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1 Introduction

Scalar curvature is the simplest generalization of Gaussian curvature to
higher dimensions. However there are many questions open with regard to its
relation to other geometric quantities and topology. Here we will prove and
illustrate some features of scalar curvature in higher dimensions related to a
general hammock effect for scalar curvature, namely the one-sided affinity
for curvature decreasing deformations.

The first one is concerned with some prescribed decrease of the scalar
curvatureScal(g) of some Riemannian metricon a given manifold//™ of
dimension> 3. We denote the—neighborhood of some s&twith respect
tog by U..

Theorem 1.LetU C M be an open subset antlany smooth function on
M with f < Scal(g) onU and f = Scal(g) on M \ U.
Then, for eaclr > 0, there is a smooth metrig. on M with

g=g-onM\ U:.andf — e < Scal(g.) < fonU.,.

Actually, the metricg. can also be chosen arbitrarily neargtan C°-
topology. As will become clear from proof when combined with results from
[L2].

The corresponding statements fbr> Scal(g) are false even without
the C%-condition: in general one may decrease but not increase curvatures
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locally. As we will see the most prominent example is provided by the fol-
lowing “positive energy theorem” originally proved by Schoen and Yau and
somewhat later by Witten (cf. [S], [PT] and [LP]). We will present a different
and short proof relying on theon-existence of certain curvature increasing
deformations underlining its relation to Theorem 1.

Theorem 2.Let (M, g) be an asymptotically flat spin manifold whhal(g)
> 0. Then the energ¥'(g) is non-negative and(g) = 0 iff (M, g) is flat.

(The precise definitions and some explanations are given below).

Now we will briefly discuss the meaning of these results. It should
be quite obvious that Theorem 1 implies a rough version of the so-called
Kazdan-Warner Trichotomy (cf. [KW1],[KW2]) which can be stated as fol-
lows: Every closed manifold/™ n > 3 belongs to exactly one of the
following three classes described by properties of scalar curvature functions
f € C>(M,R) on these spaces:

A. Every f can be realized as the scalar curvature of some mgttie. f =
Scal(g)

B. f can be written ag = Scal(g) iff f is identically zero or negative
somewhere

C. f can be realized ag = Scal(g) iff f is negative somewhere

However, our point of view differs from such a type of classification.
First of all note that the metrics in Theorem 1 will have nearly the same
geometry as the original one (as a first application this will be used in the
proof of Theorem 3 below) while the Kazdan-Warner metrics are rather
special.

Supported by results such as those in Theorem 2 we think of some sort
of maximal amount of positive curvature which can be carried by a given
manifold. Starting from suchmaximal metric®ther curved metrics are ba-
sically obtained by decreasing curvatures (and scalings) without necessarily
essential changes of the coarse “metric geometry”. Thus there should be a
more profound individual upper curvature bound whose sign is just either
> = or < 0 (reflecting cases A-C). We refer to [L1] for a more detailed
discussion.

Next we turn to a related more concrete problem. Recall that a manifold
admits an almost flat structure (i.e. a family of metgesvith diam(M, g.)
= 1 and|Sec(g:)| < &, for eache > 0) iff it is an infranilmanifold (cf. [G]
and [R]). The corresponding notions of almost Ricci or scalar flathess have
not been considered yet, partly because of a lack of techniques. Furthermore,
up to now, such structures have not appeared as frequently as almost flat
manifolds. This might change with further progress made in understanding
Ricci and scalar curvatures.
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We will show that almost scalar flat structures exist on each closed (i.e.
compact without boundary) manifoltf ™ in dimensionn > 3. More pre-
cisely, we have

Theorem 3. M™ admits a family of Riemannian metrigs with
diam(M,g.) =1 and |Scal(ge)| < e, for anye > 0.

Note that there are many manifolds which do not admit any metwith
Scal(g) = 0. Thisis related to Theorem 2 (cf. Sect. 5 below) while the proof
makes use of Theorem 1 (cf. Sect. 8).

The paper splits into three parts. In Sect. 2-4 we prove Theorem 1, in
Sects. 5-7 we are concerned with the positive energy theorem and in Sects. 8-
10 we derive Theorem 3.

2 Singular conformal deformations

The proof of Theorem 1 is subdivided in several stages (occupying the next
three sections):
1. We will show how to obtain a metriG, with:

Ge=gonM\ U,z andf —e/3 < Scal(Ge) < f+¢/30onU, 3.

For this construction we start with a conformal deformation outside a small
setand subsequently (cf. Sect. 3) these singular parts are smoothed changing
the conformal class.

2. In order to get the desired metric wgh= g. on M \ U andf —e <
Scal(g:) < f onU..we must check that the freedoms in these constructions
can be exploited in such a way that the curvature strictly decreases (cf.
Sect. 4).

It suffices to prove the following specialized version of Theorem 1 where
U is a cube inM = R™. The general case is a straightforward extension
using suitable coverings by charts.

For the same reason it suffices (via scalings) to consider metridgth
lg — gBucl ”03 < 1. This allows us to restrict the descriptions of some

of the geometrlc configurations to the Euclidean case.

Proposition 2.1 Let f be a smooth function dR™ with supp(f — Scal(g))
= [-1,1]" € R", f < Scal(g) on] — 1,1[" and lete > 0 be given.
Then we can find a metrig. on R™ with g. = g onR™ \ [-2,2]" and
f —¢e <Scal(g:) < fon[-2,2]".

Our strategy is to superpose a lot of small deformations. In order to add
up such modifications of it is convenient to use conformal changes of
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Fig. 1

g. The transformation law fa8cal becomes particularly simple when the
conformal factor is written ag>/ - ¢, for some smoottf. (We always use
the sign conventiom\f = +f”, for f onR).
Then one gets
Scal (e2/ - g)
= e 2 (Seal(g) = 2(n = 1) - Af = (n = 1)(n = 2) - [[Vf]?) .

