθ-harmonic on Br+3(x) and ū|∂Br(x) > u|∂Br(x). Then

u(x) 6 ηrū(x) .

Proof. For integer multiples r of σ/4`, this is proven by inductively applying the local version
in adapted charts along a chain of intersecting balls of length proportional to r/(σ/`). On each
of them we may apply the same Harnack inequality as described in the proof of 4.2 above, so
that we can choose η as a function of σ, `, H and η̃.

For Green’s functions, we get the following variants. We do not use them in the following
arguments but they are worth being mentioned since they give some non-trivial constraints on
the Green’s functions from our standard assumption (BAC).
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Corollary 4.6 (Exponentially Stronger Decay) Under assumptions (BAC), there are con-
stants A(σ, `, k, n, τ) > 0 and α1(σ, `, k, n, τ) > 0 such that

G(x, y) 6 A e−α1d(x,y) Gθ(x, y) ∀x, y ∈M .

From this we get the following growth estimate for Green’s functions using the resolvent
equation.

Proposition 4.7 (Exponential Decay) Under assumptions (BAC), for suitable constants
B(σ, `, k, n, τ) > 0 and α2(σ, `, k, n, τ) > 0 we have

G(x, y)G(y, x) 6 B e−α2d(x,y) for d(x, y) > 2σ .

Proof. Let x′ ∈M such that d(x, x′) = σ. Then employing the resolvent equation 4.1 we have

G(x, y)G(y, x) 6 G(x, y)H3 G(y, x′) 6 H5

Vol(Bσ/2(y))

∫
Bσ/2(y)

G(x, z)G(z, x′)dz

6 c

∫
M

G(x, z)G(z, x′)dz
(1),(2)
6

c

θ
Gθ(x, x′) 6 ccθ1

θ

where we used the Harnack inequalities 3.5 for L∗ and the bound for the Green’s function 4.2
applied to Lθ which itself satisfies the assumptions, but it may lead to a weaker constant cθ1.

For the very same reason, we can do all of the above with Gθ instead of G to get the
uniform boundedness of Gθ(x, y)Gθ(y, x), again with slightly worse constants. Combined with
Corollary 4.6 “exponentially stronger decay” we have proved the assertion.

In the case of a self-adjoint operator L = L∗ the Green’s function is symmetric and the
proposition says that it decays exponentially with the distance. This result does not use
Gromov hyperbolicity and holds also e.g. in Euclidean space. The difference from the familiar
Euclidean Laplacian’s Green’s function is owed to weak coercivity.

5 Hyperbolicity and Boundary Harnack Inequalities
Now we additionally invest the hyperbolicity of the underlying space. The property we

employ is that in Gromov hyperbolic spaces any two of their points can be connected by well-
controlled Φ-chains, cf. subsection 2.1. The results we prove are more general. They hold with
respect to any individual Φ-chain even if the space carries essentially only this one Φ-chain as
in the example (R× Rn−1, (1 + |y|2)2 · gR + gEucl).

We exploit this to derive the main results for the potential theory on these spaces, the
particular behavior of Green’s function along Φ-chains, building on the results for bounded
geometries we derived in the last few sections. From this we infer the boundary Harnack
inequalities which largely dominate the potential theory of our elliptic operators.

Our general assumptions (BAC) on the manifold M and the elliptic operator L remain the
same as in the previous section: M is complete with bounded geometry and L is adapted and
weakly coercive. The additional assumptions, that is, the presence of a Φ-chain (depending
on the function Φ) or even of an underlying hyperbolic geometry (with constant δ and coming
with a universal function Φ = Φδ), are stated directly in the results.

5.1 Global Behavior: Φ-Chains
The following result describes the key feature of Φ-chains in the potential theory of our

elliptic operators.
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Theorem 5.1 (Green’s Functions Along Φ-Chains) Under assumptions (BAC), there is
a suitable constant c(σ, `, k, n, τ, Φ) > 1 such that for any Φ-chain with track points x1, . . . , xm
we have for the minimal Green’s functions

c−1G(xm, xj)G(xj , x1) 6 G(xm, x1) 6 cG(xm, xj)G(xj , x1) , j = 2, . . . ,m− 1 .

At the heart of the argument we employ the pairing of two at first sight entirely unrelated
geometric and analytic properties: the existence of Φ-chains on M and the weak coercivity of
L. The idea is that, on the one hand, Φ-chains allow to find balls of arbitrary large radii in
Ui−1 \Ui+1 centered in ∂Ui within a uniformly upper bounded distance to the track points. On
the other hand, the relative maximum principle 4.5 shows that on these balls we can improve
estimates we have diminished from a previous application of a Harnack inequality. This makes
the following result the main step in the proof of the Theorem.

Proposition 5.2 (Growth Recovery Along Φ-Chains) With assumptions (BAC), for any
given Φ-chain with track points x1, . . . , xm we have for the minimal Green’s functions

G(z, x1) 6 cGθ(z, xj)G(xj+1, x1) for z ∈ ∂Uj+1, (3)

for some constant c(σ, `, k, n, τ, Φ) > 0 independent of the length j of the Φ-chain.

Figure 3: Growth Recovery Mechanism

Proof. The argument is by induction over the length j. For j = 1, the result follows from
Gθ > G, inequality (1) and the lower bound for the Green’s function 4.2, c1 G(x2, x1) > 1,
from where we can take the first guess for the constant c = c1 and note that c1 depends only
on σ, `, k, τ and Φ. For the induction step we first assume we have proved the weaker assertion
that there is a constant cj so that (3) holds for any Φ-chain of length j. Then we can apply
the Harnack inequalities for L and L∗θ to get a constant c′(σ, `, k, τ, Φ) > 1, independent of j,
such that

G(z, x1) 6 c′cj G
θ(z, xj+1)G(xj+2, x1) for z ∈ ∂Uj+1 . (4)
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By the global maximum principle 2.2 this inequality extends to z ∈ Ūj+1. Now we invest the
weak coercivity of L and the properties of the Φ-chains to improve this inequality.

