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1 Introduction

Scalar curvature is the simplest generalization of Gaussian curvature to
higher dimensions. However there are many questions open with regard to its
relation to other geometric quantities and topology. Here we will prove and
illustrate some features of scalar curvature in higher dimensions related to a
general hammock effect for scalar curvature, namely the one-sided affinity
for curvature decreasing deformations.

The first one is concerned with some prescribed decrease of the scalar
curvatureScal(g) of some Riemannian metricg on a given manifoldMn of
dimension≥ 3. We denote theε−neighborhood of some setU with respect
to g byUε.

Theorem 1.LetU ⊂ M be an open subset andf any smooth function on
M with f < Scal(g) onU andf ≡ Scal(g) onM \ U .
Then, for eachε > 0, there is a smooth metricgε onM with

g ≡ gε onM \ Uε andf − ε ≤ Scal(gε) ≤ f onUε.

Actually, the metricgε can also be chosen arbitrarily near tog in C0-
topology. As will become clear from proof when combined with results from
[L2].

The corresponding statements forf > Scal(g) are false even without
theC0-condition: in general one may decrease but not increase curvatures
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locally. As we will see the most prominent example is provided by the fol-
lowing “positive energy theorem” originally proved by Schoen and Yau and
somewhat later by Witten (cf. [S], [PT] and [LP]). We will present a different
and short proof relying on thenon-existence of certain curvature increasing
deformations underlining its relation to Theorem 1.

Theorem 2.Let(M, g) be an asymptotically flat spin manifold withScal(g)
≥ 0. Then the energyE(g) is non-negative andE(g) = 0 iff (M, g) is flat.

(The precise definitions and some explanations are given below).
Now we will briefly discuss the meaning of these results. It should

be quite obvious that Theorem 1 implies a rough version of the so-called
Kazdan-Warner Trichotomy (cf. [KW1],[KW2]) which can be stated as fol-
lows: Every closed manifoldMn, n ≥ 3 belongs to exactly one of the
following three classes described by properties of scalar curvature functions
f ∈ C∞(M,R) on these spaces:

A. Everyf can be realized as the scalar curvature of some metricg, i.e.f =
Scal(g)

B. f can be written asf = Scal(g) iff f is identically zero or negative
somewhere

C. f can be realized asf = Scal(g) iff f is negative somewhere

However, our point of view differs from such a type of classification.
First of all note that the metrics in Theorem 1 will have nearly the same
geometry as the original one (as a first application this will be used in the
proof of Theorem 3 below) while the Kazdan-Warner metrics are rather
special.

Supported by results such as those in Theorem 2 we think of some sort
of maximal amount of positive curvature which can be carried by a given
manifold. Starting from suchmaximal metricsother curved metrics are ba-
sically obtained by decreasing curvatures (and scalings) without necessarily
essential changes of the coarse “metric geometry”. Thus there should be a
more profound individual upper curvature bound whose sign is just either
>,= or < 0 (reflecting cases A-C). We refer to [L1] for a more detailed
discussion.

Next we turn to a related more concrete problem. Recall that a manifold
admits an almost flat structure (i.e. a family of metricsgε with diam(M, gε)
= 1 and|Sec(gε)| < ε, for eachε > 0) iff it is an infranilmanifold (cf. [G]
and [R]). The corresponding notions of almost Ricci or scalar flatness have
not been considered yet, partly because of a lack of techniques. Furthermore,
up to now, such structures have not appeared as frequently as almost flat
manifolds. This might change with further progress made in understanding
Ricci and scalar curvatures.
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We will show that almost scalar flat structures exist on each closed (i.e.
compact without boundary) manifoldMn in dimensionn > 3. More pre-
cisely, we have

Theorem 3.Mn admits a family of Riemannian metricsgε with

diam(M, gε) = 1 and |Scal(gε)| < ε, for anyε > 0.

Note that there are many manifolds which do not admit any metricg with
Scal(g) ≡ 0. This is related to Theorem 2 (cf. Sect. 5 below) while the proof
makes use of Theorem 1 (cf. Sect. 8).

The paper splits into three parts. In Sect. 2-4 we prove Theorem 1, in
Sects. 5-7 we are concerned with the positive energy theorem and in Sects. 8-
10 we derive Theorem 3.

2 Singular conformal deformations

The proof of Theorem 1 is subdivided in several stages (occupying the next
three sections):

1. We will show how to obtain a metricGε with:

Gε ≡ g onM \ Uε/3 andf − ε/3 ≤ Scal(Gε) ≤ f + ε/3 onUε/3.

For this construction we start with a conformal deformation outside a small
set and subsequently (cf. Sect. 3) these singular parts are smoothed changing
the conformal class.

2. In order to get the desired metric withg ≡ gε onM \Uε andf − ε ≤
Scal(gε) ≤ f onUε.we must check that the freedoms in these constructions
can be exploited in such a way that the curvature strictly decreases (cf.
Sect. 4).

It suffices to prove the following specialized version of Theorem 1 where
U is a cube inM = R

n. The general case is a straightforward extension
using suitable coverings by charts.

For the same reason it suffices (via scalings) to consider metricsg with
‖g − gEucl.‖C3

gEucl
� 1. This allows us to restrict the descriptions of some

of the geometric configurations to the Euclidean case.

Proposition 2.1 Letf be a smooth function onRn with supp(f −Scal(g))
= [−1, 1]n ⊂ R

n, f < Scal(g) on ] − 1, 1[n and let ε > 0 be given.
Then we can find a metricgε on R

n with gε ≡ g on R
n \ [−2, 2]n and

f − ε ≤ Scal(gε) ≤ f on [−2, 2]n.

Our strategy is to superpose a lot of small deformations. In order to add
up such modifications ofg it is convenient to use conformal changes of



388 J. Lohkamp

Fig. 1

g. The transformation law forScal becomes particularly simple when the
conformal factor is written ase2f · g, for some smoothf . (We always use
the sign convention∆f = +f ′′, for f on R).

Then one gets

Scal (e2f · g)
= e−2f · (Scal(g)− 2(n− 1) ·∆f − (n− 1)(n− 2) · ‖∇f‖2) .

