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ARTICLE INFO ABSTRACT

Keywords: Recently, it has been suggested that brain dysconnectivity in patients with schizophrenia contributes to the wide-
Graph theory ranging cognitive deficits that characterize the disorder. Graph theoretical analysis offers a unique method for
Connectome

studying how architectural alterations in large-scale brain networks may contribute to cognitive impairments in
these patients. Implementing this technique, we analyzed the functional brain activity during a predictive switch-
drift task from 21 patients with schizophrenia and 22 matched healthy controls. We specifically calculated task-
based global graph measures for the functional networks that were activated during expected events, events
requiring a flexible updating of predictions, and events that required the stabilization of predictions. By
implementing Bayesian multivariate generalized linear models, we found functional network alterations during
all event types, which indicated less centralized, less integrated, and simultaneously less segregated network
topology in patients with schizophrenia compared to controls. In addition, the rate of correctly detected switches,
requiring flexible updating of internal models, predicted global graph measures differently for patients compared
to controls. In particular, lower cognitive flexibility in patients was associated with reduced integration of
functional networks. Overall, the results indicate alterations of network topologies, resulting in less optimal
network organization in patients with schizophrenia compared to healthy controls.

Cognitive control
Executive functions
Task-based fMRI
Cognitive performance

1. Introduction including but not restricted to the salient network (SN), the
default-mode network (DMN), the dorsal and the ventral attention
networks (DAN, VAN), and the frontoparietal network (Menon &

D’Esposito, 2022; Zink et al., 2021). Hence, cognitive control and

Cognitive impairments are among the core symptoms of schizo-
phrenia (Elvevag & Goldberg, 2000). Specifically, individuals with

schizophrenia suffer from poor cognitive control (Lesh et al., 2011;
Orellana & Slachevsky, 2013), which is the ability to either adaptively
ignore distractors (i.e., cognitive stability) or update inner representa-
tions (i.e., cognitive flexibility) based on situational demands (Dreisbach
& Frober, 2019; Trempler et al., 2017). Previous theoretical accounts
and empirical investigations focused on the role of frontostriatal circuits
in balancing cognitive flexibility and stability (Arnsten & Rubia, 2012;
Jiang et al., 2015; Liston et al., 2006; Miller & Cohen, 2001; Trempler
et al., 2017). However, recent studies have shown that cognitive control
is dependent on the interaction of several widespread networks,

* Corresponding authors.

working memory might be better understood as entailing brain-wide
switching between different networks, driven by D1 and D2 dopamine
receptors (Braun et al., 2021). Likewise, even though frontostriatal ac-
tivity reductions that relate to cognitive control deficits have been found
in schizophrenia (Cadena et al., 2018; Morey et al., 2005; Standke et al.,
2021), this disorder is characterized by extensive brain dysconnectivity
(Pettersson-Yeo et al., 2011; Zhou et al., 2015). Against this background,
it is essential to investigate potential changes in the functional network
as a whole in order to better understand cognitive deficits in patients
with schizophrenia. Taking a step in this direction, in the current study,
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we used graph-theoretical analysis of brain imaging data to explore the
topological alterations in network architecture in schizophrenia.

Graph theory, which has gained increasing popularity in the field of
neuroscience (Bassett & Sporns, 2017; Bullmore & Sporns, 2009; Sri-
vastava et al., 2022; Stam & Reijneveld, 2007), explains brain activity in
terms of properties of large-scale networks, which are separated into
small, densely connected communities that implement a global
communication structure (Sporns, 2013). To understand these
large-scale networks, one can use several different graph measures
representing aspects of (I) segregation, (II) integration, (III) centrality,
and (IV) resilience (Rubinov & Sporns, 2010). Measures of (I) segrega-
tion quantify the extent of functionally related regions with dense in-
terconnections, whereas measures of (II) integration reveal how many
integrative connections between segregated areas a network has, which
combine specialized information. Further, (III) the centrality of a
network reflects the tendency of its nodes to communicate with others.
And finally, (IV) resilience assesses the network’s ability to cope with
disruptions or damage.