Towards this end, we first apply the relative maximum principle 4.5 to the (L-
superharmonic) function Gθ(·, xj+1) and its greatest L-harmonic minorant u on some ball
BR(x) which we can represent as u = R∂BR(x)

Gθ(·,xj+1), the reduit always taken w.r.t. L. For
R = ln(1/c′)/ ln η and BR+3(x) ⊂ Uj+1, the relative maximum principle yields

u(x) 6 1
c′
Gθ(x, xj+1) .

In turn, the definition of a Φ-chain shows that there is some ∆(Φ,R) > 0 such that
BR+3(x) ⊂ Uj+1, for x ∈ ∂Uj+2, as soon as d(x, xj+2) > ∆. Then, we have from (4)

G(x, x1) = R∂BR(x)
G(·,x1) (x) 6 c′cjR∂BR(x)

Gθ(·,xj+1)(x)G(xj+2, x1)

= c′cju(x)G(xj+2, x1) 6 cjG
θ(x, xj+1)G(xj+2, x1).

On the other hand, we get universal estimates for x ∈ ∂Uj+2 with d(x, xj+2) < ∆: Since
d(x, xj+2) < ∆, there are constants c′′, c′′′ > 1 only depending on ∆, Φ, H and c1, such that
G(x, x1) 6 c′′G(xj+2, x1) by Harnack inequalities and Gθ(x, xj+1) > (c′′′)−1 by the bounds
for the Green’s function 4.2 and Harnack inequalities. The result is

G(x, x1) 6 c′′c′′′Gθ(x, xj+1)G(xj+2, x1) for x ∈ ∂Uj+2 with d(x, xj+2) < ∆ .

Everything combined, we can choose c = max{c1, c
′′c′′′} and outside a tube of radius ∆

around the track points the constant can be kept in every induction step while on the inside
we have a universal constant.

Proof of Theorem 5.1 “Green’s functions along Φ-chains”. The first inequality is rather easy:
For x ∈ ∂Bσ(xj) we have

G(x, xj)G(xj , x1) 6 c1G(xj , x1) 6 c1H G(x, x1)

by Proposition 4.2 “bound for the Green’s function” and the Harnack inequalities 3.5. Since
the left hand side is a potential and the right hand side is L-superharmonic, this inequality
extends to M \Bσ(xj) and in particular to xm by the global maximum principle 2.2.

For the second inequality we use repeatedly Proposition 5.2 “growth recovery along Φ-
chains” and the resolvent equation 4.1:

G(xm, x1) = R∂UjG(·,x1)(xm) | x1 /∈ Uj
(3)
6 cR∂Uj

Gθ(·,xj)(xm)G(xj+1, x1)

= cR∂Uj
G(·,xj)+θG(Gθ(·,xj))(xm)G(xj+1, x1) | res.eq.

6 c

(
G(xm, xj) + θ

∫
M

R∂UjG(·,z)(xm)Gθ(z, xj) dVol(z)
)
G(xj+1, x1) (5)

At this point we can again employ the first step (3), but now for the reversed Φ-chain xm, . . . , x1
with M \ Um, . . . ,M \ U1 and for the adjoint operator L∗, namely

G(xm, z) 6 cGθ(xj+2, z)G(xm, xj+1) for z ∈M \ Uj+1 .

This holds on all of M \Uj+1 by the global maximum principle 2.2. Since xj ∈M \Uj+1, this
can be directly applied to G(xm, xj). For the second summand in (5), we have R∂UjG(·,z)(xm) =
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∗R∂UjG(xm,·)(z) 6 G(xm, z) for z ∈ ∂Uj ⊂ M \ Uj+1 (denoting the reduit with respect to L∗

by ∗R, cf. subsection 2.3), but the upper bound ∗R∂UjG(xm,·)(z) 6 cGθ(xj+2, z)G(xm, xj+1) is
valid for all z ∈ M by the definition of the reduit since the right hand side is positive and
L∗-superharmonic in z. Thus,

G(xm, x1) 6 c2 G(xm, xj+1)G(xj+1, x1)
(
Gθ(xj+2, xj) + θ

∫
M

Gθ(xj+2, z)Gθ(z, xj) dVol(z)
)

.

The large bracket is universally bounded by Proposition 4.2 “bound for the Green’s function”,
the Harnack inequalities 3.5, and the inequalities (1) and (2) following from the resolvent
equation 4.1 for t = 3

2θ.

Now we assume that M is a δ-hyperbolic space, then we can choose Φ = Φδ and recall that
there are Φ-chains along geodesics in M . Since Φδ is determined from δ, the Φ-dependence of
the estimates now reduces to a δ-dependence.
Corollary 5.3 (Green’s Function Along Hyperbolic Geodesics) Assuming (BAC) for
(M,L), M δ-hyperbolic, let x, y, z ∈ M such that y lies on geodesic connecting x and z with
d(x, y), d(y, z) > 22δ. Then there is a constant c(σ, `, k, n, τ, δ) > 1 such that

c−1G(x, y)G(y, z) 6 G(x, z) 6 cG(x, y)G(y, z) .

5.2 Boundary Harnack Inequality
Using Theorem 3.6 “boundary Harnack inequality on a disc” as a blueprint, we want to for-

mulate a boundary Harnack inequality near points on the Gromov boundary of a δ-hyperbolic
space.