In particular, forZ = > ;. with finitely many smoottp; > 0, we note:
7

Scal(e?? - g) = e . (Scal(g) — 2(n — 1)
@ S Api- (=) -2) | Vel

Now we start as follows. Define latticdss ¢ R™ with Ly = {6 -
(21, -+ 2n)|z; € Z},6 > 0, take the following familyF'(6, o) = {Bs.,(p) |

1

pe€ Lsn[-1,1]"}, 0 € [1,0~ 2] of balls and also their union
F,0)= |J . Bsol), 0€1,672]
peLsN[—1,1]"

(cf. Fig. 1) and construct certain metrics on each of them.
Thus we first consider a single ball and notice the following elementary

Lemma 2.2 For 1 €]0,1[,¢ € R™ we can find a smooth functiop =
©q(9,9,0,1t) > 00nR"™\ {¢} withp =0 0onR" \ Bs.,(q) and

() Agp=10nBs,a0-u(a)\ {a}
(”) 0< Ag‘P <lon Bé-g(Q) \ Bé-g-(lfu) (Q)
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(iii) Alsowe may assume that theare chosen uniformly in the sense that for
9 — geua. in C° and for every fixed triplé, o, 11 : v0(9) = ©0(gEuc.)
compactly orR™ \ {0} in C? and also:

5o 5o 2
SOO(gEucl.yfs; Qvﬂ) <<5 5) . :1:> = < 5 g ) . SOO(QEuclJ(s/,QhN)(.T)

Remark. In each of the following steps we will specify further properties of
g Which however can readily be adjusted.

In order to find such a family of functions one may choose a radially
symmetric functionp(xz) = (|| = ||) on the EuclidearR™ and choose
geodesic coordinates in order to generalize this definition to the curved case

choosingp, (g, 9, 0, 1) (x) = B,(9, 9, 0, ) (dist(p, x)) = P(dist(p, r))
We use these functions to build up a singular me#{@, o, ;1) which
will be further smoothed leading to the desired megticubsequently. We

setG(d, o, p) := YO gwith (5, 0, 1) = 3 yep,m-3,3p2 1(a) - ©q,
for somem(q) € R>°.

Lemma 2.3 For eachs > 0 we can find smaliy > 0, ug > 0and agy > 0
such that for eacld €]0, dy| there are multipliersn(q) with

@ | AUE00.) ~ (Scal(g) - f) |< 5 onR"\ L.

Proof. We start by showing how to obtain them{q).
Define the foIIowing covering numbers(q) a(q, 9, o, )
(

(
#{peL(;ﬁ[ 2192 ]n|qEB6gl,u)()} b()_b 7697)::
# 00 € L0 (310 € Do) | By} anc il se

m(q) := (Scal(g) — f)(q)/ alq), (resp. m(q) := 0 whena(q) = 0)
Directly from the definitions, we have:

> (Scal(g) — f)(p)/alp) < A¥(S, 0, 1)

2€Bs.p.(1-1) (P)

< ) (Scal(g) - £)(p)/alp)

2€Bs. Q( )

(The sums are taken over all the balls (around point&sm [—%, %]”)
containingz.)

Now, in order to findyy, 1o andoy we observe, setting = 5‘%,u =4
in what follows:

a(d, 0, 1) = a(d, 6~
b(0, 0, 11) = b(6,0~

,8) > const. -6~ "/? on[—1,1]"
,8) < const. -6~ (®=1/2 on[-2,2]"

l\"\’—‘ L\)M—t

anda =b=00nR"\ [-1.6,1.6]" (for any sufficiently smalb > 0).
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Then the difference between upper and lower bound can be estimated as
follows:

0< > (Scal(g) — f)(p)/a(p)

ZeBé-g(p)\B&Q-(lfM) (p)

< max (Scal(g) — f) - bp) < const. - V3
BQ-§~Q(Z) a p)

Moreover

Sslg, =)= Y (Scallg) = f)(p)/alp)

zEBtgAQ‘(l,H)(p)

o0 (Scal(g) — f)(2),
uniformly in z onR™ since(Scal(g) — f) is a continuous function oR"
with Scal(g) — f =0onR™\] — 1,1[" and

a(p) , . a(p)
max — 550 1 0s min —
pGL(;ﬁBQ.(;.Q(Z) a(Z) pEL(;ﬂBQ,(;.Q(Z) a(Z)

uniformly in zon compactac | — 3, 3[".

Hence, for sufficiently small > 0 we get
| AW(6,672,8) — (Scal(g) — f) |[< § onR™ \ L.
Now, we candecoupled, o, . Namely, we can choose fixed suffi-

1
ciently smalld, > 0 as above and such that fo5 = §, > andpo = do
| a(57 00, /LO)/a(éa 5_%7 5)_1 |<< 1 and| b(éa 00, /”LO)/b((S’ 5_%7 5)_1 |<< 1
for § €]0, o[, because decreasingnerely corresponds to a scaling of the
whole setting byy—2 which does not affect the covering numbers. Thus we
may adjusby andug such that inequality (2) is satisfied for any sufficiently
smallé > 0. O

While this sounds rather like (2.1) we must take into account the fact
that A¥ describes the new scalar curvature only wkieand V¥ can be
assumed to be arbitrarily small. Unfortunatelyooks very much like the
pole of a usual Green’s function neaHowever, outside “fixed” small balls

aroundp € Ls N [—2, 2]™ and in addition to 2.3 we have:

Lemma 2.4 For any giveny > 0, oo > 0, uo €]0, 5[ andX €]0, 5[, we can
find a sufficiently smatfy €]0, o, 2], such that for every €]0, 5|

1¥(6, 00, o) lor (mm\F(5,0)) < 7
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This is seen in the Euclidean cage= ggy.1.) by considering a single
onB;(0) (i.e.q = 0). Setp,, (x) = p(m-z)onB1 ;5(0). Then(Ay,,)(x) =
m? Ap(m-x), while||Von || (z) = m-[| Ve (m-x) andpn (z) = ¢(m-z).
Thus multiplying,, by m~—2 reproduces the original value afy while
|Vl andy decrease at the same rateas! andm 2, respectively. Thus
noting thatp andV¢ are bounded oB;(0) \ Bs.»(0) simply taking a large
m > 1(orchoosing directly some smaélkk 1) will serve our purpose. Now
consider? (4, o, f10). Here we have to add up the components;) - ¢,.
Applying the previous considerations to each component we get the result
for ¥, since (ford — 0), the covering numbet(p) andb(p) of (2.3) remain
bounded (becausg andyu are fixed).