In particular, forΨ =
∑
i
ϕi,with finitely many smoothϕi > 0,we note:

Scal(e2Ψ · g) = e−2Ψ · (Scal(g)− 2(n− 1)

·
∑

i

∆ϕi − (n− 1)(n− 2) · ‖
∑

i

∇ϕi‖2).(1)

Now we start as follows. Define latticesLδ ⊂ R
n with Lδ = {δ ·

(z1, · · · zn)|zi ∈ Z},δ > 0, take the following familyF (δ, %) = {Bδ·%(p) |
p ∈ Lδ ∩ [−1, 1]n} , % ∈ [1, δ−

1
2 ] of balls and also their union

F(δ, %) =
⋃

p∈Lδ∩[−1,1]n
, Bδ·%(p), % ∈ [1, δ−

1
2 ]

(cf. Fig. 1) and construct certain metrics on each of them.
Thus we first consider a single ball and notice the following elementary

Lemma 2.2 For µ ∈]0, 1[, q ∈ R
n we can find a smooth functionϕ =

ϕq(g, δ, %, µ) ≥ 0 on R
n \ {q} withϕ ≡ 0 on R

n \Bδ·%(q) and

(i) ∆gϕ ≡ 1 onBδ·%·(1−µ)(q) \ {q}
(ii) 0 ≤ ∆gϕ ≤ 1 onBδ·%(q) \Bδ·%·(1−µ)(q)
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(iii) Also we may assume that theϕare chosen uniformly in the sense that for
g → gEucl. inC3 and for every fixed tripleδ, %, µ : ϕ0(g)→ ϕ0(gEucl.)
compactly onRn \ {0} in C2 and also:

ϕ0(gEucl., δ, %, µ)
((
δ′ · %′
δ · %

)
· x

)
=

(
δ′ · %′
δ · %

)2

· ϕ0(gEucl., δ
′, %′, µ)(x)

Remark. In each of the following steps we will specify further properties of
ϕq which however can readily be adjusted.

In order to find such a family of functions one may choose a radially
symmetric functionϕ(x) = ϕ(|| x ||) on the EuclideanRn and choose
geodesic coordinates in order to generalize this definition to the curved case
choosingϕq(g, δ, %, µ)(x) = ϕq(g, δ, %, µ)(dist(p, x)) = ϕ(dist(p, x))

We use these functions to build up a singular metricG(δ, %, µ) which
will be further smoothed leading to the desired metricgε subsequently. We
setG(δ, %, µ) := e2Ψ(δ,%,µ) ·g with Ψ(δ, %, µ) :=

∑
q∈Lδ∩[− 3

2 , 32 ]n m(q) ·ϕq,

for somem(q) ∈ R
>0.

Lemma 2.3 For eachε > 0 we can find smallδ0 > 0, µ0 > 0 and a%0 > 0
such that for eachδ ∈]0, δ0[ there are multipliersm(q) with

| ∆Ψ(δ, %0, µ0)− (Scal(g)− f) |≤ ε

3
on R

n \ Lδ.(2)

Proof.We start by showing how to obtain thesem(q).
Define the following covering numbersa(q) = a(q, δ, %, µ) :=

# {p ∈ Lδ ∩ [−3
2 ,

3
2 ]n | q ∈ Bδ·%·(1−µ)(p)}, b(q) = b(q, δ, %, µ) :=

# {p ∈ Lδ ∩ [−3
2 ,

3
2 ]n|q ∈ Bδ·%(p) \ Bδ·%·(1−µ)(p)} and finally set

m(q) := (Scal(g)− f)(q)/ a(q), (resp. m(q) := 0 whena(q) = 0).
Directly from the definitions, we have:∑

z∈Bδ·%·(1−µ)(p)

(Scal(g)− f)(p)/a(p) ≤ ∆Ψ(δ, %, µ)

≤
∑

z∈Bδ·%(p)

(Scal(g)− f)(p)/a(p)

(The sums are taken over all the balls (around points inLδ ∩ [−3
2 ,

3
2 ]n)

containingz.)
Now, in order to findδ0, µ0 and%0 we observe, setting% = δ−

1
2 , µ = δ

in what follows:

a(δ, %, µ) = a(δ, δ−
1
2 , δ) ≥ const. · δ−n/2 on [−1, 1]n

b(δ, %, µ) = b(δ, δ−
1
2 , δ) ≤ const. · δ−(n−1)/2 on [−2, 2]n

anda ≡ b ≡ 0 on R
n \ [−1.6, 1.6]n (for any sufficiently smallδ > 0).
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Then the difference between upper and lower bound can be estimated as
follows:

0 ≤
∑

z∈Bδ·%(p)\Bδ·%·(1−µ)(p)

(Scal(g)− f)(p)/a(p)

≤ max
B2·δ·%(z)

(Scal(g)− f) · b(p)
a(p)

≤ const. ·
√
δ

Moreover

Sδ(g, f)(z) :=
∑

z∈Bδ·%·(1−µ)(p)

(Scal(g)− f)(p)/a(p)

−−−→
δ→0 (Scal(g)− f)(z),

uniformly in z on R
n since(Scal(g) − f) is a continuous function onRn

with Scal(g)− f ≡ 0 on R
n\]− 1, 1[n and

max
p∈Lδ∩B2·δ·%(z)

a(p)
a(z)

−−−→
δ→0 1 ←−−−0←δ

min
p∈Lδ∩B2·δ·%(z)

a(p)
a(z)

uniformly in z on compacta⊂ ]− 3
2 ,

3
2 [n.

Hence, for sufficiently smallδ > 0 we get
| ∆Ψ(δ, δ−

1
2 , δ)− (Scal(g)− f) |≤ ε

4 on R
n \ Lδ.

Now, we candecoupleδ, %, µ. Namely, we can choose afixed suffi-

ciently smallδ0 > 0 as above and such that for%0 = δ
− 1

2
0 andµ0 = δ0

| a(δ, %0, µ0)/a(δ, δ−
1
2 , δ)−1 |� 1 and| b(δ, %0, µ0)/b(δ, δ−

1
2 , δ)−1 |� 1

for δ ∈]0, δ0[, because decreasingδ merely corresponds to a scaling of the
whole setting byδ−2 which does not affect the covering numbers. Thus we
may adjust%0 andµ0 such that inequality (2) is satisfied for any sufficiently
smallδ > 0. 2

While this sounds rather like (2.1) we must take into account the fact
that∆Ψ describes the new scalar curvature only whenΨ and∇Ψ can be
assumed to be arbitrarily small. Unfortunatelyϕ looks very much like the
pole of a usual Green’s function nearq. However, outside “fixed” small balls
aroundp ∈ Lδ ∩ [−3

2 ,
3
2 ]n and in addition to 2.3 we have:

Lemma 2.4 For any givenη > 0, %0 > 0, µ0 ∈]0, 1
2 [ andλ ∈]0, 1

2 [,we can
find a sufficiently smallδ0 ∈]0, %−2

0 ], such that for everyδ ∈]0, δ0[

‖Ψ(δ, %0, µ0)‖C1(Rn\F(δ,λ)) < η
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This is seen in the Euclidean case(g ≡ gEucl.) by considering a singleϕ
onBδ(0) (i.e.q = 0). Setϕm(x) = ϕ(m·x)onB 1

m
·δ(0). Then(∆ϕm)(x) =

m2·∆ϕ(m·x), while‖∇ϕm‖(x) = m·‖∇ϕ‖(m·x) andϕm(x) = ϕ(m·x).
Thus multiplyingϕm by m−2 reproduces the original value of∆ϕ while
‖∇ϕ‖ andϕ decrease at the same rate asm−1 andm−2, respectively. Thus
noting thatϕ and∇ϕ are bounded onBδ(0)\Bδ·λ(0) simply taking a large
m� 1 (or choosing directly some smallδ � 1)will serve our purpose. Now
considerΨ(δ, %0, µ0). Here we have to add up the componentsm(q) · ϕq.
Applying the previous considerations to each component we get the result
for Ψ , since (forδ → 0), the covering numbera(p) andb(p) of (2.3) remain
bounded (because%0 andµ0 are fixed).