As a replacement for balls in the classical version of the boundary Harnack inequality, we
need some characterization of neighborhoods of a point at infinity. This is made precise by the
notion of Φ-neighborhood bases.
Definition 5.4 (Φ-Neighborhood Basis) We call two open subsets V ⊃W of the space M
the Φ-neighborhoods with hub h ∈ M , if W ⊂ V , BΦ0(h) ⊂ V \W and any two points
p ∈ ∂V and q ∈ ∂W can be joined by a Φ-chain that has h as a track point. We call an infinite
family of nonempty open Ni ⊂ M , i = 1, 2, 3, . . . , with

⋂
iNi = ∅ a Φ-neighborhood basis,

if Ni and Ni+1 are Φ-neighborhoods with hub pi, for every i.
Just as metric balls are, besides their rôle as neighborhood bases, the basic playground

for Harnack inequalities, these Φ-neighborhoods are their counterpart in boundary Harnack
inequalities.

In δ-hyperbolic spaces, every point in the Gromov boundary has a canonical neighborhood
basis that is also a Φδ-neighborhood basis. Namely, as shown in [BHK01, Proposition 8.10],
we have
Lemma 5.5 (Φδ-Neighborhood Basis) For a δ-hyperbolic manifold M , z ∈ ∂GM ⊂ M

G

and γ : R→M a geodesic so that z is its endpoint for t→ −∞ we set

N δ
i := {x ∈ X | dist (x, γ([300 · i,+∞))) < dist (x, γ((−∞, 300 · i]))}

Then the N δ
i are a Φδ-neighborhood basis and their closures N δ

i ⊂M
G a neighborhood basis of

z ∈ ∂GM .
For non-self-adjoint operators (which will be important for the applications in section 6)

it is not always possible to find L-harmonic functions that vanish at infinity, because even
minimal Green’s functions might diverge. Hence we introduce a more general notion which can
be thought of as a minimal growth condition. This will be further explained in Proposition 5.15
“L-vanishing and Martin boundary” below.
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Definition/Proposition 5.6 (L-Vanishing) We say that a positive L-superharmonic func-
tion u L-vanishes towards infinity on a domain V ⊂ M if one of the following equivalent
conditions is satisfied:

(i) There is a positive L-superharmonic function w, such that u/w → 0 at infinity, i.e., for
every ε > 0 there is a compact set K ⊂M with u/w < ε on V \K.

(ii) There is a potential p such that p > u on V .

(iii) The reduit RVu is a potential.3

Proof. (i)⇒(iii): Assume there is a positive L-harmonic function h, such that RVu > h > 0 on
M . For some fixed ε > 0, choose a compact set K with u < εw on V \K. By the properties
of the reduit, we even have

εw > RV \Ku > RVu −RV ∩Ku > h−RV ∩Ku

on all of M . Now RV ∩Ku is a potential since V ∩ K is relatively compact in M , εw − h is
L-superharmonic and εw > u = RVu > h on ∂(V \K) = ∂(M \ (V \K)) ⊂ M , thus we can
apply the global maximum principle 2.2 to see εw > h on all of M . Since ε was arbitrary,
h = 0.

(iii)⇒(ii): Choose p = RVu .

(ii)⇒(i): It suffices to show that a potential p satisfies the condition everywhere. Towards
this end, consider the functions RM\BR(x0)

p on balls around an arbitrary basepoint x0 ∈ M .
They converge to zero for R → ∞ because the limit is L-harmonic and 6 p. Let (xj) be a
countable dense set in M . We may choose a sequence (Ri) such that RM\BRi (x0)

p (xj) 6 2−i

for all j 6 i. Then the function w =
∑
iR

M\BRi (x0)
p is finite on a dense set, L-superharmonic

and p/w 6 1/i outside of BRi(x0).

Note that all potentials such as the minimal Green’s function are L-vanishing on V = M
and hence on all open sets because the property of L-vanishing is conserved on subsets as can
be easily seen using condition (i).

On bounded sets, L-vanishing at infinity is trivially true for any L-superharmonic function.
The concept is also useless for unbounded sets shrinking to a small set, e.g. a single point,
when approaching infinity. It becomes significant for V = W ∩M where W ⊂ M

G is open
with non-empty intersection W ∩ ∂GM . For more elaborate criteria in the context of Martin
theory see Proposition 5.15 “L-vanishing and Martin boundary”.

On Φ-neighborhoods we can now formulate the following central result.

Theorem 5.7 (Boundary Harnack Inequality) Assume (M,L) satisfies assumptions
(BAC). Let V ⊃ W be Φ-neighborhoods with hub h and u, v two positive L-superharmonic
functions that are L-harmonic and L-vanishing on V , then there is a constant HB =
HB(σ, `, k, n, τ, Φ) such that

u(x)
u(y) 6 HB

v(x)
v(y) for any x, y ∈W .

Proof. By Definition/Proposition 5.6 “L-vanishing”, the reduit RVu is a potential and therefore
admits a representation as

RVu =
∫
∂V

G(·, z)dν(z)

3[Anc87] uses the first definition, but it is easier to employ the last.
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for some Radon measure ν. On W , RVu agrees with u and therefore we have

u(x) =
∫
∂V

G(x, z)dν(z) 6 c

∫
∂V

G(x, h)G(h, z)dν(z) = cG(x, h)u(h) for x ∈ ∂W

using the assumption that x ∈ ∂W and z ∈ ∂V can be connected by a Φ-chain through h and
Theorem 5.1 “Green’s functions along Φ-chains”. The other inequality from there gives

v(x) > c−1 G(x, h)v(h) for x ∈ ∂W

and both inequalities extend toW by the global maximum principle 2.2 becauseRVu and G(·, h)
respectively are potentials. We can combine them to obtain

u(x)
v(x) 6 c2u(h)

v(h) for x ∈W .