Obviously, the same argument carries over to the general (gase
gEucl.) O

As a consequence we can find &(oo,10,A) > 0 with
| Scal(G(8, 00, o)) — f | < 1onR™\ F(§, \) for everys €]0, &o|.

3 Hammocks

The effective conformal deformation above is defined outside a certain set
F(4, o) of small balls. Here we will define the desired metrics on the re-
maining part.

This cannot be done while staying in the same conformal class (e.qg. flat
metrics on a torus cannot be conformally deformed irffosd < 0-metric).

In other words scalar curvature “hammocks” correspond to a change of
conformal classes.

The advantage resulting from those deformations described in the pre-
vious section is that the prescribed curvature function on each of those balls
is nearly constant. This allows us to use the following device.

We start with a metrig;,,) on S™,n > 3 (the dimensional restriction
has not been used so far) witlBcal(gs(,)) — f(p) | < 1 and such that
thereisabalB C S™ with (B, g4, ) isometric toB,.(0) C Fy, where the
latter is the n-dimensional space of constant sectional curvatifi). We
retain this identification in what follows. Such a metric can be obtained from
another one with constant scalar curvatfifg) by some local deformation
(cf. (9.1) for some details).

Then, for some suitablé < ' < r B.(0) \ B,»(0) can be de-
formed in such a way that the new metég,,, equalsg,) neardB,(0),
| Scal(Gf()) — f(p) | < 1anddB,.(0) becomes totally geodesic and we
may even assume thaB,. (0) is isometric to the round sphere of radius
for anyr < ro for somery depending only orf (p).

This type of deformations has been considered in [GL] and [L2].
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Next we will prepare= (4, o, 1) to allow this prepared sphere to be glued
ontoR™\ small balls aroungh € Ls N [—3, 3]". Here one chooses some
A0 < XA < p and deformsB;.»(p) \ {p} in such a way that for some
0 €]0, A[, 0Bs.9(q) becomes nearly totally geodesic. Then one just cuts out
Bs.o(¢q) and glues inS™ \ B,.(0), arriving at the desired metrig.

Now we will put this sketch into more concrete form:

Lemma 3.1 For any givens > 0 we can finddg > 0,00 > 0,9 > 0
such that fors €]0, do[, A €]0, £ [ there is a metridiy(d, o, j10), for some
0 €]0, A[, defined oR™ \ F (0, §) with:

(I) Ge(éa 00, ,UO) = G((Sv 00, ,U(]) onR" \ ‘7:(57 )‘)

(i) | Scal(Gg(d, 00, o)) — f | < 5 0nR™\ F(6,0)

(ili) 0By(p) is almost totally geodesic: that Sy (0, o, 110) can be extended
smoothly neat) By(p) by the metriai s,y on the prepared sphere.

Proof. Choosing sufficiently small fixed > 0 and fixedpg > 0 we find
that foro — 0 : ¥ <« 1,||V¥| < 10n Bs.(p) \ Bg,A(p) and by the
same argument >. m(q) - ¢, < 1, || Y m(q) - Vgl < 1,
q€Ls\{p} q€Ls\{p}

p € Ls, (pp asin (2.2)) onBs.a(p).

Then we can substitutB;. (p) \ {p} equipped withe?? - g by another
conformal metric orB;.,(p) \ Bs.o(p) for some suitablé €]0, [ as follows.

We will choose a smooth functio¥; on Bs.\(p) \ Bs.e(p) for some
6 > 0 with ¥, = ¥ neardB;.»(p) and|Scal(e*1 - g) — f| < £. This is
possible for sufficiently smadl (¢ andy fixed) asp, converges (in the sense
of (2.2)) toy,(grucl. ) Which is rotationally symmetric around Hence, as
the above inequality (ii) can be taken for granted n@Bg.,(p) one just
increases the radial 2nd order derivativepgfin such a way (dictated by the
Scal-transformation law (1)) that it leads ¢q ,, (substitutingy;) adding
up to¥; with property (i) onBs.x(p) \ Bs.g(p). This is possible because
for this step we can assume th@iScal(g) andA >~ m(q) - ¢, are

q€Ls\{p}
constan{= ¢y, co andes respectively) orBs., (p) and thus one only needs

to find ¢4 , with

}Cl — e %P1 (—Q(TL —-1)- A‘Pl,p - (n - 1) : (n - 2) ’ HV()OLPHQ

“+co — 2(n — 1)63)‘ <

Now, we notice thab Bs.\(p) is far from being totally geodesic (having
nearly the 2nd fundamental form 88;.,(0) C R™), whereas the radius of
0Bs.x(p) (measured with respect t3” - g) becomes arbitrariljarge for
smallr becausey(gpucr) = const. - [|z]| =" andr-exp(r—"*2) — 7
~+00.
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Hence, summing up, for sufficiently smalt> 0, there is & > 0 with
6 < X such that B;.¢(p) becomes (nearly) totally geodesic 6t - g and
this can be improved on arbitrarily by choosing some smalter0 in such
a way that the prepared sphere can be glued smoothly for suitably small
r>0withd-0 <rl <§- A\ O

Summarizing we get a metric satisfying the condition
G.=gonM\U,zandf —a < Scal(G.) < f +aonU,ys.

(We will use this for very smallv < ¢.)

4 Curvature decreasing effect

Finally we will show how to refine the definition @ in order to gety.
with the following additional property

Lemma 4.1 Scal(g:) < f onU;

Proof.We can use the procedure of the previous sections applied to afunction
F with

F=f-ponUys, f—08 <F < fonUy.3\U; 3 and F=f
onM \ U2.5/3

for somes > Owith o < 8 <« e.

Therefore it is enough to show that we may assume tReil(G.) <
Scal(g) onUk.

As becomes clear from the previous step in the construction it suffices to
prove that the functio can be chosen such thatin addition to the properties
above:

(3) Scal(e?? - g) < Scal(g) onU. \ F(9, o)

From equality (1) we immediately get:

4) Scal(e?? - g) < e 2. (Scal(g) — 2(n — 1) - Z Ap;)

and hence fofcal(g) > 0 this claim becomes obvious for any choicelof
with A¥ > 0.