Obviously, the same argument carries over to the general case(g 6=
gEucl.) 2

As a consequence we can find aδ0(%0, µ0, λ) > 0 with
| Scal(G(δ, %0, µ0))− f | � 1 on R

n \ F(δ, λ) for everyδ ∈]0, δ0[.

3 Hammocks

The effective conformal deformation above is defined outside a certain set
F (δ, %) of small balls. Here we will define the desired metrics on the re-
maining part.

This cannot be done while staying in the same conformal class (e.g. flat
metrics on a torus cannot be conformally deformed into aScal < 0-metric).
In other words scalar curvature “hammocks” correspond to a change of
conformal classes.

The advantage resulting from those deformations described in the pre-
vious section is that the prescribed curvature function on each of those balls
is nearly constant. This allows us to use the following device.

We start with a metricgf(p) on Sn, n ≥ 3 (the dimensional restriction
has not been used so far) with| Scal(gf(p)) − f(p) | � 1 and such that
there is a ballB ⊂ Sn with (B, gf(p)) isometric toBr(0) ⊂ Fn

f(p) where the
latter is the n-dimensional space of constant sectional curvature≡ f(p). We
retain this identification in what follows. Such a metric can be obtained from
another one with constant scalar curvaturef(p) by some local deformation
(cf. (9.1) for some details).

Then, for some suitable0 < r′ < r Br(0) \ Br′(0) can be de-
formed in such a way that the new metricGf(p) equalsgf(p) near∂Br(0),
| Scal(Gf(p))− f(p) | � 1 and∂Br′(0) becomes totally geodesic and we
may even assume that∂Br′(0) is isometric to the round sphere of radiusr,
for anyr < r0 for somer0 depending only onf(p).

This type of deformations has been considered in [GL] and [L2].
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Next we will prepareG(δ, %, µ) to allow this prepared sphere to be glued
onto R

n\ small balls aroundp ∈ Lδ ∩ [−3
2 ,

3
2 ]n. Here one chooses some

λ, 0 < λ � % and deformsBδ·λ(p) \ {p} in such a way that for some
θ ∈]0, λ[, ∂Bδ·θ(q) becomes nearly totally geodesic. Then one just cuts out
Bδ·θ(q) and glues inSn \Br′(0), arriving at the desired metricgε.

Now we will put this sketch into more concrete form:

Lemma 3.1 For any givenε > 0 we can findδ0 > 0, %0 > 0, µ0 > 0
such that forδ ∈]0, δ0[, λ ∈]0, %0

2 [ there is a metricGθ(δ, %, µ0), for some
θ ∈]0, λ[, defined onRn \ F(δ, θ) with:

(i) Gθ(δ, %0, µ0) ≡ G(δ, %0, µ0) on R
n \ F(δ, λ)

(ii) | Scal(Gθ(δ, %0, µ0))− f | < ε
3 on R

n \ F(δ, θ)
(iii) ∂Bθ(p) is almost totally geodesic: that isGθ(δ, %, µ0) can be extended

smoothly near∂Bθ(p) by the metricGf(p) on the prepared sphere.

Proof. Choosing sufficiently small fixedλ > 0 and fixed% > 0 we find
that for δ → 0 : Ψ � 1, ‖∇Ψ‖ � 1 on Bδ·λ(p) \ B δ

2 ·λ(p) and by the

same argument
∑

q∈Lδ\{p}
m(q) · ϕq � 1, ‖ ∑

q∈Lδ\{p}
m(q) · ∇ϕq‖ � 1,

p ∈ Lδ, (ϕp as in (2.2)) onBδ·λ(p).
Then we can substituteBδ·λ(p) \ {p} equipped withe2Ψ · g by another

conformal metric onBδ·%(p)\Bδ·θ(p) for some suitableθ ∈]0, λ[ as follows.
We will choose a smooth functionΨ1 on Bδ·λ(p) \ Bδ·θ(p) for some

θ > 0 with Ψ1 ≡ Ψ near∂Bδ·λ(p) and|Scal(e2Ψ1 · g) − f | < ε
4 . This is

possible for sufficiently smallδ (% andµ fixed) asϕp converges (in the sense
of (2.2)) toϕp(gEucl.) which is rotationally symmetric aroundp. Hence, as
the above inequality (ii) can be taken for granted near∂Bδ·λ(p) one just
increases the radial 2nd order derivative ofϕp in such a way (dictated by the
Scal-transformation law (1)) that it leads toϕ1,p (substitutingϕ1) adding
up toΨ1 with property (ii) onBδ·λ(p) \ Bδ·θ(p). This is possible because
for this step we can assume thatf,Scal(g) and∆

∑
q∈Lδ\{p}

m(q) · ϕq are

constant(≡ c1, c2 andc3 respectively) onBδ·λ(p) and thus one only needs
to findϕ1,p with∣∣c1 − e−2ϕ1,p · (−2(n− 1) ·∆ϕ1,p − (n− 1) · (n− 2) · ‖∇ϕ1,p‖2

+c2 − 2(n− 1)c3)
∣∣ < ε

4
.

Now, we notice that∂Bδ·λ(p) is far from being totally geodesic (having
nearly the 2nd fundamental form of∂Bδ·λ(0) ⊂ R

n), whereas the radius of
∂Bδ·λ(p) (measured with respect toe2Ψ1 · g) becomes arbitrarilylarge for
smallr becauseϕ0(gEucl.) = const. ·‖x‖−n+2 andr ·exp(r−n+2) −−−→

r→0
+∞.
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Hence, summing up, for sufficiently smallδ > 0, there is aθ > 0 with
θ < λ such that∂Bδ·θ(p) becomes (nearly) totally geodesic fore2Ψ1 · g and
this can be improved on arbitrarily by choosing some smallerδ > 0 in such
a way that the prepared sphere can be glued smoothly for suitably small
r′ > 0 with δ · θ < r1 < δ · λ. 2

Summarizing we get a metric satisfying the condition

Gε ≡ g onM \ Uε/3 andf − α ≤ Scal(Gε) ≤ f + α onUε/3.

(We will use this for very smallα� ε.)

4 Curvature decreasing effect

Finally we will show how to refine the definition ofGε in order to getgε

with the following additional property

Lemma 4.1 Scal(gε) ≤ f onUε

Proof.We can use the procedure of the previous sections applied to a function
F with

F ≡ f − β onUε/3, f − β ≤ F ≤ f onU2·ε/3 \ Uε/3 and F ≡ f
onM \ U2·ε/3

for someβ > 0 with α� β � ε.
Therefore it is enough to show that we may assume thatScal(Gε) ≤

Scal(g) onUε.
As becomes clear from the previous step in the construction it suffices to

prove that the functionΨ can be chosen such that in addition to the properties
above:

Scal(e2Ψ · g) ≤ Scal(g) onUε \ F(δ, %)(3)

From equality (1) we immediately get:

Scal(e2Ψ · g) ≤ e−2Ψ · (Scal(g)− 2(n− 1) ·
∑

i

∆ϕi)(4)

and hence forScal(g) ≥ 0 this claim becomes obvious for any choice ofΨ
with ∆Ψ ≥ 0.

