Algebraic Geometry Exercise Sheet 10

To be hand in on 9.1.2019

Exercise 1: Let $f: X \to Y$ be a morphism of schemes. Let \mathcal{F} be an \mathcal{O}_X -module and \mathcal{E} be an \mathcal{O}_Y -module. Assume that \mathcal{E} is locally free, i.e. there exist an open covering Y_i of Y such that $\mathcal{E}|_{Y_i} \cong \mathcal{O}_{Y_i}^{\oplus n_i}$ for each i. Show that there exists a natural isomorphism:

$$(f_*\mathcal{F})\otimes_{\mathcal{O}_Y}\mathcal{E}\cong f_*(\mathcal{F}\otimes_{\mathcal{O}_X}f^*\mathcal{E}).$$

(Hint: Use the adjointness of f_* and f^* to construct a canonical and functorial map. Then localize on Y to show that this map is an isomorphism.)

Exercise 2:

Let $f: X \to Y$ be a morphism of schemes.

(i) Assume

$$f$$
 is quasi–compact and for any $W \subseteq Y$ quasi–compact open $U, V \subseteq f^{-1}(W)$ quasi–compact open $\Rightarrow U \cap V$ quasi–compact open (1)

Let \mathcal{F} be a quasi-coherent \mathcal{O}_X -module. Show that $f_*\mathcal{F}$ is a quasi-coherent \mathcal{O}_Y -module.

(Hint: Reduce to the case $Y = \operatorname{Spec} B$ and consider a finite affine cover $X = \bigcup U_i$.)

(ii) Assume X is noetherian (as a topological space). Show that f satisfies the property (1).

Exercise 3:

Let k be an (algebraically closed) field and fix a k-rational point $\infty \in \mathbb{P}^1_k = X$. Define sheaves of \mathcal{O}_X -modules $\mathcal{O}(1)$ and $\mathcal{O}(-1)$ by

$$\mathcal{O}(-1): U \mapsto \{f \in \Gamma(U, \mathcal{O}_X) | f(\infty) = 0\}$$

and $\mathcal{O}(1) := \mathcal{H}om_{\mathcal{O}_X}(\mathcal{O}(-1), \mathcal{O}_X)$. Further for an integer $n \geq 0$ we define $\mathcal{O}(n) := \mathcal{O}(1)^{\otimes n}$ and $\mathcal{O}(-n) := \mathcal{O}(-1)^{\otimes n}$. Let $n \in \mathbb{Z}$.

- (i) Show that $\mathcal{O}(n)$ is a quasi-coherent \mathcal{O}_X -module.
- (ii) Show that for $m, n \in \mathbb{Z}$ one has $\mathcal{O}(m) \otimes_{\mathcal{O}_X} \mathcal{O}(n) \cong \mathcal{O}(m+n)$.
- (iii) Show that $\Gamma(X, \mathcal{O}(n))$ is a finite dimensional k-vector space of dimension

$$\dim_k \Gamma(X, \mathcal{O}(n)) = \left\{ \begin{array}{ll} 0 & n < 0 \\ n+1 & n \ge 0 \end{array} \right.$$

(iv) Show that the functor $\Gamma(X,-)$ on the category of quasi-coherent \mathcal{O}_X -module does not commute with tensor products, i.e. find quasi-coherent \mathcal{O}_X -modules \mathcal{F} and \mathcal{G} such that $\Gamma(X,\mathcal{F}\otimes_{\mathcal{O}_X}\mathcal{G})\ncong\Gamma(X,\mathcal{F})\otimes_{\Gamma(X,\mathcal{O}_X)}\Gamma(X,\mathcal{G})$.

Exercise 4: Show that the following schemes are not affine by either giving an example of a quasi-coherent sheaf \mathcal{F} that is not generated by its global sections (i.e. the canonical morphism $\Gamma(X,\mathcal{F}) \otimes_{\Gamma(X,\mathcal{O}_X)} \mathcal{O}_X \to \mathcal{F}$ is not surjective) or giving an example of a short exact sequence of quasi-coherent sheaves that is not exact on global sections.

- (i) $\mathbb{A}_k^n \setminus \{0\}$ for $n \geq 2$ and a field k.
- (ii) \mathbb{P}_k^1 for a field k.

Homepage: http://www.uni-muenster.de/Arithm/hellmann/veranstaltungen