Now, whenScal(g) < 0 we set theight-hand sideof (4) < Scal(g)
and get the conditiofil —e=27) - | Scalg) | <e 2 -2(n—1)- | 3. Ayp; |.

Moreover, since we may assume that? > 1/2 and (via scaling) that
| Scalg) | < 1itis enough to make sure that —e=2 | < C - | 3" Ay; |,
%

for a certainC' = C(n) > 0.
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Finally (sincel > e~2¥ > 1/2) the mean value theorem shows that this
can still be reduced ultimately to the

Claim.¥ can be chosen such tha? | < ¢ - | A¥ |, for some prescribed
c>0.

For this it suffices to consider the componentsy; ) - ¢,, . For notational
convenience, we considet; := ¢,, as being defined oB;.,(0) C R
centered af; = 0. Now | Ay; | can be estimated as described in [L2](2.1):
Once again we further adjust the definition@f Recall that wherf €
C*(R™,R) is of the formf(z) = F(|| = ||) for some smooth functiof’

onRR>Y. Then one can write far =|| z ||: Af(x) = F"(r) + ("—;1) -F'(r).

We may assume that can be written ag; (x) = ¢;(r) (outsideF (9, o))
for some smooth functions;. Moreover one can choose this functiosir)
such that for a givet > 0 ¢;(r)"” > k- ¢;(r) and> k- | ¢}(r) | onR>?,
which is the key point here.

Finally, since we are ol/. \ F (4, 0) we have the following estimate
Api > a(n)- ¢ +b(n)- ¢, withb(n, o) > 0. Hence, for a suitably chosen
k> 0we getAp; >a(n)- ¢, +b(n)- ¢/ >c-¢; O

5 Positive energy theorem

Roughly speaking the positive energy theorem (cf. [LP]and [PT]) asserts that
the total energy of any “sufficiently reasonable” universe is nonnegative and
zero exactly when the systemis in the vacuum state. This can be cutdowntoa
problem concerning “maximal” spacelike asymptotically flat hypersurfaces
(in Lorentz geometry). This maximality and a further reasonable assumption
(the so-called “dominant energy condition”) imply that this hypersurface
H (whichwill be the manifold under consideration) saal > 0 (via Gauss-
equations). Now the enerdgybecomes a numerical invariant of the geometry
of H near infinity and the problem is to shafi> 0.

The first known proof is due to Schoen and Yau (cf. [SY 1], [SY 2]). One
assumeg’ < 0 and produces a contradiction by showing the existence of a
certain minimal hypersurface H which could not exist assuming that the
positive energy theorem holds in lower dimensions. This proof does not need
the spin assumption. However the argument works perfectly only in dimen-
sion < 7. In higher dimensions there might be hypersurface singularities
which destroy the possibility of applying the induction hypothesis.

The second proof by Witten (cf. [PT]) can be extended to spin manifolds
of arbitrary dimensions. It proves and uses the existence of a certain spinor
on the manifold allowing the energy to be expressed in terms of scalar
curvature, (squares of) the norm of this spinor and its covariant derivative.
This leads to quite obvious estimates for the energly as 0 for Scal > 0.
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Inthe following we describe a more geometric argument which works for
spin manifolds in arbitrary dimensions via contradiction assunting 0.
We use the negativity off to deform the manifold in such a way that
the resulting one is Euclidean outside a compactiSatith Scal > 0 in
interior K. Using this manifold we can construct variasmpacmanifolds
with Scal > 0. On the other hand, one can use spin geometry to show that
some of these manifolds cannot admit any metrics Withl > 0. Hence
E > 0.

Now we describe the actual mathematical set-up:

Let (M™,g) be a Riemannian manifold containing a compact subset
K C M such that each component (“end”), of M \ K is diffeomorphic
to R™ \ B1(0). With respect to this chart we assume that the metrin
M \ K can be written as

9 = YEucl. + h, with hij =0 (Hfop) and

09ij 0%gi;
=0 ] ; 99y | ()

ox, 0x,L0x;
= O (||z||7?) withp > (n — 2)/2

(@) + ol

In other words, outside a compact get looks more and more (i.e. for
l|z|| — 40o0) like the EuclidearR™ with a certain deviation motivated by
physics (one may think of a “distribution of matter” icampacidomain).

If (M, g) satisfies these conditions we will say is asymptotically flat

Moreover, one is also interested in measuring the “total endrgy’, g)
of M. This can be done (i.e. can be defined properlypdhl(g) =
O(]|z||~P), forp > n and we will also assume that this condition is satisfied.

The actual “physical” definition of2 would be rather too much of a
digression here (it can be found in [LP], [PT] or [S]). The important point,
which we make use of, is thatcan be recovered as a coefficientin a suitable
expansion ofy near infinity and we will use it as a definition &f.

More precisely, we first deform the ends making them conformally Eu-
clidean as follows (cf. [S](4.1)): For some suitably chosen cut-off fungtion
onR™\ K with ¢ = 1 neard K andy = 0 near infinity one may first define
9o =@ -9+ (1 —¢) - gruc.. Then, for suitable» (here the Scal-condition
enters) one can, by applying a (by now) standard argument, find a conformal
deformation (namely taking a non-trivial elemeérf the kernel of the con-
formal Laplaciany:*/"=2 . g, with Scal(h*/"=2 . g,) = 0,h > 0,h — 1
near infinity such thak*/"=2 . g, is again asymptotically flat.

Moreover itis not hard to choosein such away thak (M, h*/"=2. g,,)
becomes arbitrarily close t6( M, g). In other words it suffices to prove the
positive energy theorem for this type of asymptotically flat manifold. In this
particular case we may defideas follows:
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Noting thath can be written as

h=1+ A + O(||z||*™™) onR™ \ By(0) with A;, € R

[

beinguniquelydetermined, we set(M, /"2 . g,) == 4(n — 1) - Ay.
(Note that this yields an energy for each &fig) In general, one could
approximatg M, g) by certain(M, h*/"~2y,,) and defineE(M, g) as the
limit of E(M,hY"2 . g,.).