Now, whenScal(g) < 0 we set theright-hand sideof (4) ≤ Scal(g)
and get the condition(1− e−2Ψ ) · | Scal(g) | ≤ e−2Ψ ·2(n−1)· |∑

i
∆ϕi |.

Moreover, since we may assume thate−2Ψ > 1/2 and (via scaling) that
| Scal(g) |< 1 it is enough to make sure that| 1− e−2Ψ |< C · |∑

i
∆ϕi |,

for a certainC = C(n) > 0.
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Finally (since1 ≥ e−2Ψ > 1/2) the mean value theorem shows that this
can still be reduced ultimately to the

Claim.Ψ can be chosen such that| Ψ | ≤ c · | ∆Ψ |, for some prescribed
c > 0.

For this it suffices to consider the componentsm(qi) ·ϕqi . For notational
convenience, we considerϕi := ϕqi as being defined onBδ·%(0) ⊂ R

n

centered atqi = 0. Now | ∆ϕi | can be estimated as described in [L2](2.1):
Once again we further adjust the definition ofϕi. Recall that whenf ∈
C∞(Rn,R) is of the formf(x) = F (|| x ||) for some smooth functionF
onR

>0. Then one can write forr =|| x ||:∆f(x) = F ′′(r)+ (n−1)
r ·F ′(r).

We may assume thatϕi can be written asϕi(x) = φi(r) (outsideF(δ, %))
for some smooth functionsφi. Moreover one can choose this functionφi(r)
such that for a givenk > 0 φi(r)′′ ≥ k · φi(r) and≥ k· | φ′i(r) | on R

>0,
which is the key point here.

Finally, since we are onUε \ F(δ, %) we have the following estimate
∆ϕi ≥ a(n) · φ′i +b(n) · φ′′i , with b(n, %) > 0. Hence, for a suitably chosen
k > 0 we get∆ϕi ≥ a(n) · φ′i + b(n) · φ′′i ≥ c · φi 2

5 Positive energy theorem

Roughly speaking the positive energy theorem (cf. [LP] and [PT]) asserts that
the total energy of any “sufficiently reasonable” universe is nonnegative and
zero exactly when the system is in the vacuum state. This can be cut down to a
problem concerning “maximal” spacelike asymptotically flat hypersurfaces
(in Lorentz geometry). This maximality and a further reasonable assumption
(the so-called “dominant energy condition”) imply that this hypersurface
H(which will be the manifold under consideration) hasScal ≥ 0 (via Gauss-
equations). Now the energyE becomes a numerical invariant of the geometry
of H near infinity and the problem is to showE ≥ 0.

The first known proof is due to Schoen and Yau (cf. [SY 1], [SY 2]). One
assumesE < 0 and produces a contradiction by showing the existence of a
certain minimal hypersurface⊂ H which could not exist assuming that the
positive energy theorem holds in lower dimensions. This proof does not need
the spin assumption. However the argument works perfectly only in dimen-
sion≤ 7. In higher dimensions there might be hypersurface singularities
which destroy the possibility of applying the induction hypothesis.

The second proof by Witten (cf. [PT]) can be extended to spin manifolds
of arbitrary dimensions. It proves and uses the existence of a certain spinor
on the manifold allowing the energy to be expressed in terms of scalar
curvature, (squares of) the norm of this spinor and its covariant derivative.
This leads to quite obvious estimates for the energy asE ≥ 0 for Scal ≥ 0.
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In the following we describe a more geometric argument which works for
spin manifolds in arbitrary dimensions via contradiction assumingE < 0.
We use the negativity ofE to deform the manifold in such a way that
the resulting one is Euclidean outside a compact setK with Scal > 0 in
interiorK. Using this manifold we can construct variouscompactmanifolds
with Scal > 0. On the other hand, one can use spin geometry to show that
some of these manifolds cannot admit any metrics withScal > 0. Hence
E ≥ 0.

Now we describe the actual mathematical set-up:
Let (Mn, g) be a Riemannian manifold containing a compact subset

K ⊂M such that each component (“end”)Ck of M \K is diffeomorphic
to R

n \ B1(0). With respect to this chart we assume that the metricg on
M \K can be written as

g = gEucl. + h, with hij = O (||x||−p) and

||x|| ·
∣∣∣∣∂gij

∂xk

∣∣∣∣ (x) + ||x||2 ·
∣∣∣∣ ∂2gij

∂xk∂xl

∣∣∣∣ (x)

= O (||x||−p) with p > (n− 2)/2

In other words, outside a compact setM looks more and more (i.e. for
||x|| → +∞) like the EuclideanRn with a certain deviation motivated by
physics (one may think of a “distribution of matter” in acompactdomain).
If (M, g) satisfies these conditions we will sayM is asymptotically flat.

Moreover, one is also interested in measuring the “total energy”E(M, g)
of M . This can be done (i.e. can be defined properly) ifScal(g) =
O(||x||−p), forp > n and we will also assume that this condition is satisfied.

The actual “physical” definition ofE would be rather too much of a
digression here (it can be found in [LP], [PT] or [S]). The important point,
which we make use of, is thatE can be recovered as a coefficient in a suitable
expansion ofg near infinity and we will use it as a definition ofE.

More precisely, we first deform the ends making them conformally Eu-
clidean as follows (cf. [S](4.1)): For some suitably chosen cut-off functionϕ
onR

n \K with ϕ ≡ 1 near∂K andϕ ≡ 0 near infinity one may first define
gϕ := ϕ · g+ (1−ϕ) · gEucl.. Then, for suitableϕ (here the Scal-condition
enters) one can, by applying a (by now) standard argument, find a conformal
deformation (namely taking a non-trivial elementh of the kernel of the con-
formal Laplacian)h4/n−2 · gϕ with Scal(h4/n−2 · gϕ) ≡ 0, h > 0, h → 1
near infinity such thath4/n−2 · gϕ is again asymptotically flat.

Moreover it is not hard to chooseϕ in such a way thatE(M,h4/n−2 ·gϕ)
becomes arbitrarily close toE(M, g). In other words it suffices to prove the
positive energy theorem for this type of asymptotically flat manifold. In this
particular case we may defineE as follows:
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Noting thath can be written as

h = 1 +
Ak

‖x‖n−2 +O(‖x‖1−n) on R
n \B1(0) with Ak ∈ R

beinguniquelydetermined, we setE(M,h4/n−2 · gϕ) := 4(n − 1) · Ak.
(Note that this yields an energy for each endCk.) In general, one could
approximate(M, g) by certain(M,h4/n−2ϕn) and defineE(M, g) as the
limit of E(M,h4/n−2 · gϕn).