Interchanging the rôles of u and v yields the result with HB = c4.

In most applications, u and v are either globally L-harmonic functions or minimal Green’s
functions with pole outside of V .

In the case of a δ-hyperbolic manifold the size of the smaller neighborhood can be explicitly
quantified using Lemma 5.5 “Φδ-neighborhood basis”. We get

Corollary 5.8 (Hyperbolic Boundary Harnack Inequality) If (M,L) satisfies (BAC)
andM is δ-hyperbolic, there is some positive constant HB(σ, `, k, n, τ, δ) > 1 such that two posi-
tive L-superharmonic functions u, v that are L-harmonic and L-vanishing on a Φδ-neighborhood
N δ
i of ξ ∈ ∂GM satisfy

u(x)
u(y) 6 HB

v(x)
v(y) for any x, y ∈ N δ

i+1 .

5.3 The Martin Boundary
In the previous section we have already formulated boundary Harnack inequalities on the

complete manifold M although they neither needed not referred to any concrete boundary.
The natural boundary concept related to these boundary inequalities we introduce here is the
Martin boundary. These ideal boundaries can equally be defined on non-complete manifolds
like Euclidean domains.

The Martin boundary is determined from both the geometry of M and the analysis of L.
A basic problem in Martin theory is the characterization of this boundary with a minimal
amount of analytic input. The distinguished result in our case is that when we also assume
Gromov hyperbolicity, then the Martin boundary actually only depends on the geometry. It is
homeomorphic to the Gromov boundary ∂GM of M .

We first recall some basic notions from Martin theory, cf. [Anc90] or [Pin95, 7.1].

Martin Boundary For a non-compact Riemannian manifold M and a linear second order
elliptic operator L onM with a minimal Green’s function G : M ×M → (0,∞] as well as
a basepoint p ∈M , we consider the space S of sequences s of points pi ∈M , i = 1, 2, . . .
with

• pi ∈M has no accumulation points in M ,
• Kpi := G(·, pi)/G(p, pi)

n→∞−→ Ks compactly, for some function Ks.

The Martin boundary ∂M(M,L) is the quotient of S modulo the relation s ∼ s∗

if Ks ≡ Ks∗ . For ζ ∈ ∂M(M,L), this function is written Kζ and called the Martin
kernel.
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The Martin boundary does not depend on the choice of the basepoint p. The Harnack
inequality and elliptic theory show that each Kζ ∈ ∂M(M,L) is a positive solution of Lu = 0
on M . This also shows that the convex set SL(M) of positive solutions of Lu = 0 on M with
u(p) = 1 is compact in the topology of compact convergence. In turn, ∂M(M,L) is a compact
subset of SL(M).

The Martin topology on MM := M ∪ ∂M(M,L) is the topology of compact convergence
on the space of associated Martin functions {Ky | y ∈M

M}.
Then the usual topology is induced on M ⊂MM, ∂M(M,L) is closed and MM is compact.

The spaceMM is called theMartin compactification. It is easy to see thatMM is metrizable,
cf. [BJ06, Ch. I.7] or [Hel14, Ch. 12] for further details.

To motivate the idea of Martin integrals we recall the following classical result, cf. [Cho69,
Ch. 6]:

Proposition 5.9 (Minkowski’s Theorem) Each point in a convex set K ⊂ Rn is a convex
combination of the extremal points of K.

x

x3

x1

x4

x5

x2

x = 0.5 x1 + 0.5 (0.2 x2 +0.8 x4)  

Convex domains and
Extremal points 

  

   = 0.6 x2 + 0.4 x5 

G

Each point in a triangle is a unique 
convex sum of its a�ne independent 
vertices. For general convex sets, inner 
points usually have infinitely many dif-
ferent sum representations of its extre-
mal points. For the set G, we have

Figure 4: Minkowski’s Theorem in R2

The Martin integral is essentially an extension of this result to the case of the convex set
SL(M). The extremal elements of SL(M) form a subset ∂0

M(M,L) ⊂ ∂M(M,L) of the Martin
boundary one can think of as the vertices of an infinite dimensional simplex spanning SL(M).
A positive solution u of Lu = 0 on M with u(p) = 1 is extremal if and only if u is a minimal
solution. Here we call u minimal if for any other solution v > 0, v 6 u, we have v ≡ c · u,
for some constant c > 0. Therefore ∂0

M(M,L) ⊂ ∂M(M,L) is also called the minimal Martin
boundary.

The Choquet integral representations in [Cho69, Ch. 6] give the following general version
of the Martin representation theorem, cf. [Pin95, 7.1]:

Proposition 5.10 (Martin Integral) For any positive solution u of Lu = 0 on M , there is
a unique Radon measure µu on ∂0

M(M,L) so that

u(x) =
∫
∂0

M(M,L)
Kζ(x) dµu(ζ) .

Conversely, for any Radon measure µ on ∂0
M(M,L),

uµ(x) =
∫
∂0

M(M,L)
Kζ(x) dµ(ζ)

defines a positive solution of Luµ = 0 on M .
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Although this already looks like a classical contour integral the result is not yet truly satis-
factory. Unlike the classical case the boundary ∂0

M(M,L) depends not only on the underlying
space but also on the analysis of the operator L. A natural question is whether one could get
rid of this dependence. In general the answer is no. In 6.6 we will see some by no means exotic
examples. However, we will now see that in our case of operators on δ-hyperbolic spaces, this
is actually possible. This is a remarkable particularity not even valid for such simple spaces as
in Example 5.14 “Ideal Boundaries of Hm ×Hn”.