Now, finally we can formulate

Proposition 5.1 E(M, h*/"=2 . g,) > 0 for each end’}, of M.

Up to this point we have described the reductions used by Schoen and Yau
on their way to the proof. Having reached this point the real geometric work
begins. Intheir minimal hypersurface proof Schoen and Yau use the modified
metric mainly to simplify geometric constructions and calculations made in
order to gain control to handle such a hypersurface.

We will also utilize it but in a different way. In particular, we use the
(trivial) observation thak is harmonic orR" \ Br(0) :
—7 - Ah + Scal(ggue.) - h = Scal(h*"2 - ggua) - A with 7, a > 0 and
Scal(ggucl.) = Scal(h‘l/”_2 - gBuc1) = 0.

6 Negative energy yields positive curvature

Now we assume that the enerjyof at least one end of our asymptotically
flat manifold M™ (equipped withgy = h*/"=2 . g) is negative We will
prove that this assumption can be “transformed” into a purely geometric
condition.
We can (and will henceforth) assume thet has only this one end.
For instance, one could close the other ends by bending them together and
compactifiying them by adding points “at infinity”. This can be done in such
a way thatScal > 0-metrics result (cf. the argument in (6.2) below).

Proposition 6.1 If £ < 0, then we can find another complete metyic
on M™ with Scal > 0 (andScal > 0 in some points) and such that there
is a compact seK ¢ M™ with (M™ \ K, g;) being isometric tq R™ \
Bgr(0), gguc.) for someR > 0.

We will reduce the proof of (6.1) to the following

Lemma 6.2 Leth = W + f be harmonic ort = Bs(0)\ B1(0) C R™
(equipped withyg,1. ). Then there is @ = §(n) > 0 such that, provided
|f| < 4, there is a smooth functioA > 0 on S with

(i) AH >0onSandAH > 0in some interior points of
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(i) H = hneardB;(0)
(i) H = const.> 0 neardBs(0).

Proof.As already mentioned above for a functiBronR™\ (0) with F'(z) =
G(]l\mH) for some smooth7 one finds forr = ||z|| : AF(z) = G"(r) +
== G(r).

Our first aim is to obtain a smooth functién > 0 onR>" with hy (r) =
—+5 0on]0,2], hy = const.> 0 onR=? with 1Y (r) + 2L - B (r) > 0 for
r €]2,5[and> 0 on an intervall C [3,4].

For this purpose we defing= f(d, s) € C=(R, R=?) as follows:

f(d,s)(r) =s-exp(—d/5 —r) onR=?, f(d,s) = 0 onR=5,

Claim. For suitably chosenr, d > 0 we have

M )+ m—1)- f(r )>00n}1, [
(ii) {”(4{) > ()" rea  F(4) > (55) |r=a andf < 1. 2L on
1,5

Proof of this claim.

/ _ d "
£ = s+ = ep(=df5 =), ()

—2d d?
=35- ((5—r)3 + (5—r)4> ~exp(—d/5 —r)

Hence, for eaclt: > 0 we can finddy, = dy(k) > 0 such that for any
d>dy,s>0:f"+k-f >00n]1,5[. Assumingk > n — 1 we can be

sure that(7) is satisfied. Fofii) we choose somg, > 3- | (M_Q) |r—4
/ (=2 2,) |T 4 . Then, for anyd > dy(k) we can find some > 0 such that

f'(4) = (Tn 2) |-=4 and (hence)’(4) > (rn 2) |—4. By choosing
a sufficiently largel we can be sure that <  on]1, 5[ (for every given
e > 0).

Thus takingk = k¢ + n we can find som¢g as claimed.

Next we usew}—,2 andf to geth; by double integration: Using properties
(7) and(i7) of f we can find a smooth; > 0 with:

ki = ()" on[1,3], k1 = f” onR>* and satisfyinge; > (-:5)"

on[3, 4] and in order to fix the integration constant:

/3 Sty = 1) (55 ) 1o

Definehy ashi(z) := [ ([ k1(z)dz) + (=2) |r=1) dy+ s lr=1
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Thenh; > 0 (sincef < 2 T,n ), sSmooth andh; = const. > 0 on
R=%; moreoverh; = — on [1 2] andhy + “Lp) > 0 onR=1.

This latter inequallty is obvious out5|de ]3 4[ On 13, 4[] we know that
W) =k > (i5)" and (thereforep) > (ir) . Thus ()" + 2L
(=)' = 0 leads to the desired inequality.

We may assume\(hi(||z|))) = h{(r) + =2 - B (r) > ¢ > 0on [3.1,
3.9].

Now we may attack the general (non-rotationally) symmetric égase
ez + L Ah=0.

Choose a fixed cut-off functiogg € C*°(R",[0,1]) with i) = 1 on
Bs.4(0) andy = 0onR"™ \ B3 (0) and defined :== hy + v - f
Claim. There is a0 > 0 depending only on the dimensionsuch that,
providedsupg|f| < 0, AH > 0 (and> 0 in some interior points of).

The proof of this claim starts by noting thatf = 0. Thus for eacl > 0
there is & > 0 such thasupg|f| < ¢ implies || f]| .5 (Ba(O)\Ba(o)) < € Via
elliptic theory.

In particular, we may assumé (¢ - )| < e. This obviously implies the
claim for sufficiently smalb resp € and sincéh; was fixed the general case
of the Lemma is proved. a

Now we derive (6.1) from this Lemma.

Proof of (6.1).As explained in the previous section we may assume that
go = h*" 2. gpua ONM \ K =2 R"\ B;(0) for some harmonic function
h(z) = 1+ gogfapee + fowith sup (|f] - [l2]*~") < +-oc. In order to
apply (6.2) we first note thaﬁw, which is the fundamental solution of

AG = 0, reproduces under scalings.
That is, if we substitutg; = gguc. for gy = A2 - gpua. then ——;

[l ||g1

T ”n -2 and therefore for our purpose we can identify (via rescaling) for any

pOSItIVG mtegelm.