So far, topological analyses of schizophrenia have yielded mixed
results (Fornito et al., 2012; Kambeitz et al., 2016). The majority of
studies implementing graph theory for fMRI data of these patients focus
on resting-state data (e.g., Alexander-Bloch et al., 2010; Liu et al., 2008;
Trempler et al., 2018; van den Heuvel et al., 2010; Yu et al., 2012; Yu
et al., 2015), while only a few studies have analyzed task-based data of
cognitive control or any of its components (e.g., Emmanuel D. Meram
et al.,, 2023; Lindsay D. Oliver et al., 2021; Sheffield et al., 2015).
Notably, although several studies of task-based data reported alterations
of functional network topology in schizophrenia for all investigated
graph measures (He et al., 2012; Ray et al., 2017; Yu et al., 2011), others
only found group differences in particular measures (Ma et al., 2012;
Sheffield et al., 2015; Wang et al., 2022; Yang et al., 2020), or no effects
atall (Fornito et al., 2011; Lindsay D. Oliver et al., 2021). The significant
findings of group differences suggested no clear direction of alterations
for functional segregation and integration (He et al., 2012; Ma et al.,
2012; Ray et al., 2017; Wang et al., 2022; Yang et al., 2020; Yu et al.,
2011). Additionally, centrality has not been analyzed in this context,
and only one study investigated network resilience, finding higher
resilience in schizophrenia (Ray et al., 2017). In regards to cognitive
control components, there have been topology investigations exclu-
sively targeting working memory (He et al., 2012; Yang et al., 2020) or
cognitive flexibility performance (Wang et al., 2022), whereas cognitive
stability has not yet been investigated in patients with schizophrenia.
Therefore, it is unclear whether network topology alterations during
task performance depend on the process currently at play. Furthermore,
for differentiating between components of cognitive control, it is bene-
ficial to employ a task that requires both functions at different time
points. Using one task where both cognitive flexibility and stability are
required during different task events makes it possible to separate the
effects of general task requirements (e.g., processes associated with
input perception and output production) from involved cognitive
functions.

Our study aims to clarify potential topology alterations in functional
networks associated with schizophrenia that relate to the specific pro-
cesses of stabilizing and flexibly updating internal rules. We constructed
graphs based on fMRI data of patients with schizophrenia and control
subjects collected during the performance of a switch-drift task
(Trempler et al., 2017). In the switch-drift task, digit sequences must be
monitored for rule changes (switches), while rule-conforming noises
(drifts) should be ignored. In contrast to previous studies, a range of
global graph measures describing different characteristics of the entire
network were calculated to capture neural responses relevant to cogni-
tive flexibility and stability. We implemented Bayesian generalized
linear multivariate, multilevel modeling to test the differences between
patients and controls. This approach eliminates the possibility of infla-
ted type 1 error (Dienes, 2016; Dienes & Meclatchie, 2018). Further, the
usage of multilevel analysis resolves the issue of having an imbalance in
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the number of events for different participants and conditions (van den
Bergh et al., 2023). We expected patients with schizophrenia to signif-
icantly differ from healthy controls in global graph measures consid-
ering (a) the impairments of cognitive control in schizophrenia
(Orellana & Slachevsky, 2013), (b) the wide-ranging abnormal con-
nectivity patterns in these patients (Pettersson-Yeo et al., 2011; Zhou
et al, 2015), and (c) indications of altered network topology in
schizophrenia related to cognitive control (He et al., 2012; Ma et al.,
2012; Ray et al., 2017; Wang et al., 2022; Yang et al., 2020; Yu et al.,
2011). However, with previous task-based graph theoretical findings
being contradictory and inconclusive, we had non-directional hypoth-
eses. Finally, to investigate the association between topology and
behavior, we further modeled the interaction between group differences
and the behavioral measures obtained from the task for the global graph
measures.