Back to hyperbolic spaces In the situation at hand, Φ-neighborhood bases are essentially
neighborhood bases of minimal Martin boundary points.

Theorem 5.11 (Characterization of Minimal Martin Points) Assume (BAC) holds. Let
(Ni) be a Φ-neighborhood basis with hubs pi. Denoting the interior of the closure of Ni ⊂M ⊂
M

M in the Martin compactification M
M of M by Ñi, there is exactly one Martin boundary

point ζ in
⋂
Ñi. The resulting Kζ is characterized as the only positive L-harmonic function

L-vanishing on every M \ Ni except for scalar multiples. In particular, this Martin point is
minimal.

Proof. By the Harnack inequalities, the sequence Kpi = G(·,pi)
G(p,pi) has a subsequence compactly

converging to some L-harmonic function Kζ representing a Martin boundary point ζ. Kζ is
L-vanishing on every M \ Ni because by the boundary Harnack inequality 5.7, every Kpj for
j > i, and hence the limit, is upper bounded by the potential HBKpi on M \ Ni.

Now assume there is another positive L-harmonic function u that is L-vanishing on M \N i

for every i, w.l.o.g. u(p) = 1. Applying the boundary Harnack inequality 5.7 we see H−1
B Kζ 6

u 6 HBKζ onM . Thus η := inf u/Kζ 6 1 is positive. By the strong maximum principle [Pin95,
Theorem 3.2.6, p. 84], the L-harmonic function u − ηKζ > 0 has to be positive everywhere,
else it would be identical zero. In the former case we can again apply the boundary Harnack
inequality 5.7 to Kζ and u−ηKζ to get (η+(1−η)H−1

B )Kζ 6 u which contradicts the definition
of η, unless η = 1 and u = Kζ .

We have the following characterization of the Martin boundary in case we have enough
Φ-chains:

Corollary 5.12 (Identifying the Martin Boundary) If under assumptions (BAC) in a
given compactification M of M (i.e., M is compact and M ⊂M dense) every boundary point
admits a neighborhood basis of the form N i ⊂ M for some Φ-neighborhood basis (Ni), it is
canonically homeomorphic to the Martin compactification MM.

Proof. Theorem 5.11 “characterization of minimal Martin points” yields an injective map from
M to MM. It is continuous because for every sequence (yi) in M converging to ζ ∈ M \M
the corresponding Martin functions Kyi converge to the unique Martin function that is L-
vanishing on all M \ Ni for some Φ-neighborhood basis (Ni) of ζ, that is Kζ . Thus, by
elementary properties of compactifications, it is already a homeomorphism.

From this and Lemma 5.5 “Φδ-neighborhood basis” we get the following principal potential
theoretic result on Gromov hyperbolic manifolds.

Corollary 5.13 (Gromov Boundary and Martin Boundary) Assume that M is Gromov
hyperbolic and (BAC) holds. Then the Gromov and Martin boundaries of M are canonically
homeomorphic and every Martin boundary point is already minimal,

∂GM ∼= ∂M(M,L) ∼= ∂0
M(M,L).
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In particular, some function u > 0 on M solves Lu = 0 if and only if there is a (unique) Radon
measure µu on ∂GM such that

u(x) =
∫
∂GM

Kζ(x) dµu(ζ).

The validity of such a simple identification of the Martin boundary with a geometric bound-
ary, which one may possibly expect from a naive guess, actually is a rare exception. If we only
slightly violate the hyperbolicity constraint we can get a completely different and rather in-
scrutable outcome with many non-minimal Martin boundary points.

Example 5.14 (Ideal Boundaries of Hm×Hn) The product space of two classical hyperbolic
spaces Hm×Hn, m,n > 2, has bounded geometry but it is no longer Gromov hyperbolic since
it contains flat planes obtained as products of pairs of geodesics in the two factors. In [GW93]
we find a thorough discussion of the case of the Laplace operator. There exist positive functions
h with −∆h = λ · h if and only if λ 6 λ0 where λ0 is the generalized principal eigenvalue. For
λ < λ0, the operator −∆ − λ Id is adapted and weakly coercive. The boundary at infinity (a
natural generalization of Gromov boundary) is homeomorphic to Sn+m−1, cf. [BH99, II.8.11(6),
p. 266]. In turn, for the minimal Martin boundary of −∆− λ Id, for λ < λ0, we have

∂0
M(Hm ×Hn,−∆− λ Id) = Sm−1 × Sn−1 × Iλ ,

where Iλ is a closed interval with a natural parameterization which depends on λ and which
degenerates to a single point when λ→ λ0 [GW93, p. 21]. The full Martin boundary contains
two additional pieces

∂M(Hm ×Hn,−∆− λ Id) = (Sm−1 ×Hn) ∪ (Sm−1 × Sn−1 × Iλ) ∪ (Hm × Sn−1)/ ∼ . (6)

The gluing maps for ∼ are described in [GW93, p. 27]. We observe that not only the boundary
at infinity does not coincide with ∂0

M(Hm ×Hn,−∆− λ Id) but the details of the partition of
the full Martin boundary (6) depend on λ.

Now that we have the right notion for a potential theoretic boundary at infinity, there
are some new formulations for L-vanishing. Note that these are slightly different from the
formulation in Definition/Proposition 5.6 “L-vanishing” because there it was only possible to
refer to L-vanishing at infinity of open sets V in M , i.e., on the Martin boundary points in
V ∩ ∂MM ⊂M

M.