6m(n 2)
s ————living on Bgm+1(0 )\ Bgm (0) with
gEucl

living on Bg(0) \ B1(0)
[EA HgEucl
Now the point is that under this identification tt€ —Norm of the per-
turbation termf = O(||z||*~™)" converges to zero fom — +oo (note
that) | 6™("=2) . £(6™) |< const. - 6~™.
In particular, for sufficiently large: we may restrict our considerations
to the case thatf| < ; 'El D) -6 0onBg(0) \ B1(0) and we may apply (6.2)
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to get a functiorh = 1 + £ - H. The geometry ofi¥/"~2 . gp,a. is as

4(n—1)
follows:
Neard B (0) it is just b2 . gp.1., neardBg(0) it is Euclidean and
from the transformation rule for Scal under conformal changes (starting
from the Euclidean one) we get:

—y - Ah = Scal(iif‘/”*2 - gEucl.) - %,
for somey, a > 0 depending only om.

Thus we find thaBcal > 0 and> 0 in some points sinc& < 0. O

7 Detecting flatness

Now we are able to reduce the problem to the question of whether certain
compactmanifolds admit &cal > 0-metric. It is here that we employ spin
geometric arguments. Henceforth we shall assume thadmits a spin
structure and note that the connected sum of spin manifolds is still spin.Also
we show how to prove thdf = 0 iff (M, g) is isometric to(R" ggyc1)-

We will outline two proofs for (6.1), both using versions of the Lich-
nerowicz obstruction t8cal > 0-metrics: non-vanishing-genus and gen-
eralizations thereof.

Proof 1(using just the “standard” Lichnerowicz argument). Téké", ;)
described in (6.1) and use it to construct (by induction) complete manifolds
(N*, g(k)) of dimensiork > m with (N*\ K (k), g(k)) isometric to(R* \
B1(0), gruel) @andScal(g(k)) > 0 oninterior(K (k)) for some compact set
K (k) c N*. This can be done in the same way as in ([L1], sect. 6). Choose
somek > m with k = 4d for some integed > 0 and take a spin manifold
AF with A([A*]) # 0. Now “cover” A¥ (as in [L1], sect.4) by sufficiently
many N*. That is, take any metric oA* and scale it by a huge constant
(making it nearly flat) and choose a well-ordered “Besicovitch” covering
of A by nearly isometric ballg3;. Cut out some smaller (disjoint) balls
B; C B, (i.e. Bin B; = ( for i # j) and replace them by suitably scaled
(K(k),g(k)). Then one can distributgcal all over this new manifold3*
and one gets 8cal > 0-metric onB* while it can obviously be arranged
that A([B¥]) # 0.

However these two conditions are not compatible as the Lichnerowicz
formula (cf. [LM], p.161)D*D = V*V + iScal (whereD andV denote
the Dirac operator and the covariant derivative respectively) implies that
kerD = CokerD = 0, whileindexD = A([B¥]) # 0. HenceE > 0. O

Proof 2(using Gromov-Lawson’s Twisted Dirac bundles): The Riemannian
manifold (M", g;) obtained in (6.1) can be “imbedded” in a flat torli8.
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More precisely, take a cube containifgy(0) C R™ and identify opposite
sides producing a flat torus. Now substitdte\ (R™ \ Bs(0)) for Bs(0) C

T" equipped with the natural metric. This is a manifold diffeomorphic to
M #T" (WhereM is a one point compactification @ff ) equipped with
some metric wittbcal > 0 (andScal > 0 in some points which implies that
the whole manifold admits cal > 0-curved metric).

However if M # T™ is covered by some spin manifold (this is certainly
the case whern/ is spin) then we can use a generalized version of the
Lichnerowicz formula by Gromov and Lawson to show tﬁﬁt# T™ cannot
admit anyScal > 0-metric. Once again this meafis> 0. O

Remarksl. The classical three-dimensional casedmpletelycovered by
these arguments, as evayentable3-manifold is already spin. Thus, for
the general non-spin manifolds one just takes the orientation covering.

2. Itturned out recently that the second proof can be shown to be “equiv-
alent” to the positive energy theorem, i.e. the non-existenc&af > 0-
metrics on enlargeable manifolds can be deduced from the validity of the
positive energy theorem (cf. [L3]).

Finally, for completeness, we will discuss the case- 0, whose deriva-
tion from the above is pretty standard (cf. [S]).

If E(M,g)=0,Scal(g) > 0, then(M, g) is isometric to(R", grucl)

This can be seen as follows:

If Scal(g) > 0 in some point, then one can easily defoff?, g) to
(M,g1) with (M,g1) still asymptotically flat with Scal(g;)
> 0, but with E(M, g1) < 0. This contradicts (6.1) and also proves that
g cannot be deformed to such a metric wiiénl > 0 in some point. This
in turn implies thaty is Ricci flat. Now one again usds(M, g) = 0 and
applies some Bochner type argument to show the extensiarlinéar in-
dependent parallel vector fields @i, implying thatM is isometric to the
flat R™. O

8 Shortening geodesics

Here we will start our proof of the existence of scalar flat structures. Three
types of deformations are used in the proof. We begin by proving that any
closed geodesic (without selfintersection) can be shortened without essential
(decreasing) effects on Scal. This is the place where dimensisn3 is

used substantially and it is therefore rather unclear whether almost scalar
flat structures generally exist in dimension 3. Secondly, we show how to
find a closed geodesic lying quite densely spread all over the manifold (after
some changes of the given metric but again without negative influences on
Scal). Finally we use the methods of Theorem 1 to adjust the upper bound
of Scal.
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Let g = L? - gg1 + grua. be the standard product metric on
St x sm=2x]0,1[C 51 x B1(0) ¢ St x R*~1 n > 4 for some (large)
L >0.

Proposition 8.1 For eachd > 0 there is a metrigzs on S* x B;(0) with
gs = g1 near the boundangcal(gs) > —d anddiam(S' x B;(0)) < 3.

First of all a direct computation leads to the following formula

Scal(f? - gg1 + 92 gsn >+ gr)
R N A A A
- <(n 2) - +f+(n 2) 7y
(-2 (1
+ 2 g )

with f(r), g(r) being smooth functions oR.

We claim that the standard metric (corresponding ta L, g(r) =r)
can be substituted for another (nearly) scalar flat metric, but yvibeing
very small neab.