Now, finally we can formulate

Proposition 5.1 E(M,h4/n−2 · gϕ) ≥ 0 for each endCk ofM .

Up to this point we have described the reductions used by Schoen and Yau
on their way to the proof. Having reached this point the real geometric work
begins. In their minimal hypersurface proof Schoen and Yau use the modified
metric mainly to simplify geometric constructions and calculations made in
order to gain control to handle such a hypersurface.

We will also utilize it but in a different way. In particular, we use the
(trivial) observation thath is harmonic onRn \BR(0) :
−γ ·∆h+ Scal(gEucl.) · h = Scal(h4/n−2 · gEucl) · hα with γ, α > 0 and
Scal(gEucl.) = Scal(h4/n−2 · gEucl) ≡ 0.

6 Negative energy yields positive curvature

Now we assume that the energyE of at least one end of our asymptotically
flat manifoldMn (equipped withg0 = h4/n−2 · g) is negative. We will
prove that this assumption can be “transformed” into a purely geometric
condition.

We can (and will henceforth) assume thatM has only this one end.
For instance, one could close the other ends by bending them together and
compactifiying them by adding points “at infinity”. This can be done in such
a way thatScal ≥ 0-metrics result (cf. the argument in (6.2) below).

Proposition 6.1 If E < 0, then we can find another complete metricg1
onMn with Scal ≥ 0 (andScal > 0 in some points) and such that there
is a compact setK ⊂ Mn with (Mn \ K, g1) being isometric to(Rn \
BR(0), gEucl.) for someR > 0.

We will reduce the proof of (6.1) to the following

Lemma 6.2 Leth = 1
||x||n−2 +f be harmonic onS = B6(0)\B1(0) ⊂ R

n

(equipped withgEucl.). Then there is aδ = δ(n) > 0 such that, provided
|f | < δ, there is a smooth functionH > 0 onS with

(i) ∆H ≥ 0 onS and∆H > 0 in some interior points ofS
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(ii) H ≡ h near∂B1(0)
(iii) H ≡ const.> 0 near∂B6(0).

Proof.As already mentioned above for a functionF onR
n\(0) withF (x) =

G(||x||) for some smoothG one finds forr = ‖x‖ : ∆F (x) = G′′(r) +
n−1

r ·G′(r).
Our first aim is to obtain a smooth functionh1 > 0 onR

>0 with h1(r) ≡
1

rn−2 on ]0, 2], h1 ≡ const.> 0 on R
≥5 with h′′1(r) + n−1

r · h′1(r) ≥ 0 for
r ∈]2, 5[ and> 0 on an intervalI ⊂ [3, 4].

For this purpose we definef = f(d, s) ∈ C∞(R,R≥0) as follows:

f(d, s)(r) = s · exp(−d/5− r) on R
≤5, f(d, s) ≡ 0 on R

≥5.

Claim.For suitably chosens, d > 0 we have

(i) f ′′(r) + (n− 1) · f ′(r) > 0 on ]1, 5[
(ii) f ′′(4) >

( 1
rn−2

)′′ |r=4 , f
′(4) >

( 1
rn−2

)′ |r=4 andf < 1
2 · 1

rn−2 on
]1, 5[

Proof of this claim.

f ′(r) = −s · d

(5− r)2 · exp(−d/5− r), f ′′(r)

= s ·
( −2d

(5− r)3 +
d2

(5− r)4
)
· exp(−d/5− r)

Hence, for eachk > 0 we can findd0 = d0(k) > 0 such that for any
d ≥ d0, s > 0 : f ′′ + k · f ′ > 0 on ]1, 5[. Assumingk ≥ n− 1 we can be
sure that(i) is satisfied. For(ii) we choose somek0 ≥ 3· | ( 1

rn−2

)′′ |r=4

/
( 1

rn−2

)′ |r=4 . Then, for anyd ≥ d0(k) we can find somes > 0 such that

f ′′(4) = 2 · ( 1
rn−2

)′ |r=4 and (hence)f ′(4) >
( 1

rn−2

)′ |r=4. By choosing
a sufficiently larged we can be sure thatf < ε on ]1, 5[ (for every given
ε > 0).

Thus takingk = k0 + n we can find somef as claimed.
Next we use 1

rn−2 andf to geth1 by double integration: Using properties
(i) and(ii) of f we can find a smoothk1 > 0 with:

k1 ≡
( 1

rn−2

)′′
on [1, 3], k1 ≡ f ′′ on R

≥4 and satisfyingk1 ≥
( 1

rn−2

)′′
on [3, 4] and in order to fix the integration constant:∫ 4

3
k1(r)dr = f ′(4)−

(
1

rn−2

)′
|r=3

Defineh1 ash1(z) :=
∫ z
1

(
(
∫ y
1 k1(x)dx) + ( 1

rn−2 )′ |r=1
)
dy+ 1

rn−2 |r=1
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Thenh1 > 0 (sincef < 1
2 · 1

rn−2 ), smooth andh1 ≡ const. > 0 on
R
≥5; moreoverh1 = 1

rn−2 on [1, 2] andh′′1 + n−1
r h′1 ≥ 0 on R

≥1.
This latter inequality is obvious outside ]3, 4[. On ]3, 4[ we know that

h′′1 = k1 ≥
( 1

rn−2

)′′
and (therefore)h′1 ≥

( 1
rn−1

)′
. Thus

( 1
rn−2

)′′ + n−1
r ·( 1

rn−2

)′ = 0 leads to the desired inequality.
We may assume∆(h1(‖x‖)) = h′′1(r) + n−1

r · h′1(r) > c > 0 on [3.1,
3.9].

Now we may attack the general (non-rotationally) symmetric caseh =
1

‖x‖n−2 + f ,∆h = 0.
Choose a fixed cut-off functionψ ∈ C∞(Rn, [0, 1]) with ψ ≡ 1 on

B3.4(0) andψ ≡ 0 on R
n \B3.6(0) and defineH := h1 + ψ · f

Claim. There is aδ > 0 depending only on the dimensionn such that,
providedsupS |f | < δ , ∆H ≥ 0 (and> 0 in some interior points ofS).

The proof of this claim starts by noting that∆f = 0.Thus for eachε > 0
there is aδ > 0 such thatsupS |f | < δ implies‖f‖

C3(B4(0)\B3(0)) < ε via
elliptic theory.

In particular, we may assume|∆(ψ ·f)| < ε. This obviously implies the
claim for sufficiently smallδ resp ε and sinceh1 was fixed the general case
of the Lemma is proved. 2

Now we derive (6.1) from this Lemma.