Proposition 5.15 (L-Vanishing and Martin Boundary) Assume (BAC) holds and every
Martin boundary point has a Φ-neighborhood basis, e.g., M is Gromov hyperbolic. For an open
subset Ξ ⊂ ∂MM of the Martin boundary and a positive L-harmonic function u on M the
following are equivalent:

(i) u is L-vanishing on any open set V ⊂ M with V ∩ ∂MM ⊂ Ξ in the Martin compactifi-
cation.

(ii) On any open set V ⊂M with V ∩∂MM ⊂ Ξ in the Martin compactification, the following
property holds: Each positive L-harmonic function v on V with v > u on ∂V ∩M satisfies
v > u on V .

(iii) The Martin measure µu associated to u is supported outside Ξ, i.e., µu(Ξ) = 0.

Proof. (i)⇒(ii) If u is L-vanishing on V , RVu is a potential and RVu = u on V . Then the global
maximum principle 2.2 gives exactly the desired property.

(iii)⇒(i) Each Martin function Kζ is L-vanishing outside ζ and, therefore, the Martin
integral representing u L-vanishes outside the support of µu.
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(ii)⇒(iii) Assume µu(Ξ) 6= 0, then there is a compact K ⊂ ∂MM and an open W ⊂ M
M

such that K ⊂ W ∩ ∂MM b Ξ, V := W ∩M satisfies the condition in (ii), and µu(K) 6= 0
(since the Radon measure µu is inner regular). Therefore it is enough to consider the case
where u ≡ uK :=

∫
K
Kζ dµu(ζ).

We compare uK with the minimal Green’s function G(·, p) with pole p ∈M \ V . Recalling
the argument of (iii)⇒(i) we know that uK is L-vanishing on an open neighborhood N of
M \ V . By compactness of M \ V in the Martin compactification, M \ V can be covered by
finitely many Φ-neighborhoods contained in N and a compact subset ofM . Then the boundary
Harnack inequality 5.7 shows that there is a C > 0 such that C · G(·, p) > uK on M \ V and
especially on ∂V . But then from (ii) it follows that C ·G(·, p) > uK on V , hence on all of M ,
hence uK ≡ 0 because G(·, p) is a potential.

In the next section we will see that the integral representation we have obtained in the
Gromov hyperbolic case naturally extends classical contour integrals for (positive) harmonic
functions on the subclass of Euclidean domains which are uniform.

6 Geometry and Analysis on Uniform Domains
Here we consider domains sharing basic geometric and analytic properties with smoothly

bounded ones. Examples are canonical deformations of such domains to Gromov hyperbolic
manifolds of bounded geometry but also the validity of Poincaré-Sobolev type inequalities and
embedding theorems. We start with the definition and examples of so-called uniform domains.
Then we explain how one can transfer Ancona’s theory from hyperbolized uniform domains
back to original Euclidean domains to derive new analytic results and to recover classical
integral formulas.

6.1 Uniform Domains
The path connectedness of an open set is a topological condition. For finer geometric and

analytic investigations one seeks for a quantitative form of path connectedness. One of the
nowadays central notions is described in the following definition. We refer to [Aik12] for an
instructive overview and comparison of other regularity concepts for domains.

Uniform Domains A domain D ⊂ Rn is called a uniform domain, more precisely, a c-
uniform domain, if there is a c > 1 such that any two points p, q ∈ D can be joined by a
c-uniform curve. That is a rectifiable path γ : [a, b]→ D, for some a < b, from p to q
so that the following conditions are satisfied:

• Quasi-geodesic: l(γ) 6 c d(p, q).
• Twisted double cones: min{l(γ|[a,t]), l(γ|[t,b])} 6 c dist(γ(t), ∂D) for any t ∈

[a, b].

Note that being c-uniform is a scaling invariant condition: whenever D is c-uniform, λ ·D,
λ > 0, is also c-uniform.
Examples 6.1 (Uniform and Non-Uniform Domains) We start with some types of Eu-
clidean domains which are uniform:
• Any bounded domain with smooth or at least Lipschitz boundary is uniform.

• Non-compact rotationally symmetric domains bounded with profile functions of at least
linear growth are uniform. As an explicit example, choose f(t) = c1 · t+ c2, for constants
ci > 0 and let F : Rn−1 → R, n > 3, be given by F (x) := f(|x|). Consider the domain

Df := {(x1, .., xn) ∈ Rn | |x1| < F (x2, .., xn)}.
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To explain the idea of how to define the quasi-geodesics and twisted double cones joining,
e.g., the pairs of points p±k = (0, ...0,±k), k > 1, we note that for k = 1 we can choose
any such twisted double cone ⊂ Df along a half circle in the n − 1, n-plane joining p−1
and p+

1 . Then the quasi-geodesic and twisted double cone scaled by k serve for the p−k
and p+

k . Here it essential that f grows at least linearly to ensure that the twisted double
cone remains in Df .

• Bounded domains with certain types of fractal boundaries, like the Snowflake in R2 or
the complement of the Sierpinski gasket in R3 [ALM03], are uniform domains.

Non-Uniform Domains

square minus an 
iteratively defined 
family of lines

infinite strips in the 
Euclidean space

square minus circles

Uniform Domains

smoothly or 
Lipschitz regularly 
bounded domains

infinite cones and 
rotational figures with 
profile functions of at 
least linear growth

domains with self-similar 
fractal boundaries, like the 
Snowflake or the complement 
of the Sierpinski gasket

Figure 5: Typical (Non-)Uniform Domains

However, even completely harmless domains can be non-uniform:

• The difference of the cube (−1, 1)n ⊂ Rn minus the ball Bn1 (0) ⊂ Rn: (−1, 1)n \ B1(0)
is not a uniform domain, since we cannot reach points arbitrarily near to the boundary
point (0, . . . , 0, 1) ∈ ∂ ((−1, 1)n \B1(0)) by twisted cones, for some common constant
c > 0.