(5)

Proofof (8.1). Step IChoose some smoofh= f; s 1., for constants, § > 0
given, as follows (cf. Fig. 2)

L onR=—¢
havingf” < 0 on] — 2e, —¢]
f= linear on[—3e, —2¢|
having f” > 0 on] — 4e, —3¢|

) onR=—4¢

Step 2Choose some smooth positiye= g. s 1., for constants, ¢, ., no
> 0 given, with

r onR=!
havingu > ¢” > 0 on|[3, 1}
linear 3
gir)y=< F ,0] (F defined below

on|0,

on[—e

n on|[— 45 —¢] for somen > 0,7 < 1o

havingg” < 0 on] — 5e¢, —4¢[ and being equal to
sin(r + 5¢) near — 5e

We construct a positive smooffion R as follows (this is basically the
same thing as in [GL], chap.1):

Start with fo = ag - r + (3 for someag, B > 0,00 < 1 on [-2,1].
This fulfills the inequality fi - fo + f) - fi < 1. Next we bendf, “a

little bit”, i.e. we definef; = fo on[§ + &,1], linear onR<2"% with
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| | ! !
I i 1 i i

—5e-4e-3e-2e—¢

PTIR
o 4
I
—

Fig. 2

0< fl=a1 <ap=f),f/ >00nRandsuchthafy - f, + f - fi < 1
is still satisfied. Now this “same” bending can be iterated ufffil= 0.
More precisely, after some rescaling we may repeat the previous step with
fo replaced byf; etc.
The pointis thatv; 11 — «; can be chosen arbitrarily with{, o;; — ;1]
as in each stepf/ - f/ decreases, whilg, - f(')' remains upper bounded (as
can be seen by rescaling).
Thus after finitely many steps we have= f,, with F = o - r + § on
RV F, F',F" >0,

F =c¢>00nR>", for somey € R.

Now, after some obvious rescaling and translafinhfits into the defini-
tions ofg.

Step 3We claim we can choos® in such a way tha$cal (f2 - gq1 + g% -
gsn—2 + gr) > 00n St x S"72x] — 5e, 1]

From Step 2 and formula (*) we know thétal > 0 on St x S"~2x] —

g, 1] U[—5e, —4e]. Also from step 1 we see thétal > 0 onS* x 5™2 x
[_357 _5]

The only domain we have to devote care t&isx S"~2 x [—4e, —3¢].
Here we hav&cal = —fTH + n% which is obviously positive for some small
1o > 0.

Now we can deduce (8.1): Choose= %, = 5. Then we can find
some small, g > 0 such thatf andg as constructed in steps 1-3 satisfy:
Scal > —4.
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Also the distance of any two points § x B;(0) (and hence the diam-
eter) is< 3:

For any two pointsp,q € S* x B1(0),p = (p1,p2).q = (q1,42)
and join these points along the radius wih, 0) and(q1,0) respectively
and then join these two points alosg x {0}. The length of this part is
<§+2 155 +2<3. O

Actually, we will use the “hyperbolic version” of (8.1), which we are
going to deduce now.

Corollary 8.2 For any § > 0 we can find a metrigj; on S* x B;(0)
satisfyinggs = L?-cosh? r-gg1 +sinh? r- ggn—2 + gr (i.€. g5 is hyperbolic)
near the boundary,

Scal(gs) > —1 — ¢ and diam(S* x B;(0)) <3

Proof. We reduce this case to (8.1) as follows:
Substitutesinh r (defined on [0,1]) forf. on[rg, 1] for somery < 0 and
e > 0 with

) h-sinh(r+e)+ (1 —h)-sinhr onR=0
Je= having’}—f <1,f. > 1andf! =1 nearry(with f-(r¢) = 0)

for some fixedh € C*>°(R, [0,1]), withh =1 onR<1,h = 0onR21.
Substitutecosh r on [0, 1] for g. on [ry, 1] defined as follows:

__J L -cosh on R=0
9e = satisfyingg” < cosh, ¢’ < 0 andg = const. > L nearr.

It is easy to check that, for sufficiently smalt> 0,

]
Scal (g2 - gg1 + f2 - ggn—2 + gr) = —1— B
Moreover, neas! x S"~2 x {ry} the metric is precisely the Euclidean one
as assumed in (8.1). Thus applying (8.1) goyields the claim. O

Remark.The reader might be tempted to expect that some more care in
choosing the warping function could even produce scalar flat curve shorten-
ings. However there is no way of accomplishing this: justimbed the resulting
tube in a (flat) torus . The metric will become scalar flat. But in the torus
case we have already mentioned that any scalar flat metric has to be flat (cf.
Sect. 7), while the tube containing the shortened geodesic cannot be flat.
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¥(8) in (M, go)
Fig. 3

9 Closed geodesics

We want to show the existence of closed geodesics lying arbitrarily “dense”
in M after carrying out some well-controlled (stepwise) metrical deforma-
tions.

As |Scal| decreases under scaling by large constants, every closed man-
ifold M™, n > 3 admits a metrigjy with Scal(gg) > —1. (Of course, M
even admits a metric witBcal = —1 but we do not need it here.) We start
with such a metric and prove:

Proposition 9.1 For eaché > 0 there is a metriggs on M and a closed
geodesieys (without selfintersections) such that

(i) dist(x,~5) < ¢ for each pointe € M
(i) —1—0 < Scal(gs)

Proof.First of all choose a piecewise smooth geodesic cy(vin (M, go)
without selfintersections and withist(z, v(6)) < 4, for eachr € M. This
can easily be done by taking some suitag)léense set of points and joining
pairs of points step by step by geodesic arcs.

Now we deform our metrigy near the edges of(J) in such a way that
the new metrigjs will have Scal > —1 — § and~y(J) can be substituted for
an entirely smooth (closed and selfintersection-free) geodgsic

First of all we use geodesic coordinates around each gdge choose
disjoint ballsB,.(p) around them (lying in the coordinate neighbourhood).