Proof of (6.1).As explained in the previous section we may assume that
g0 = h4/n−2 · gEucl. onM \K ∼= R

n \B1(0) for some harmonic function
h(x) = 1 + E

4(n−1)·‖x‖n−2 + f , with sup
(|f | · ‖x‖n−1

)
< +∞. In order to

apply (6.2) we first note that 1
‖x‖n−2 , which is the fundamental solution of

∆G = 0, reproduces under scalings.
That is, if we substituteg1 = gEucl. for gλ = λ2 · gEucl. then 1

‖x‖n−2
g1

=
λn−2

‖x‖n−2
gλ

and therefore for our purpose we can identify (via rescaling) for any

positive integerm:

6m(n−2)

‖x‖n−2
gEucl.

living onB6m+1(0) \B6m(0) with

1
‖x‖n−2

gEucl.

living onB6(0) \B1(0)

Now the point is that under this identification theC0−Norm of the per-
turbation termf = O(‖x‖1−n)′′ converges to zero form → +∞ (note
that)| 6m(n−2) · f(6m) |≤ const. · 6−m.

In particular, for sufficiently largem we may restrict our considerations
to the case that|f | < |E|

4(n−1) · δ onB6(0) \ B1(0) and we may apply (6.2)
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to get a function̄h = 1 + E
4(n−1) ·H. The geometry of̄h4/n−2 · gEucl. is as

follows:
Near∂B1(0) it is just h4/n−2 · gEucl., near∂B6(0) it is Euclidean and

from the transformation rule for Scal under conformal changes (starting
from the Euclidean one) we get:

−γ ·∆h̄ = Scal(h̄4/n−2 · gEucl.) · h̄α,

for someγ, α > 0 depending only onn.

Thus we find thatScal ≥ 0 and> 0 in some points sinceE < 0. 2

7 Detecting flatness

Now we are able to reduce the problem to the question of whether certain
compactmanifolds admit aScal > 0-metric. It is here that we employ spin
geometric arguments. Henceforth we shall assume thatM admits a spin
structure and note that the connected sum of spin manifolds is still spin.Also
we show how to prove thatE = 0 iff (M, g) is isometric to(RngEucl).

We will outline two proofs for (6.1), both using versions of the Lich-
nerowicz obstruction toScal > 0-metrics: non-vanishinĝA-genus and gen-
eralizations thereof.

Proof 1(using just the “standard” Lichnerowicz argument). Take(Mn, g1)
described in (6.1) and use it to construct (by induction) complete manifolds
(Nk, g(k)) of dimensionk ≥ mwith (Nk \K(k), g(k)) isometric to(Rk \
B1(0), gEucl) andScal(g(k)) > 0 on interior(K(k)) for some compact set
K(k) ⊂ Nk. This can be done in the same way as in ([L1], sect. 6). Choose
somek ≥ m with k = 4d for some integerd > 0 and take a spin manifold
Ak with Â([Ak]) 6= 0. Now “cover”Ak (as in [L1], sect.4) by sufficiently
manyNk. That is, take any metric onAk and scale it by a huge constant
(making it nearly flat) and choose a well-ordered “Besicovitch” covering
of Ak by nearly isometric ballsBi. Cut out some smaller (disjoint) balls
B′i ⊂ Bi (i.e.B′i ∩ B′j = ∅ for i 6= j) and replace them by suitably scaled
(K(k), g(k)). Then one can distributeScal all over this new manifoldBk

and one gets aScal > 0-metric onBk while it can obviously be arranged
thatÂ([Bk]) 6= 0.

However these two conditions are not compatible as the Lichnerowicz
formula (cf. [LM], p.161)D∗D = ∇∗∇ + 1

4Scal (whereD and∇ denote
the Dirac operator and the covariant derivative respectively) implies that
kerD = CokerD = 0, while indexD = Â([Bk]) 6= 0. HenceE ≥ 0. 2

Proof 2(using Gromov-Lawson’s Twisted Dirac bundles): The Riemannian
manifold(Mn, g1) obtained in (6.1) can be “imbedded” in a flat torusTn.
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More precisely, take a cube containingB10(0) ⊂ R
n and identify opposite

sides producing a flat torus. Now substituteM \ (Rn \B6(0)) for B6(0) ⊂
Tn equipped with the natural metric. This is a manifold diffeomorphic to
M̂ # Tn (whereM̂ is a one point compactification ofM) equipped with
some metric withScal ≥ 0 (andScal > 0 in some points which implies that
the whole manifold admits aScal > 0-curved metric).

However ifM̂ # Tn is covered by some spin manifold (this is certainly
the case whenM is spin) then we can use a generalized version of the
Lichnerowicz formula by Gromov and Lawson to show thatM̂ # Tn cannot
admit anyScal > 0-metric. Once again this meansE ≥ 0. 2

Remarks.1. The classical three-dimensional case iscompletelycovered by
these arguments, as everyorientable3-manifold is already spin. Thus, for
the general non-spin manifolds one just takes the orientation covering.

2. It turned out recently that the second proof can be shown to be “equiv-
alent” to the positive energy theorem, i.e. the non-existence ofScal > 0-
metrics on enlargeable manifolds can be deduced from the validity of the
positive energy theorem (cf. [L3]).

Finally, for completeness, we will discuss the caseE = 0, whose deriva-
tion from the above is pretty standard (cf. [S]).

If E(M, g) = 0,Scal(g) ≥ 0, then(M, g) is isometric to(Rn, gEucl)
This can be seen as follows:
If Scal(g) > 0 in some point, then one can easily deform(M, g) to

(M, g1) with (M, g1) still asymptotically flat with Scal(g1)
> 0, but withE(M, g1) < 0. This contradicts (6.1) and also proves that
g cannot be deformed to such a metric withScal > 0 in some point. This
in turn implies thatg is Ricci flat. Now one again usesE(M, g) = 0 and
applies some Bochner type argument to show the extension ofn linear in-
dependent parallel vector fields onM , implying thatM is isometric to the
flat R

n. 2

8 Shortening geodesics

Here we will start our proof of the existence of scalar flat structures. Three
types of deformations are used in the proof. We begin by proving that any
closed geodesic (without selfintersection) can be shortened without essential
(decreasing) effects on Scal. This is the place where dimensionn > 3 is
used substantially and it is therefore rather unclear whether almost scalar
flat structures generally exist in dimension 3. Secondly, we show how to
find a closed geodesic lying quite densely spread all over the manifold (after
some changes of the given metric but again without negative influences on
Scal). Finally we use the methods of Theorem 1 to adjust the upper bound
of Scal.
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Let gL = L2 · gS1 + gEucl. be the standard product metric on
S1 × Sn−2×]0, 1[⊂ S1 × B1(0) ⊂ S1 × R

n−1, n ≥ 4 for some (large)
L > 0.

Proposition 8.1 For eachδ > 0 there is a metricgδ on S1 × B1(0) with
gδ ≡ gL near the boundary,Scal(gδ) ≥ −δ anddiam(S1 ×B1(0)) ≤ 3.

First of all a direct computation leads to the following formula

Scal(f2 · gS1 + g2 · gSn−2 + gR)

= −
(

(n− 2) · g
′′

g
+
f ′′

f
+ (n− 2) · f

′

f
· g
′

g

+
(n− 3) · (n− 2)

2
· (g
′)2 − 1
g2

)
(5)

with f(r), g(r) being smooth functions onR.
We claim that the standard metric (corresponding tof ≡ L, g(r) = r)

can be substituted for another (nearly) scalar flat metric, but withf being
very small near0.