2. Methods
2.1. Participants

22 patients (36.41 + 10.28 years, seven females) diagnosed with a
schizophrenia spectrum disorder participated in the study. This included
12 patients with schizophrenia and 10 patients with schizoaffective
disorder. Additionally, 22 healthy controls (38.23 + 12.26 years, nine
females) were included in the present study.

All patients were recruited at the Department of Mental Health of the
University Hospital Miinster. Diagnoses were established at consensus
conferences based on the structured Clinical Interview I (SCID-I) (First &
Gibbon, 2004) for DSM-IV (American Psychiatric Association, 1994) and
further available clinical data. Patients participated under regular
medication, with a mean converted chlorpromazine equivalent (CPZ;
Andreasen et al., 2010) of 654.28 (+ 408.98). Eighteen patients were
treated with atypical antipsychotic medication, one with typical anti-
psychotic medication, and three did not receive any antipsychotic
medication at the time of testing. Further, all patients with a history of
substance abuse were at least four weeks abstinent before participating
in the study.

Healthy controls were recruited via advertisements. Controls were
checked to guarantee mental health via the short-form SCID-I screening
and no known history of psychotic disorders in first-degree relatives. All
participants were native German speakers. Further, as participants went
through fMRI measurements, anyone with metal implants, a pacemaker,
big tattoos within the neck and head area, history of serious head trauma
or neurological disorders, or claustrophobia was excluded.

One patient was classified as an extreme outlier (Fig. S1) for most
global graph measures, defined as being outside the following range: Q1
- 3*IQR - Q3 + 3*IQR [Q = quartile; IQR = interquartile range]. Hence,
data from this individual were excluded from all analyses, making the
final sample N=21 (36.76 + 10.40 years, seven females) patients and
N=22 healthy controls. Behavioral and fMRI results of the present
sample were reported previously by Standke et al. (2021). Study pro-
cedures were approved by the local ethics committee of the University of
Miinster, in accordance with the Declaration of Helsinki, except for
pre-registration. Participants signed informed consent forms and were
compensated for their participation in the study, either through mone-
tary reimbursement or course credits.

2.2. Clinical assessments

The positive and negative symptoms of all participants were assessed
using the Scale for the Assessment of Positive Symptoms (SAPS;
Andreasen, 1984) and the Scale for the Assessment of Negative Symp-
toms (SANS; Andreasen, 1984), respectively. Both tools are commonly
used for assessing schizophrenia spectrum disorders symptoms for aca-
demic and clinical purposes and show high interrater reliability and
moderate temporal stability (Andreasen & Olsen, 1982; Kumari et al.,
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2017).

Participants’ handedness was measured using the Edinburgh in-
ventory (Oldfield, 1971). Finally, all participants completed the Hei-
delberg Scale for Neurological Soft Signs (NSS; Schroder et al., 1991),
the Beck’s Depression Inventory II (BDI-II; Beck et al., 1996), and the
Barratt Impulsiveness Scale (BIS; Patton et al., 1995). Details on de-
mographic and clinical characteristics are presented in Table 1.

2.3. Stimuli and task

A serial predictive switch-drift paradigm (Trempler et al., 2017) was
used to assess cognitive flexibility and stability. In the task, a predictable
sequence consisting of four consecutive digits was presented repeatedly
with a presentation time of 1 s per digit and 100 ms in between (Fig. 1).
Three different types of unexpected events occurred at variable positions
of the sequence during the task. Firstly, the direction of the sequence
presentation could be reversed from ascending to descending or vice
versa (switches). Consequently, the generated internal model had to be
updated, indicating cognitive flexibility as a response to prediction er-
rors. Participants were instructed to press a button as a reaction to this
event. Secondly, omissions of single digits could appear during the
sequence (drifts). Here, participants were asked not to respond,
demonstrating shielding of the current internal model and, thus,
cognitive stability. Lastly, motor control trials were included, where one
digit was repeated up to eight times until participants reacted by
pressing a button. The motor control trials provided the basis for the
calculation of individual reaction time windows that were used to
classify button presses as event-related or not.