Now we can choos€> cut-off functionsh, on B,(p) with h, €
C>(M,[0,1]), hy, = 1 neardB,(p), h, = 0 nearp such that-1 — p <
Scal(hy - go + (1 — hy) - gnyp.) for any givenu > 0. Heregy,y,, denotes
the hyperbolic metric pushed forward from the tangent spagebgt the
exponential map. This is a simple consequence of the fact thatlbgéts
of go and gy coincide inp, Scal(gy) > Scal(gnyp.) = —1 andScal is
computed from the 2-jet of the metric and the 2nd order term enters linearly.
We call the new metrig,,.

We may assume(6) is still (piecewise) geodesic with respect g
(otherwise one can easily redefing)).
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Fig. 4

Thus we have reduced the problem to the following

Lemma 9.2 Let B C H" be a ball around the origim, 71, 72 two distinct
geodesic arcs starting from. Then we can find a metrigs on B with
gs = gnyp. NEAr 0B, a geodesicy; C B without selfintersection with
v = 71 and~y = ~, respectively nead B and such that-1 — § < Scal(gs),
for § > 0 given.

Proof.We consideiB3 as a small hyperbolic balt = B, (p) C H". In polar
coordinates hyperbolic metrics may be describeflagx S™"~! equipped
with gg + sinh? 7 - ggn—1, With the usual identification if.

Now we choose a distinguished point “0” outsjeland consider a small
ball B,»(0) C B,.(p), " < r. Next, we deleté® and deform the remaining
part of B,/ (0). We replacesinh with some smootlf > 0 with f = sinh
nearr’ and extendf to the negative axis (as in the proof of (8.1)) in such a
way that for some” < 0, |»"| < 1,” 9B, (0)" becomes totally geodesic
and such that for small giveh> 0 : —1 — 6 < Scal(gr + f2 - ggn-1) ON
B,/(0) \ B,»(0) andScal > 0 nearoB,..

Allthis can be done quite easily using equation (5) as in Sect. 8 and is left
to the reader. The positive curvaturesst—! plays the role of the antagonist
of the first and second derivative ¢f

Next we start with the standard spherical metricsdnn > 3 and deform
this metric on a balB C S™ in such a way that we get (after cutting out a
small ballc B) atotally geodesié™ ! boundary sphere (looking the same
as in the hyperbolic case), without changes outgidand such that Scal
> 0in the transition domain. Once again this can be done as in (8.1).
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Now we may form the “connected sun®, (0) # S™ = B,(0) to get our
metric onB,.(0): we may adjust these deformations to be able to glue these
pieces along their totally geodesic boundary spheres reconstrugiiiig
with a smooth metric with-1 — § < Scal(g). Note that the sphere can be
chosen arbitrarily small and moreover the construction (from (3.1)) to glue
B,(0) andS™ leads to arbitrarily short “necks”. In other words the increase
of distances can be made as small as ever needed.

Now the main pointis that this configuration containing a totally geodesic
sphere serves to straighten our geodesic:

We perform the procedure in a point near but outgidend place the
center “0” in the plane spanned by and~; (cf. Fig. 4). As our construction
has led to a totally geodesic slicing sphere one can easily check that the
germs ofy; and~, neardB,.(0) can be “joined” by a smooth geodesjc
given some suitable choice of the centre. As already mentioned the auxiliary
sphere attached can be assumed being arbitrarily small. Hence we can be
sure thatlist(x, y(9)) < 26 for eachx € M. 0

10 Small diameters

The results of the previous section allow us to start with a metrion

M with diam(M,gs) = D > 0 and—1 — ¢ < Scal(gs) for any given

0 > 0 such that there is a closed geodesgjavithout selfintersections with
dist (x,v5) < ¢ for any pointz € M and D independent ob. The idea
(originating from [BG]) is to use this geodesic after shortening it as a general
shortcut for joining any two points /.

We can find some small with 6/2 > ;1 > 0 such that/,,(v) := {z €
M|dist(z,~s) < u} is atube (parametrized by Fermi-coordinates) and we
want to apply the curve shortening results (8.2) to such a tube. We first
deform the metric neays. Once again we paste two metrics togethgr:
on Uy,(7) and gnyp. on S x B,(0) C S x H*!, with lengthS' = L
measured along andS! x {0} being equal (under Fermi-coordinates) and
Scal(gs) > —1 — ¢. Also as both curves are smooth geodesics we observe
that the metricgys and gy, have the same 1-jet when restricted to the
curves. (The construction gf is easily accomplished in such a way that the
holonomy of~; is trivial.) Once again, this ensures the existence of some
cut-off functionh € C*°(M, [0, 1]) such thath = 0 nearv;,h = 1 near
M\ U,,(75) and

1—26 < Scal(h - gs + (1 —h) - gnyp.)

This time g1,y,. denotes the push forward metric via Fermi-coordinates of
a hyperbolic tube of the same lengih(i.e. S' x B, (0) equipped with
L? - cosh®r - gg1 + gg +sinh?r - ggn-2)
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Applying (8.2) we can get a metrigwith g = gs on M \ U, (v5) and
—1 — 36 < Scal(g), such thatdiam,U,(vs) < 2p with respect tog;.
Now apply (the construction used for) Theorem 1 to sofne —1 — 3§
andU = M for e <« 1 : resuming that argument we first notice that the
ratio /6 can be made arbitrarily small. Moreover the deformations near
the “neck” needed in order to glue the spheres to the manifold contribute
w.l.o.g. at most a total factdi% to the diameter. Thus it remains to explain
why the sphere attached Ry in Sect. 3 can be chosen to have arbitrarily
small diameter. Namely one starts with a scalar flat megrion S™ such
that there are arbitrarily close (@**°-topology) metricg. with Scal = =+,
for anyc €] — a, af for some smalky > 0 and with diametee= D > 0.
Now one considers the scaled metfic> - ¢ and notices that fof < 1,
|Scal| < 1. Thus we may carry out the glueing process uniformly increasing
the scaled diameter bytdiam + 2D and therefore by increasing digi )
by at most%diam(M) + 4. Moreovery < ¢ and for eachx € M we have
distg(x,75) < p+ 6 < 20 thusdiam(M) < 6 - 6 and, since-1 — 30 <
Scal(g) < —1 + 36, Theorem 3 is proved. O
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