Prof. Dr. E. Hellmann Shanxiao Huang

Algebraic Geometry Exercise Sheet 3

To be hand in on 08.11.2018

Exercise 1:

A sheaf \mathcal{F} on a topological space X is *flasque* if for every inclusion $V \subset U$ of open sets, the restriction map $\mathcal{F}(U) \to \mathcal{F}(V)$ is surjective.

- (i) Show that a constant sheaf on an irreducible topological space is flasque.
- (ii) Let $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ be an exact sequence of sheaves with \mathcal{F}' flasque. Show that for any open set U, the sequence $0 \to \mathcal{F}'(U) \to \mathcal{F}(U) \to \mathcal{F}''(U) \to 0$ is also exact.
- (iii) Let $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ be an exact sequence of sheaves with \mathcal{F} and \mathcal{F}' flasque. Show that \mathcal{F}'' is flasque.

Exercise 2:

Let $\{*\}$ be a one-point topological space, and x be a closed point in X. Let A be an abelian group.

- (i) Consider the map $i: \{*\} \to X, *\mapsto x$. Show that $i_*(\underline{A}_{\{*\}}) = Sky^{(A,x)}$.
- (ii) Let \mathcal{F} be a sheaf on X and let i be as in (i). Show that $i^{-1}(\mathcal{F}) = \mathcal{F}_x$.
- (iii) Consider the unique map $f: X \to \{*\}$. Show that $f^{-1}(\underline{A}_{\{*\}}) = \underline{A}_X$.

Exercise 3:

Let $f: X \to Y$ be a continuous map of topological spaces.

- (i) Show that for any sheaf \mathcal{F} on X, there is natural map: $f^{-1}f_*(\mathcal{F}) \to \mathcal{F}$.
- (ii) Show that for any sheaf \mathcal{G} on Y, there is natural map: $\mathcal{G} \to f_* f^{-1} \mathcal{G}$.
- (iii) Use the maps in (i) and (ii) to show that there is a natural bijection of sets, for any sheaves \mathcal{F} on X and \mathcal{G} on Y,

$$\operatorname{Hom}_{X}(f^{-1}\mathcal{G},\mathcal{F}) = \operatorname{Hom}_{Y}(\mathcal{G}, f_{*}(\mathcal{F})).$$

Hence we say that (f^{-1}, f_*) is a pair of adjoint functor.

Exercise 4:

Let $\mathfrak{U} = \{U_i\}$ be an open covering of X, and suppose we are given for each i a sheaf \mathcal{F}_i on U_i , and for each i, j, an isomorphism $\varphi_{i,j} : \mathcal{F}_i|_{U_{i,j}} \stackrel{\sim}{\longrightarrow} \mathcal{F}_j|_{U_{i,j}}$ (here $U_{i,j} := U_i \cap U_j$), such that

- (i) $\varphi_{i,i} = \mathrm{id}_{\mathcal{F}_i}$ for each i,
- (ii) $\varphi_{i,k} = \varphi_{j,k} \circ \varphi_{i,j}$ on $U_i \cap U_j \cap U_k$ for each i, j, k.

Show that there exists a sheaf \mathcal{F} on X, together with isomorphisms $\psi_i : \mathcal{F}|_{U_i} \xrightarrow{\sim} \mathcal{F}_i$ such that for each $i, j, \psi_j = \varphi_{i,j} \circ \psi_i$ on $U_{i,j}$. Moreover, the tuple $(\mathcal{F}, \{\psi_i\})$ is unique up to unique isomorphism.

Exercise 5:

Let $i: Z \to X$ be a closed embedding of topological spaces, and let $j: U (:= X \setminus Z) \to X$ be the inclusion of the open complement.

(i) Let \mathcal{F} be a sheaf of abelian groups on Z. Show that for any $x \in X$

$$(i_*\mathcal{F})_x = \left\{ \begin{array}{ll} \mathcal{F}_x, & \text{if } x \in Z \\ 0, & \text{if } x \notin Z \end{array} \right.$$

(ii) Let \mathcal{F} be a sheaf of abelian groups on U. Show that there is an unique sheaf $j_!(\mathcal{F})$ on X such that $j_!(\mathcal{F})|_U = \mathcal{F}$ and for any $x \notin U$, $j_!(\mathcal{F})_x = 0$.

(iii) Let \mathcal{F} be a sheaf of abelian groups on X. Show that there is an exact sequence of sheaves on X,

$$0 \to j_!(\mathcal{F}|_U) \to \mathcal{F} \to i_*(i^{-1}(\mathcal{F})) \to 0.$$

 $Homepage: \ http://www.uni-muenster.de/Arithm/hellmann/veranstaltungen$