Table 1
Demographic and clinical characteristics of patients with schizophrenia and
healthy controls.

Patients Healthy
(n=21) Controls
(n=22)
Mean (+ SD) Test p- Effect
statistic value size
Age [years] 36.76 (+ 38.23 (+ t=0.42 0.676 g=
10.40) 12.26) 0.13
Gender (female/ 7/14 9/13 - 0.755 OR =
male) 0.73
Handedness 19/2 19/3 - 1.00 OR =
(right/left) 0.64
CPZ [mg] 654.28 (+ - - - -
408.98)
Years since 12.90 (+ - - - -
diagnosis 10.22)
History of 11 (52.4%) 0 - < OR =
Substance 0.001
abuse
SAPS 13.86 (+ 0(+0) U =66 < r=
16.32) 0.001 0.61
SANS 22.43 (+ 0.05 (+ U=23 < r=
18.71) 0.21) 0.001 0.77
BDI-II 10.48 (£ 2.36 (£ U= < r=
8.53) 3.47) 102.5 0.001 0.48
BIS-11 63 (+7.21) 58(x7.11) t=-2.29 0.027 g=
0.69
NSS 14.62 (+ 5.91 (+ t=-419 < g=
8.76) 3.82) 0.001 1.27

Note: Age, BIS-11, and NSS differences between groups were tested using inde-
pendent samples t-tests with Welch’s correction applied when Levene’s test
indicated unequal variances. The distributions of gender, handedness, and
substance abuse were compared between the two groups using Fisher’s exact
tests. BDI-II, SAPS, and SANS group differences were tested using nonparametric
Mann-Whitney U-tests. CPZ: chlorpromazine equivalents; BDI-II: Beck’s
Depression Inventory-II; BIS-11: Baratt Impulsiveness Scale; NSS: Heidelberg
Scale for Neurological Soft Signs; SAPS: Scale for the Assessment of Positive
Symptoms; SANS: Scale for the Assessment of Negative Symptoms; SD: standard
deviation; g: Hedges’ g OR = odds ratio; r = rank-biserial correlation.
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Fig. 1. Schematic diagram of the task design. During the presentation of a
predictable sequence of four consecutive digits, three different unexpected
events occurred at various positions of the sequence. Switches represent the
reversal of sequence direction and have to be indicated by a button press. Drifts
are omissions of single digits that had to be ignored. Motor control trials
involved the repetition of a single digit up to eight times and at least until
participants reacted with a button press. These trials were used to calculate
individual reaction time windows and, therefore, classify button presses during
the task as event-related or not.

The task consisted of 12 blocks with an average of 125 digits per
block. The different event types were distributed in a balanced way
during the task using the stochastic universal sampling method (Baker,
1987). Between blocks, a fixation cross was presented for 6 s, serving as
the baseline. MATLAB R2012b (The MathWorks Inc., Natick, MA, USA)
was used to implement the randomization, and stimuli were presented
using Presentation 18.1 (Neurobehavioral Systems, San Francisco, CA,
USA). All participants completed ten blocks, each with 80 trials as
practice a day before the main session. In the main session, three prac-
tice blocks were administrated directly before the task. The task was
performed by the participants during fMRI data acquisition in the
scanner.

2.4. FMRI data acquisition and preprocessing

Imaging data were collected using a 20-channel head coil on a 3
Tesla MRI Scanner (Magnetom Prisma, Siemens Medical Solutions,
Erlangen, Germany). Functional images were acquired using a T2*-
weighted single-shot echo-planar imaging (EPI) sequence (210 mm
field of view, 64 x64 matrix, 90° flip angle, repetition time = 2000 ms,
echo time = 30 ms). Thirty-three axial slices per volume with a slice
thickness of 3 mm and a gap of 1 mm were recorded, with images being
oriented parallel to the anterior commissure-posterior commissure (AC-
PC) line. Structural data were collected using a standard Siemens T1-
weighted magnetization-prepared rapid acquisition with gradient echo
(MPRAGE) sequence for a detailed reconstruction of anatomy (field of
view = 256 mm, 256 x 256 matrix, 192 slices, voxel size = 1x1x1 mm?,
repetition time = 2130 ms, echo time = 2.28 ms).

