Differentialgeometrie I Blatt 6

Abgabe am **29.11.2017**

Aufgabe 1: Jacobifelder und Interpretation der Schnittkrümmung

Seien $p \in M$ und $v, w \in T_pM$. Dann ist $J(t) := \operatorname{dexp}_{tv}(tw) = t\operatorname{dexp}_{tv}(w)$ (mit $\operatorname{dexp}_{tv} : T_{tv}T_pM \cong T_pM \to T_{\exp(tv)}M$) bekanntlich ein Jacobi-Vektorfeld entlang der Geodäten $\gamma(t) = \exp(tv)$. Zeigen Sie:

- (a) J(0) = 0, $\dot{J}(0) = \nabla_{\dot{\gamma}(0)} J = w$.
- (b) Die Taylorentwicklung von $|J(t)|^2$ um t=0 lautet

$$|J(t)|^2 = |w|^2 t^2 - \frac{1}{3} g(R(w, v)v, w)t^4 + \mathcal{O}(t^5)$$
.

Berechnen Sie dazu explizit die Ableitungen und benutzen Sie die Jacobifeldgleichung $\ddot{J}(t) = R(\dot{\gamma}(t), J(t))\dot{\gamma}(t)$. Was sagt das über das Verhalten benachbarter Geodäten aus?

(c) Mit Polarisierung folgt für die Taylorentwicklung der Metrik $g_{ij}=g(\partial_i,\partial_j)$ in Normalkoordinaten

$$g_{ij} = \delta_{ij} - \frac{1}{3} R_{ik\ell j}(0) x^k x^{\ell} + \mathcal{O}(|x|^3)$$

mit $\partial_i|_{\exp(tv)} = \exp_{tv}(e_i)$ für eine Orthonormalbasis $(e_i)_i$ von T_pM .

Aufgabe 2: Volumen und Interpretation der Skalarkrümmung

Auf einer Riemannschen Mannigfaltigkeit M^n ist durch $dV = \sqrt{|\det(g_{ij})|} dx^1 \cdots dx^n$ in lokalen Koordinaten ein Maß definiert (global mit einer Zerlegung der Eins). Zeigen Sie:

- (a) dV ist von der Wahl der Koordinaten unabhängig.
- (b) In Normalkoordinaten (x^i) um p gilt

$$\det(g_{ij}) = 1 - \frac{1}{3}\operatorname{Ric}_{k\ell} x^k x^\ell + \mathcal{O}(|x|^3)$$

mit der Ricci-Krümmung $\operatorname{Ric}_{k\ell} = g^{ij} R_{ik\ell j}$.

(c) Für das Volumen von kleinen Bällen mit Mittelpunkt p gilt

$$\operatorname{Vol}^{g}(B_{r}(p)) = \left(1 - \frac{1}{6(n+2)}\operatorname{Scal} r^{2} + \mathcal{O}(r^{3})\right)\operatorname{Vol}^{\operatorname{eucl}}(B_{r}(0))$$

im Vergleich zu Bällen mit demselben Radius im \mathbb{R}^n . Scal = g^{ij} Ric_{ij} ist hier die Skalar-krümmung.

Aufgabe 3: Standardmetriken in Polarkoordinaten

Geben Sie für den \mathbb{R}^n , die S^n und die hyperbolischen Ebene die Metrik in normalen Polarkoordinaten (d. h. in der Form $dr^2 + f(r)g_{S^{n-1}}$) an. Warum nimmt die Metrik hier diese Form an?

Für die hyperbolische Ebene können Sie benutzen, dass im Poincaré-Scheibenmodell ein geodätischer Strahl vom Ursprung zum Punkt (x,0) die Länge $2 \operatorname{artanh}(x)$ hat.

Aufgabe 4: Flache Flächen

- (a) Einen flachen Torus bekommt man, indem man aus dem euklidischen \mathbb{R}^2 ein Gitter (eine zu \mathbb{Z}^2 isomorphe Untergruppe) herausteilt. Finden Sie flache Tori, die nicht isometrisch zueinander sind.
- (b) Geben Sie ein Beispiel für eine nicht vollständige Riemannsche Mannigfaltigkeit, deren Vervollständigung (als metrischer Raum, bezüglich der Distanzfunktion) keine Riemannsche Mannigfaltigkeit ist.