SS 2019

Algebraic Geometry II Exercise Sheet 7

Due Date: 23.05.2019

Exercise 1:

(i) Let A be a ring and let $B = A[T_1, \ldots, T_n]$. Show that $\Omega^1_{B/A} \cong \bigoplus_{i=1}^n B dT_i$ is free of rank n and that for $f \in A[T_1, \ldots, T_n]$ one has

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial T_i} dT_i,$$

where $\partial/\partial T_i: B \to B$ is the formal derivative with respect to the variable T_i (which is a derivation).

(ii) Let A be a ring and B = A[X,Y]/(f) for some $f \in A[X,Y]$. Show that

$$\Omega^1_{B/A} = (B\,dX \oplus B\,dY)/(\tfrac{\partial f}{\partial X}dX + \tfrac{\partial f}{\partial Y}dY).$$

Show that $\Omega^1_{B/A}$ is locally free of rank 1 if and only if the matrix $\nabla f = (\frac{\partial f}{\partial X}, \frac{\partial f}{\partial Y})$ has rank 1 at all points of Spec B.

Exercise 2:

- (i) Let k be a field and let $n \geq 1$ be prime to the characteristic of k. Let $\mathbb{G}_m = \operatorname{Spec} k[T, T^{-1}]$. Show that that the morphism $\mathbb{G}_m \to \mathbb{G}_m$ defined by $T \mapsto T^n$ is étale.
- (ii) Let k be a field of characteristic p and let $\mathbb{A}^1_k = \operatorname{Spec} k[T]$. Show that the morphism $\mathbb{A}^1_k \to \mathbb{A}^1_k$ defined by $T \mapsto T^p T$ is étale.
- (iii) Let A be a ring and let $f \in A[T]$. Let B = A[T]/(f). Show that Spec $B \to \operatorname{Spec} A$ is étale if $f' = \frac{df}{dT} \in A[T]$ becomes a unit in B. (Hint: First compute $\Omega^1_{B/A}$.)

Exercise 3:

Let k be an algebraically closed field and let $f: X \to Y$ be a morphism of smooth k-schemes. Show that the following are equivalent:

- (a) f is smooth.
- (b) $\Omega^1_{X/Y}$ is locally free.
- (c) for all $x \in X(k)$ and $y = f(x) \in Y(k)$ the induced map on tangent spaces $T_x X \to T_y Y$ is surjective.

Exercise 4:

Let k be a perfect field and X be a curve over k, i.e. X is an integral k-scheme of finite type which one-dimensional. Show that X is smooth at a closed point $x \in X$ if and only if the local ring $\mathcal{O}_{X,x}$ is a principal ideal domain.

(Hint: for the difficult direction let $f \in \mathcal{O}_{X,x}$ be a generator of the maximal ideal that is defined in a neighborhood U of x. Show that the morphism $U \to \mathbb{A}^1_k$ that is defined by f is étale at x.)

 $Home page: \verb|https://www.uni-muenster.de/Arithm/hellmann/veranstaltungen|$