Brain image preprocessing was performed using SPM12 (Wellcome
Department of Imaging Neuroscience, London, UK). Images were slice-
timed to the middle slice, and individual functional magnetic reso-
nance (EPI) images were realigned to the mean image. The anatomical
scan was further co-registered by rigid body transformation to the mean
functional image. In order to normalize each participant’s functional
scan to the Montreal Neuroimaging Institute (MNI ICBM-152 linear)
space (Mazziotta et al., 2001), scans were segmented into native space
tissue components. After that, spatial smoothing with a Gaussian kernel
of 8 mm full width at half-maximum (FWHM) was applied. In order to
remove potential confounding effects, a denoising procedure was per-
formed on the EPI data with the CONN toolbox (Whitfield-Gabrieli &
Nieto-Castanon, 2012) using the default settings. The toolbox removes
confounds by implementing the anatomical component-based noise
correction method (aCompCor). During denoising, the first five prin-
cipal components for white matter, cerebrospinal fluid, motion param-
eters, and their temporal derivatives were included in the model as
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nuisance regressors. Lastly, data was filtered with a 128-s temporal
discrete cosine transform (DCT) high-pass filter.

As our analyses focused on networks distributed across the whole
brain, and data were acquired on a modern MRI scanner with advanced
shimming algorithms, we do not expect our results to be affected by any
geometrical distortion.

2.5. Graph construction and graph theoretical measures

To model event-specific functional connectivity networks, the
MATLAB toolbox BASCO (Beta Series Correlation; Gottlich et al., 2015)
was used to create beta series correlations (Rissman et al., 2004). This
method is specifically designed to capture inter-regional interactions for
event-based fMRI data (Rissman et al., 2004). Using this method, one
can model functional connectivity during distinct, closely spaced stages
of a cognitive task. The advantage over other approaches is that beta
series correlations can tease cognitive subcomponents apart by esti-
mating the proportion of the functional connectivity allocated to each
cognitive operation. In the current study, this allows us to differentiate
the functional connectivity underlying standard digit processing from
functional connectivity specifically present during cognitive flexibility
and stability performance. The use of beta series correlations is
well-established in prior research analyzing multiple components of
task-based fMRI data (e.g., Fornito et al., 2011; He et al., 2012; Wang
et al., 2022), demonstrating its utility in investigating functional con-
nectivity during cognitive tasks. The approach includes modeling the
BOLD response in a general linear model (GLM) where the evoked ac-
tivity in each voxel is modeled as a separate regressor for each event.
Each regressor reflects brain activity using the canonical hemodynamic
response function (HRF). Event length was set to zero; with the actual
repetition time being 2 seconds, this allows only the immediate BOLD
response to be captured. Resulting beta values can then be sorted by
experimental conditions, creating corresponding beta series. Using this
procedure, beta series were created for the presentation of standard
digits, representing expected events, as well as switches and drifts,
representing unexpected events. Only drifts and switches with a mini-
mum distance to the next unexpected event (calculated using the par-
ticipants’ specific response time windows) were included in calculating
the beta series. Due to these exclusions, the number of events per
participant varied slightly, but the overall number of standard digits
(mean = 113.205; sd = 6.238), switches (mean = 103.886; sd= 4.363),
drifts (mean = 103.682; sd = 5.552) was sufficiently large to make the
variation statistically irrelevant. In other words, the differences between
the number of conditions per participant were less than 10% of the total
number of events per condition and participant. Afterward, the brains of
all participants were parcellated according to the automated anatomical
labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002). Mean beta series per
brain region were calculated and correlated for each pair of regions
using Pearson correlation. This resulted in three correlation matrices per
participant, indicating the functional connectivity between brain re-
gions for each type of event.