Proof of (8.1). Step 1:Choose some smoothf = fε,δ,L, for constantsε, δ > 0
given, as follows (cf. Fig. 2)

f =


L on R

≥−ε

havingf ′′ < 0 on ]− 2ε,−ε[
linear on[−3ε,−2ε]

havingf ′′ > 0 on ]− 4ε,−3ε[
δ on R

≤−4ε

Step 2.Choose some smooth positiveg = gε,δ,L,η0 , for constantsε, δ, µ, η0
> 0 given, with

g(r) =



r on R
≥1

havingµ > g′′ ≥ 0 on [34 , 1]
linear on[0, 3

4 ]
F on [−ε, 0] (F defined below)
η on [−4ε,−ε] for someη > 0, η ≤ η0
havingg′′ < 0 on ]− 5ε,−4ε[ and being equal to

sin(r + 5ε) near− 5ε

We construct a positive smoothF on R as follows (this is basically the
same thing as in [GL], chap.1):

Start withf0 = α0 · r + β0 for someα0, β0 > 0, α0 < 1 on [−β
α , 1].

This fulfills the inequalityf ′′0 · f0 + f ′0 · f ′0 < 1. Next we bendf0 “a

little bit”, i.e. we definef1 ≡ f0 on [12 + 1
8 , 1], linear onR

≤ 1
2− 1

8 with
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Fig. 2

0 ≤ f ′1 = α1 < α0 = f ′0, f ′′1 ≥ 0 on R and such thatf ′′1 · f1 + f ′1 · f ′1 < 1
is still satisfied. Now this “same” bending can be iterated untilf ′n = 0.
More precisely, after some rescaling we may repeat the previous step with
f0 replaced byf1 etc.

The point is thatαi+1−αi can be chosen arbitrarily within[0, αi−αi−1]
as in each stepf ′i · f ′i decreases, whilef0 · f ′′

0 remains upper bounded (as
can be seen by rescaling).

Thus after finitely many steps we haveF = fn with F = α · r + β on
R
≥1, F, F ′, F ′′ ≥ 0,

F ≡ c > 0 on R
≤γ , for someγ ∈ R.

Now, after some obvious rescaling and translatingF fits into the defini-
tions ofg.

Step 3.We claim we can chooseδ0 in such a way thatScal (f2 · gS1 + g2 ·
gSn−2 + gR) ≥ 0 onS1 × Sn−2×]− 5ε, 1

2 ]
From Step 2 and formula (*) we know thatScal ≥ 0 onS1×Sn−2×]−

ε, 1
2 ]∪ [−5ε,−4ε]. Also from step 1 we see thatScal ≥ 0 onS1 × Sn−2 ×

[−3ε,−ε]
The only domain we have to devote care to isS1×Sn−2× [−4ε,−3ε].

Here we haveScal = −f ′′
f + 1

η2 , which is obviously positive for some small
η0 > 0.

Now we can deduce (8.1): Chooseδ = 1
8 , ε = 1

100 . Then we can find
some smallµ, η0 > 0 such thatf andg as constructed in steps 1-3 satisfy:
Scal ≥ −δ.
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Also the distance of any two points inS1×B1(0) (and hence the diam-
eter) is< 3:

For any two pointsp, q ∈ S1 × B1(0), p = (p1, p2), q = (q1, q2)
and join these points along the radius with(p1, 0) and(q1, 0) respectively
and then join these two points alongS1 × {0}. The length of this part is
≤ 1

8 + 2 · 5
100 + 2 < 3. 2

Actually, we will use the “hyperbolic version” of (8.1), which we are
going to deduce now.

Corollary 8.2 For any δ > 0 we can find a metricgδ on S1 × B1(0)
satisfyinggδ = L2 ·cosh2 r ·gS1 +sinh2 r ·gSn−2 +gR (i.e.gδ is hyperbolic)
near the boundary,

Scal(gδ) ≥ −1− δ and diam(S1 ×B1(0)) ≤ 3

Proof.We reduce this case to (8.1) as follows:
Substitutesinh r (defined on [0,1]) forfε on [r0, 1] for somer0 < 0 and

ε > 0 with

fε =

{
h · sinh(r + ε) + (1− h) · sinh r on R

≥0

having f ′′
ε

fε
≤ 1, fε ≥ 1 andf ′ε = 1 nearr0(with fε(r0) = 0)

for some fixedh ∈ C∞(R, [0, 1]), with h = 1 on R
≤ 1

4 , h ≡ 0 on R
≥ 3

4 .
Substitutecosh r on [0, 1] for gε on [r0, 1] defined as follows:

gε =
{
L · cosh on R

≥0

satisfyingg′′ ≤ cosh, g′ ≤ 0 andg ≡ const.≥ L nearr0.

It is easy to check that, for sufficiently smallε > 0,

Scal
(
g2
ε · gS1 + f2

ε · gSn−2 + gR

) ≥ −1− δ

2

Moreover, nearS1×Sn−2×{r0} the metric is precisely the Euclidean one
as assumed in (8.1). Thus applying (8.1) forδ

2 yields the claim. 2

Remark.The reader might be tempted to expect that some more care in
choosing the warping function could even produce scalar flat curve shorten-
ings. However there is no way of accomplishing this: just imbed the resulting
tube in a (flat) torus . The metric will become scalar flat. But in the torus
case we have already mentioned that any scalar flat metric has to be flat (cf.
Sect. 7), while the tube containing the shortened geodesic cannot be flat.
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Fig. 3

9 Closed geodesics

We want to show the existence of closed geodesics lying arbitrarily “dense”
in M after carrying out some well-controlled (stepwise) metrical deforma-
tions.

As |Scal| decreases under scaling by large constants, every closed man-
ifold Mn, n ≥ 3 admits a metricg0 with Scal(g0) ≥ −1. (Of course,M
even admits a metric withScal ≡ −1 but we do not need it here.) We start
with such a metric and prove:

Proposition 9.1 For eachδ > 0 there is a metricgδ onM and a closed
geodesicγδ (without selfintersections) such that

(i) dist(x, γδ) ≤ δ for each pointx ∈M
(ii) −1− δ ≤ Scal(gδ)

Proof.First of all choose a piecewise smooth geodesic curveγ(δ) in (M, g0)
without selfintersections and withdist(x, γ(δ)) ≤ δ

2 , for eachx ∈M . This
can easily be done by taking some suitableδ

2 -dense set of points and joining
pairs of points step by step by geodesic arcs.

Now we deform our metricg0 near the edges ofγ(δ) in such a way that
the new metricgδ will haveScal ≥ −1− δ andγ(δ) can be substituted for
an entirely smooth (closed and selfintersection-free) geodesicγδ.

