Algebraic Geometry Exercise Sheet 9

To be hand in on 20.12.2018

Exercise 1:

- (i) Let X be a scheme of finite type over $\operatorname{Spec} \mathbb{C}$ and let $Y := \operatorname{Res}_{\mathbb{C}/\mathbb{R}}(X)$. Show that there is an isomorphism of \mathbb{C} -schemes: $Y \times_{\operatorname{Spec} \mathbb{R}} \operatorname{Spec} \mathbb{C} \cong X \times_{\operatorname{Spec} \mathbb{C}} X$.
- (ii) Let U_n be the unitary group in n-variables over \mathbb{R} . Show that there is an isomorphism of \mathbb{C} -schemes: $U_n \times_{\operatorname{Spec} \mathbb{R}} \operatorname{Spec} \mathbb{C} \cong \operatorname{GL}_{n,\mathbb{C}}$. (*Hint: Consider the isomorphism* : $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C} \times \mathbb{C}$, $z_1 \otimes z_2 \mapsto (z_1 z_2, z_1 \overline{z_2})$)

Exercise 2:

Let X be a topological space and $\{X_i\}_{i\in I}$ be a family of subspaces of X such that

$$X = \bigcup_{i \in I} X_i$$

- (i) Show that dim $X_i \leq \dim X$ for any $i \in I$.
- (ii) If each X_i is open subspace of X, show that $\dim X = \sup_{i \in I} \{\dim X_i\}$
- (iii) If each X_i is closed subspace of X and I is finite, show that $\dim X = \max_{i \in I} \{\dim X_i\}$

Exercise 3:

Let k be a field.

- (i) Let $X = \operatorname{Spec} A$ for a k-algebra A of finite type that is a domain. Let $0 \neq f \in A$. Show that the closed subscheme $\operatorname{Spec} A/(f)$ of X has dimension $\dim X 1$. (Hint: Krull's principle ideal theorem)
- (ii) Consider the homogeneous ideal $I := (y^2 xz, z^2 yw, xw yz)$ in k[x, y, z, w]. (a) Show that $V_+(I)$ is isomorphic to $\mathbb{P}^1_{\mathbb{Z}}$ which induces a closed embedding:

$$\mathbb{P}^1_\mathbb{Z} \hookrightarrow \mathbb{P}^3_\mathbb{Z}.$$

(b) Show that I can not be generated by 2 elements.

Exercise 4: Let X be a scheme and let $Z \subseteq X$ be a closed subset of X.

(i) Show that the following presheaf:

$$\mathcal{I}_Z(U) := \{ f \in \mathcal{O}_X(U) | \forall x \in Z \cap U, f(x) = 0 \in k(x) \}$$

is a sheaf of ideals.

- (ii) Consider the natural \mathcal{O}_X -algebra structure of $\mathcal{O}_X/\mathcal{I}_Z$. Show that $(Z, i^{-1}(\mathcal{O}_X/\mathcal{I}_Z))$ is a reduced scheme, here i is the natural map: $i: Z \to X$.
- (iii) Show that the composition of natural morphisms of sheaves

$$\mathcal{O}_X \to \mathcal{O}_X/\mathcal{I}_Z \to i_* i^{-1}(\mathcal{O}_X/\mathcal{I}_Z)$$

induces a closed embedding $(Z, i^{-1}(\mathcal{O}_X/\mathcal{I}_Z)) \to (X, \mathcal{O}_X)$.

Homepage: http://www.uni-muenster.de/Arithm/hellmann/veranstaltungen