Functional connectivity matrices were further processed with
GraphVar (Kruschwitz et al., 2015), a MATLAB toolbox specifically
designed to perform graph theoretical analyses of brain connectivity.
Negative correlations were set to zero as they are difficult to interpret
and would interfere with graph measure calculations. Finally, matrices
were proportionally thresholded over a range of possible thresholds to
avoid conclusions based on arbitrary threshold choice. This resulted in
different network sparsity levels, with the strongest links (10% to 50%
with 2% increments) extracted, representing the final edges of the
constructed graph. This approach is in line with recommendations from
the literature (Rubinov & Sporns, 2010) and has been used by previous
studies (Fornito et al., 2011; Ray et al., 2017; Yang et al., 2020). Still, to
ensure that our results are reliable, we additionally calculated
non-thresholded, fully weighted connectivity matrices (Fig. S2).
Importantly, graphs were not binarized since the inclusion of edge
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weights can partially compensate for differences in overall functional
connectivity (van den Heuvel et al., 2017; Vasa et al., 2018).

Topological measures were calculated at each threshold for the un-
directed, weighted connectivity matrices of each participant. This
resulted in graph theoretical measures for networks that were activated
during the presentation of switches, drifts, and standard digits, respec-
tively. Global measures were calculated for each network and represent
a selection of measures that were previously analyzed in the relevant
literature (Fornito et al., 2011; Ray et al., 2017; Yang et al., 2020). We
decided to include a range of global graph measures that describe
different aspects of topology to allow for a comprehensive character-
ization of functional networks. As a measure of centrality, global strength
was calculated as the average of the sum of link weights across all nodes,
reflecting the overall connectivity strength of a network. Global char-
acteristic path length was computed as the average shortest path length
between all pairs of nodes and serves as a measure of network integra-
tion. A related integration measure is global efficiency, defined as the
inverse of the characteristic path length, which emphasizes efficient
information transfer across the network. To capture segregation, we
calculated the global clustering coefficient, describing the average fraction
of triangles formed around each node. Transitivity is a similar measure
but is computed globally rather than node-wise, providing a
network-wide normalization that reduces the disproportionate influence
of low-strength nodes. Lastly, assortativity is a measure of resilience and
indicates how much highly connected nodes tend to cluster together.
Mathematical definitions of these global graph measures can be found in
the supplementary material (Table S1).

2.6. Statistical analysis

Statistical analyses of graph measures were first run in GraphVar to
check effects for all network sparsity levels. Since effects stabilized over
a wide range of sparsity levels (see supplementary materials; Fig. S3-S5),
further Bayesian inference statistics were applied to graph measures
calculated with the middle sparsity level of 0.3, as a reasonable sparsity
level around which effects were stable. This approach allowed for a
more detailed analysis using multivariate Bayesian generalized linear
models. We refrained from calculating Bayesian models for all sparsity
levels as the stable effects over sparsity levels indicate the benefit to be
negligible, and it is computationally not reasonably feasible. We were
interested in investigating group differences as well as differences be-
tween event types and the possible interaction of these factors for all
graph measures. Therefore, a Bayesian generalized linear multivariate,
multilevel model was implemented with Group (i.e., Patients vs. Healthy
Controls), Event Type (i.e., Standards, Drifts, and Switches), and their
interaction as fixed effects of interest. The intercepts for all models were
healthy controls and drift events; however, the choice of intercept does
not affect the final results, as we calculated all possible contrasts using
the posterior draws. Age and Gender were assumed as nuisance vari-
ables, and further, a random intercept for subjects was assumed (Model
1; Eq. 1). Lastly, the residual correlation between the response variables
was assumed. The residual correlation explicitly takes into account the
correlations between noises of different measures due to originating
from the same source (i.e., the same participant, condition, task, etc.).

