Algebraic Geometry Exercise Sheet 6

To be hand in on 29.11.2018

Exercise 1:

A scheme X is called reduced if for any open subset $U \subset X$, the ring $\mathcal{O}_X(U)$ is reduced (i.e. $\mathcal{O}_X(U)$ has no nilpotent elements).

- (i) Show that X is reduced if an only if for every $x \in X$, the local ring $\mathcal{O}_{X,x}$ is reduced.
- (ii) Let Z be a closed subset of X, show that there exist an unique closed subscheme (Z, \mathcal{O}_Z) on Z such that (Z, \mathcal{O}_Z) is reduced.

Exercise 2:

Let $f:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ be a morphism of schemes. Assume $i:(U,\mathcal{O}_U)\to (Y,\mathcal{O}_Y)$ is an immersion and $f(X)\subseteq U$. Consider about the following assertion: there exists an unique morphism $g:(X,\mathcal{O}_X)\to (U,\mathcal{O}_U)$ such that $f=i\circ g$.

- (i) If i is an open immersion, show that the assertion holds.
- (ii) If i is a closed immersion, find a conterexample for the assertion.
- (iii) If i is a closed immersion and (X, \mathcal{O}_X) is reduced, show that the assertion holds.

Exercise 3:

Let k be a field, and denote $X_l := \mathbb{A}_k^l \setminus \{0\}$ for any l. Let $m, n \in \mathbb{N}$. Consider the following k-algebra homomorphism:

$$f: k[T_{i,j}]_{\substack{0 \le i \le m \\ 0 \le j \le n}} \to k[X_i, Y_j]_{\substack{0 \le i \le m \\ 0 \le j \le n}}$$
$$T_{i,j} \mapsto X_i Y_j.$$

(1) Show that f induces a morphism:

$$g: X_{m+1} \times X_{n+1} \to X_{mn+m+n+1}.$$

(2) Denote $p_l: X_{l+1} \to \mathbb{P}^l_k$ as the natural projection. Show that there exists an unique morphism:

$$\tilde{g}: \mathbb{P}_k^m \times \mathbb{P}_k^n \to \mathbb{P}_k^{mn+m+n}$$

such that $\tilde{g} \circ (p_m \times p_n) = p_{mn+m+n} \circ g$.

(3) Show that \tilde{g} is a closed immersion.

Exercise 4:

Let k be a algebraically closed field and let $A := k[x, y, u, v]/(xy + ux^2 + vy^2)$. Let $X = \operatorname{Spec} A$ be the corresponding affine scheme. Let I := (x, y) and $U := X \setminus V(I)$.

- (i) Show that (U, O_X|_U) is affine.
 (Hint: Show that fy+gx = 1 for f := -v/x and g := -u/y, and use the affine criterion.)
 (ii) Bonus: show that there does not exist an element f ∈ A such that (U, O_X|_U) = D(f).
- (ii) Bonus: show that there does not exist an element f ∈ A such that (U, O_X|_U) = D(f).
 (Hint: Assume such f exists, consider the natural projection p: X → Spec k[x, y].
 1.Show that for a closed point z = (x a, y b) ≠ (x, y) the fiber p⁻¹(z) is isomorphic to A_k¹.
 2.Show that for z ≠ (x, y), the restriction of f to this fiber is constant.
 3.Show that this constant glue to give a function on Spec k[x, y]\{(0,0)\}.
 4.Deduce that f is a constant and nonzero function on X\V(I).

Homepage: http://www.uni-muenster.de/Arithm/hellmann/veranstaltungen