• The cylinder Bn−1
1 (0) × R ⊂ Rn and similarly Bk1 (0) × Rn−k ⊂ Rn, for 1 6 k 6 n− 1

are non-uniform. For the pairs of points p±k = (0, ...0,±k), k > 1, there are only twisted
double cones reaching from p+

k to p−k , for c = c(k) 6 1/k.

• Similarly, the domain R3 \ R× Z2 is not uniform.
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• As in the earlier example of non-compact rotationally symmetric domains Df we choose
profile functions but this time of sublinear growth like f(t) = c1 ·

√
t+ c2, for constants

ci > 0. Then, as in the last counterexample, Df is non-uniform.

6.2 Quasi-Hyperbolic Geometry
On any domain D ⊂ Rn we can define the quasi-hyperbolic metric kD introduced as an

extension of the definition of the Poincaré metric on the unit disc to arbitrary domains. It is
given by

kD(x, y) := inf
{∫

γ

1/đ

∣∣∣∣∣ γ ⊂ D rectifiable curve joining x and y
}

where we set đ = dist(·, ∂D). This corresponds to a conformal deformation of gEucl to the
merely Lipschitz continuous đ−2gEucl. The quasi-hyperbolic metric kD always has bounded
geometry since the chart

Id : (Bđ (x)/2(x), kD)→ (Bđ (x)/2(x), đ−2(x)gEucl)

(with radii measured in Euclidean distance) is 2-bi-Lipschitz and we see that (D, kD) has
(σ, `)-bounded geometry for some σ, ` > 0 both independent of D.

In general, kD need not to be (Gromov) hyperbolic, except D is a uniform domain. Due to
geometric work, in particular of Bonk, Heinonen, Koskela [BHK01], we have:

Theorem 6.2 (Gromov Uniformization) [BHK01, Th. 1.11] A bounded domain D ⊂ Rn
is uniform if and only if (D, kD) is both Gromov hyperbolic and the Euclidean boundary ∂D of
D is naturally quasisymmetrically equivalent to the Gromov boundary ∂G(D, kD). Moreover,
when D is c-uniform, then (D, kD) is δc-hyperbolic of (σ, `)-bounded geometry, for some δc > 0
depending only on c.

A map f : X → Y between metric spaces (X, dX) and (Y, dY ) is called quasi-symmetric if f
is not constant and if there is a homeomorphism η : [0,∞)→ [0,∞), so that for any x, a, b ∈ X,
t > 0, and dX(x, a) 6 t · dX(x, b) it follows that dY (f(x), f(a)) 6 η(t) · dY (f(x), f(b)).

Since dist(·, ∂D) is Lipschitz continuous but not smooth, (D, kD) is not a Riemannian
manifold. But we need some smoothness to ensure the adaptedness of L, in particular to get
uniform bounds on the coefficients of the adjoint operator L∗. Thus, in particular for analytic
considerations, we will work with smoothed versions of đ . Fortunately, there is a well-controlled
smoothing of đ :

Theorem 6.3 (Stein-Whitney Smoothing) [Ste70, VI.2.1, p. 171] There are constants
cα = cα(n) for every multiindex α such that on every open set D ⊂ Rn there is a C∞ function
ð defined on D with

c−1
0 đ 6 ð 6 c0đ and

∣∣∣∣∂αð∂xα

∣∣∣∣ 6 cαđ1−|α| .

In particular, (D, đ−2gEucl) and (D, ð−2gEucl) are quasi-isometric and, hence, (D, đ−2gEucl)
is Gromov hyperbolic if and only if (D, ð−2gEucl) is Gromov hyperbolic. Moreover, when
(D, đ−2gEucl) is δ-hyperbolic, for some δ > 0, then (D, ð−2gEucl) is an · δ-hyperbolic, for some
an > 1 depending only on n.
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6.3 Martin Theory for (Non-)Uniform Domains
Quasi-hyperbolic metrics can be used to transfer the potential theory on Gromov hyper-

bolic manifolds to understand the corresponding theory on uniform domains. Since there are
examples of non-uniform domains which carry a rather complicated potential theory, this cor-
respondence also gives us non-hyperbolic manifolds of bounded geometry with a much less
transparent Martin theory than in the hyperbolic case.

On a uniform domain D ⊂ Rn, we consider a Schrödinger operator LEucl = −∆ +V with a
smooth potential V satisfying |V | 6 a ·ð−2, for some a > 0. That is, we even allow a controlled
diverging behavior of V towards ∂D. The methods apply to more general operators, but we
only want to explain the idea and this case is particularly important and notationally simple.

On (D, ð−2gEucl) we consider the operator L = ð2 ·LEucl. Then L is adapted in the bounded
geometry charts. Note that L-harmonic functions are the same as LEucl-harmonic functions,
but L is not self-adjoint anymore. At least the adjoint L∗ is still adapted.

L is weakly coercive relative to (D, ð−2gEucl) provided LEucl has a positive first eigenvalue
not only for LEucl but also for ð2 · LEucl in the original Euclidean metric [Anc86]:

Strong Barrier There is a function s > 0 and some ε > 0 such that LEucls > ε · ð−2 · s.

Example 6.4 (Regularity Versus Strong Barrier) The Laplace operator on bounded
domains with smooth or Lipschitz boundary admits a strong barrier [Anc86, KK66]. In general,
the strong barrier condition is not a consequence of the uniformity of D but of additional
exterior conditions. An exterior twisted cone condition is sufficient [Aik12].