Model 1 : GraphMeasure
~ Group * EventType + Age + Gender + (1|Subject) (@D)]

For testing the predictive capabilities of the main variables of interest,
four models were compared to the full model (i.e., Model 1). The base
model (Model 5, Equation 5) comprised Age and Gender as nuisance
variables and assumed a random intercept for subjects. Adding to the
base model, one model assumed only Group (Model 4, Equation 4),
another only Event Type (Model 3, Equation 3), and the last one, both
Event Type and Group as fixed effects but no interaction between them
(Model 2, Equation 2).
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Model 2 : GraphMeasure
~ Group + EventType + Age + Gender + (1|Subject) (2)

Model 3 : GraphMeasure ~ EventType + Age + Gender + (1|Subject) (3)
Model 4 : GraphMeasure ~ Group + Age + Gender + (1|Subject) “4)

Model 5 : GraphMeasure ~ Age + Gender + (1|Subject) 5)

To further investigate the association between behavioral data and
the graph measures, participants’ accuracy in the switch-drift task was
calculated. To classify hits and false alarms, we calculated individual
response time windows based on the average response times for motor
control trials plus one standard deviation. Response times of under 150
ms were excluded from the analyses since those are unlikely to represent
deliberate responses. Also, unexpected events, i.e., drifts and switches,
that did not have a minimum distance to the next unexpected events
(calculated using the participants’ specific response time window) were
excluded from analyses. The rate of correctly detected switches per
subject was calculated, representing the hit rate, whereas the rate of
correctly ignored drifts per subject corresponds to the correct rejection
rate. We fitted two Bayesian generalized linear multivariate models,
including hit or correct rejection rate as a covariate of interest. One
model addressed the graph measures calculated during switch process-
ing and, therefore, included Hit Rate, Group, their interaction, as well as
Age and Gender as fixed effects (Model 6, Eq. 6). Equivalently, the other
model addressed graph measures during drift processing and included
Correct Rejection Rate, Group, their interaction, Age, and Gender as
fixed effects (Model 7, Eq. 7). Notably, as graph measures were calcu-
lated for different events, having a single model that included both hit
rates and correct rejections is impossible, as it creates complete segre-
gation in the data.

Model 6 : GraphMeasure ~ Group * HitRate + Age + Gender (6)

Model 7 : GraphMeasure ~ Group * CorrectRejectionRate + Age + Gender
@)

Bayesian modeling was implemented using R programming language
(https://www.r-project.org/) with brms (Biirkner, 2017a) and RSTan
(https://mc-stan.org/) being utilized for Bayesian modeling. We used
weakly informative priors, scaling their distributions approximately to
the corresponding standard deviations of our sample, to account for the
immensely varying absolute values of the different graph measures. As
we did not have a priori hypotheses regarding the data, weakly infor-
mative priors were used (van den Bergh et al., 2023). The following
priors were used for f coefficients: for global strength: N(0, 1000); for
global characteristic path length: N(0, 2.5); and for global efficiency,
global clustering coefficient, transitivity, and assortativity: N(0, 0.5).
We used the default student-t priors for the intercepts, standard de-
viations, sigmas, and lkj(1) for residual correlations.