First of all we use geodesic coordinates around each edgep and choose
disjoint ballsBr(p) around them (lying in the coordinate neighbourhood).

Now we can chooseC∞ cut-off functionshp on Br(p) with hp ∈
C∞(M, [0, 1]), hp ≡ 1 near∂Br(p), hp ≡ 0 nearp such that−1 − µ <
Scal(hp · g0 + (1 − hp) · ghyp.) for any givenµ > 0. Hereghyp. denotes
the hyperbolic metric pushed forward from the tangent space atp by the
exponential map. This is a simple consequence of the fact that both1−jets
of g0 andghyp. coincide inp, Scal(g0) ≥ Scal(ghyp.) ≡ −1 andScal is
computed from the 2-jet of the metric and the 2nd order term enters linearly.
We call the new metricgµ.

We may assumeγ(δ) is still (piecewise) geodesic with respect togµ

(otherwise one can easily redefineγ(δ)).
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Fig. 4

Thus we have reduced the problem to the following

Lemma 9.2 LetB ⊂ H
n be a ball around the originp, γ1, γ2 two distinct

geodesic arcs starting fromp. Then we can find a metricgδ on B with
gδ ≡ ghyp. near ∂B, a geodesicγδ ⊂ B without selfintersection with
γ ≡ γ1 andγ ≡ γ2 respectively near∂B and such that−1− δ ≤ Scal(gδ),
for δ > 0 given.

Proof.We considerB as a small hyperbolic ballB ≡ Br(p) ⊂ H
n. In polar

coordinates hyperbolic metrics may be described as[0, r[×Sn−1 equipped
with gR + sinh2 r · gSn−1 , with the usual identification in0.

Now we choose a distinguished point “0” outsidep and consider a small
ballBr′′(0) ⊂ Br(p), r′ � r. Next, we delete0 and deform the remaining
part ofBr′(0). We replacesinh with some smoothf > 0 with f ≡ sinh
nearr′ and extendf to the negative axis (as in the proof of (8.1)) in such a
way that for somer′′ < 0, |r′′| � 1,′′ ∂Br′′(0)′′ becomes totally geodesic
and such that for small givenδ > 0 : −1 − δ < Scal(gR + f2 · gSn−1) on
Br′(0) \Br′′(0) andScal ≥ 0 near∂Br′′ .

All this can be done quite easily using equation (5) as in Sect. 8 and is left
to the reader. The positive curvature ofSn−1 plays the role of the antagonist
of the first and second derivative off .

Next we start with the standard spherical metric onSn, n ≥ 3 and deform
this metric on a ballB ⊂ Sn in such a way that we get (after cutting out a
small ball⊂ B) a totally geodesicSn−1 boundary sphere (looking the same
as in the hyperbolic case), without changes outsideB and such that Scal
≥ 0 in the transition domain. Once again this can be done as in (8.1).
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Now we may form the “connected sum”Br(0) # Sn = Br(0) to get our
metric onBr(0): we may adjust these deformations to be able to glue these
pieces along their totally geodesic boundary spheres reconstructingBr(0)
with a smooth metric with−1 − δ < Scal(g). Note that the sphere can be
chosen arbitrarily small and moreover the construction (from (3.1)) to glue
Br(0) andSn leads to arbitrarily short “necks”. In other words the increase
of distances can be made as small as ever needed.

Now the main point is that this configuration containing a totally geodesic
sphere serves to straighten our geodesic:

We perform the procedure in a point near but outsidep and place the
center “0” in the plane spanned byγ1 andγ2 (cf. Fig. 4). As our construction
has led to a totally geodesic slicing sphere one can easily check that the
germs ofγ1 andγ2 near∂Br(0) can be “joined” by a smooth geodesicγ
given some suitable choice of the centre. As already mentioned the auxiliary
sphere attached can be assumed being arbitrarily small. Hence we can be
sure thatdist(x, γ(δ)) < 2δ for eachx ∈M . 2

10 Small diameters

The results of the previous section allow us to start with a metricgδ on
M with diam(M, gδ) = D > 0 and−1 − δ < Scal(gδ) for any given
δ > 0 such that there is a closed geodesicγδ without selfintersections with
dist (x, γδ) ≤ δ for any pointx ∈ M andD independent ofδ. The idea
(originating from [BG]) is to use this geodesic after shortening it as a general
shortcut for joining any two points inM .

We can find some smallµ with δ/2 > µ > 0 such thatUµ(γ) := {x ∈
M |dist(x, γδ) ≤ µ} is a tube (parametrized by Fermi-coordinates) and we
want to apply the curve shortening results (8.2) to such a tube. We first
deform the metric nearγδ. Once again we paste two metrics together:gδ

on Uµ(γ) andghyp. on S1 × Bµ(0) ⊂ S1 × H
n−1, with lengthS1 = L

measured alongγ andS1×{0} being equal (under Fermi-coordinates) and
Scal(gδ) ≥ −1− δ. Also as both curves are smooth geodesics we observe
that the metricsgδ and ghyp. have the same 1-jet when restricted to the
curves. (The construction ofgδ is easily accomplished in such a way that the
holonomy ofγδ is trivial.) Once again, this ensures the existence of some
cut-off functionh ∈ C∞(M, [0, 1]) such thath ≡ 0 nearγδ, h ≡ 1 near
M \ Uµ(γδ) and

1− 2δ < Scal(h · gδ + (1− h) · ghyp.)

This timeghyp. denotes the push forward metric via Fermi-coordinates of
a hyperbolic tube of the same lengthL (i.e. S1 × Bµ(0) equipped with
L2 · cosh2 r · gS1 + gR + sinh2 r · gSn−2)
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Applying (8.2) we can get a metricg with g ≡ gδ onM \ Uµ(γδ) and
−1 − 3δ < Scal(g), such thatdiamgUµ(γδ) ≤ 2µ with respect togδ.
Now apply (the construction used for) Theorem 1 to somef ≡ −1 − 3δ
andU = M for ε � 1 : resuming that argument we first notice that the
ratio θ/δ can be made arbitrarily small. Moreover the deformations near
the “neck” needed in order to glue the spheres to the manifold contribute
w.l.o.g. at most a total factor11

10 to the diameter. Thus it remains to explain
why the sphere attached toRn in Sect. 3 can be chosen to have arbitrarily
small diameter. Namely one starts with a scalar flat metricg0 on Sn such
that there are arbitrarily close (inC∞-topology) metricsg± with Scal ≡ ±c,
for any c ∈] − α, α[ for some smallα > 0 and with diameter≡ D > 0.
Now one considers the scaled metricθ−2 · g and notices that forθ � 1,
|Scal| � 1. Thus we may carry out the glueing process uniformly increasing
the scaled diameter by110diam+2D and therefore by increasing diam(M)
by at most 1

10diam(M) + δ. Moreoverµ < δ and for eachx ∈M we have
distg(x, γδ) < µ + δ < 2δ thusdiam(M) < 6 · δ and, since−1 − 3δ <
Scal(g) < −1 + 3δ, Theorem 3 is proved. 2
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