Under these mild conditions on LEucl the potential theory we established above readily
transfers to uniform domains where we now use the sets N δ

i from Lemma 5.5 “Φδ-neighborhood
basis”, defined relative ð−2gEucl, as a replacement for the concentric balls of Theorem 3.6
“boundary Harnack inequality on a disc” in the classical Euclidean setup.

Corollary 6.5 (Martin Theory on Uniform Domains) Let LEucl = −∆+V be an operator
with |V | 6 a ·ð−2 satisfying a strong barrier condition on some c-uniform domain D, for some
a, ε, c > 0. Then we have for any two LEucl-harmonic functions u, v > 0 on N δ

i ∩ D both
LEucl-vanishing4 towards N δ

i ∩ ∂D,

u(x)/v(x) 6 C · u(y)/v(y) for any two points x, y ∈ N δ
i+1 ∩D ,

for some C(a, ε, c, n) > 1. Thus, the topological and the Martin boundary are homeomorphic
and every Martin boundary point is minimal: ∂D ∼= ∂0

M(D,LEucl) ∼= ∂M(D,LEucl).

Proof. We first apply Theorem 6.2 “Gromov uniformization” to the uniform domain D, then
we transform đ−2gEucl into the smoothed ð−2gEucl using the Stein-Whitney smoothing 6.3.
We get an αn · δc-hyperbolic manifold of (σ, `)-bounded geometry with

∂D ∼= ∂G(D, đ−2gEucl) ∼= ∂G(D, ð−2gEucl) .

Now we can study L, which is weakly coercive and adapted, via the hyperbolic boundary
Harnack inequality 5.8 and Corollary 5.13 “Gromov boundary and Martin boundary”. We
conclude that

∂D ∼= ∂G(D, ð−2gEucl) ∼= ∂M((D, ð−2gEucl), L) ∼= ∂0
M((D, ð−2gEucl), L) .

4The definition of LEucl-vanishing towards N δ
i ∩ ∂D is the same as in Definition/Proposition 5.6 “L-

vanishing” and Proposition 5.15 “L-vanishing and Martin boundary” where we merely had an ideal boundary
of M and hence called it L-vanishing towards infinity.
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The Green’s functions relative LEucl on (D, gEucl) and L on (D, ð−2gEucl) are related by
G(x, y) = ðn−2(y)GEucl(x, y), while the Martin functions and the solutions, along with
the notion of L-vanishing, are the same. This means that the boundary Harnack in-
equalities carry over to D with LEucl and that ∂0

M((D, ð−2gEucl), L) ∼= ∂0
M(D,LEucl) and

∂M((D, ð−2gEucl), L) ∼= ∂M(D,LEucl).

Aikawa [Aik01, Aik04] has used a somewhat different approach to prove some remarkable
refinements underlining the sharpness of these potential theoretic result.

• In [Aik01] he derives boundary Harnack inequalities for the Laplacian on arbitrary uni-
form domains even without imposing a strong barrier condition. However, in his result
the Harnack constant depends on the domain D, whereas in the previous result it only
depends on the two parameters ε and c.

• In [Aik04] we even find that D ⊂ Rn is a uniform domain if and only if the Laplacian
satisfies boundary Harnack inequalities. As in Example 6.4 “regularity versus strong
barrier” one also needs to assume an exterior regularity of D. Again an exterior twisted
cone condition is sufficient [Aik12].

ui > 0 , ∆ui=0

ui=0

u1/u2(x) ≤ kG ⋅ u1/u2(p)

B

G

X is a complete Gromov hyperbolic 
space with bounded geometry

quasi-hyperbolic metric
X=(G, dist(z, ∂ G)-2 ⋅ gG) Validity of boundary Harnack 

inequalitites for the Laplacian

•p

•x

Here we summarize the three essentially equivalent properties of a Euclidean domain G discus-
sed above: (i) G is uniform, (ii) G admits a canonical conformal hyperbolic deformation of bounded 
geometry and (iii) the boundary Harnack inequality for the Laplacian holds on G.

G ⊂ Rn,  a bounded 
Euclidean uniform domain

Figure 6: The three essentially equivalent properties of a Euclidean domain D

Examples 6.6 We mention two instructive examples where non-uniformity of a domain de-
stroys the existence of boundary Harnack inequalities and where we concretely see how far the
topological boundary may deviate from the Martin boundary of the Laplacian.
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• In [Anc12] Ancona has described non-uniform Euclidean cones with only one topological
point at infinity but with uncountably many minimal Martin boundary points at infinity.

• In [IP94] Ioffe and Pinsky have proved that for the non-uniform rotationally symmetric
domains Df ⊂ Rn from Examples 6.1 “uniform and non-uniform domains” the set of
Martin boundary points at infinity is homeomorphic to Sn−2.

Finally we notice that this Martin theory on uniform domains reproves classical contour
integral formulas, for instance, for harmonic functions. The Herglotz theorem [Her11, Dur83]
states that a function f > 0 on the Euclidean unit disk (D, gEucl) is harmonic, ∆Eucl f = 0, if
and only if there is a Radon measure µf on S1 such that

f(x) =
∫
S1

1− |x|2

|x− y|2
dµf (y) .

For the Green’s function G for ∆Eucl, and thus for the Green’s function of the associated
hyperbolized manifold and operator, a direct computation shows that

Kζ(x) = lim
z→ζ

G(x, z)
G(0, z) = 1− |x|2

|x− ζ|2
, for any ζ ∈ S1.

But we also know from the above that we have a unique Martin integral representation:

f(x) =
∫
S1
Kζ(x) dµf (ζ) .

µf is now understood as a measure on a certain ideal boundary of (D, ghyp), the Martin
boundary, which in this case equals S1.
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