All models were fitted using four chains with 5,000 iterations each,
including 2,000 iterations as warmups. If any variable showed an R-hat
above 1.05 or the effective sample size was too low, the model was
recalculated with increased iterations and reported accordingly. Hy-
potheses were tested using the hypothesis package included in brms
(Biirkner, 2017b). Based on the suggestion of van Doorn et al. (2021),
Bayes factors (BF) > 3 and BF < 1 were considered significant evidence
for accepting and rejecting the tested hypothesis, respectively. All tests
were two-sided (denoted by: BFy; or BF;() and the comparison between
hypotheses and their alternative was computed via the Savage-Dickey
density ratio method (Verdinelli & Wasserman, 1995). The significant
Bayes factors are made bold for better distinguishability. For each test,
we also reported the posterior probability (p.p.) regarding the presented
hypothesis and further made it bold when p.p. > .95 or p.p. < .05.
Finally, for the model comparison, we used the Pareto smoothed
importance sampling (PSIS) estimation of leave-one-out cross-validation
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(LOO) implemented in the loo package (Magnusson et al., 2020; Vehtari
et al., 2017). LOO assesses pointwise out-of-sample prediction accuracy
from a fitted Bayesian model using the log-likelihood evaluated at the
posterior simulations of the parameter values; however, as it is difficult
to calculate, commonly importance weights will be used instead, which
results in PSIS-loo (Magnusson et al., 2020; Vehtari et al., 2017). To
make sure that PSIS-loo estimation is accurate, one can use

Pareto k < 0.7. However, Pareto k < 1 still shows that PSIS-loo estima-
tion can be employed and trusted (Magnusson et al., 2020; Vehtari et al.,
2017).

The current study uses multivariate Bayesian statistics to provide
statistical analyses that are robust (Dienes, 2016; Dienes & Mclatchie,
2018), and do not suffer from multiple comparison issues in the same
way that a univariate frequentist analysis would do (Huberty & Morris,
1992). In other words, since multivariate models test multiple outcomes
simultaneously, they do not suffer from the multiple comparison issue
and therefore, handle the inflated type I error intrinsically. Further, due
to the partial pooling in the used multilevel model (Gelman & Hill, 2007;
McElreath, 2018; van Doorn et al., 2021), unbalanced group sizes and
trials are handled adequately. Therefore, the current results are reliable
in terms of type I error and offer statistical insight that is independent of
the sample size (Dienes, 2016; Dienes & Mclatchie, 2018).

3. Results
3.1. Group and event effects on global graph measures

Firstly, we analyzed the effects of Group, Event Type, and the
interaction of these factors on the different global graph measures
(Fig. 2A). For the full model (Eq. 1), we used 8,000 iterations, and all
chains converged with R-hats = 1.00. Further, bulk effective sample
sizes were > 2,000, and tail effective sample sizes were > 1,000. Pos-
terior predictive checks showed that the model could adequately
simulate datasets with distributions representing the observed distri-
butions for all global graph measures (Fig. 2B).

To examine the effects of the variables included in the model, we
tested hypotheses using the estimated posterior distributions (Fig. 3).
Since we had non-directional hypotheses, all parameters were tested
against the relevant null hypotheses. Table S2 (see supplementary ma-
terials) depicts all parameter estimations and hypothesis tests for the
different global graph measures. The results showed that patients with
schizophrenia, compared to healthy controls, had significantly lower
global strength (Hyp: GroupP = 0; mean = -217.56[-301.83, -134.74], sd
= 42.81; p.p. = 0.00, BFy; = 0.00), higher global characteristic path
length (Hp: GroupP = 0; mean = 0.55[0.38, 0.72], sd = 0.09; p.p. =
0.00, BFy; = 0.00), lower global efficiency (Hy: GroupP = 0; mean =
-0.05[-0.07, -0.04], sd = 0.01; p.p. = 0.00, BF(; = 0.00), lower global
clustering coefficient (Hp: GroupP = 0; mean = -0.07[-0.10, -0.04], sd =
0.02; p.p. = 0.00, BFy; = 0.00) and lower transitivity (Hyp: GroupP = 0;
mean = -0.06[-0.09, -0.03], sd = 0.02; p.p. = 0.06, BFp; = 0.06). Only in
assortativity (Hp: GroupP = 0; mean = 0.02[-0.03, 0.071, sd = 0.02; p.p.
= 0.93, BFp; = 14.15), evidence suggested no group differences. Event
Type did not have a main effect on graph measures and did not interact
with Group either. Furthermore, post hoc contrasts using the estimated
marginal means (EMMs) revealed that significant Group differences
were present for all event types, i.e., patient’s graph measures for
standard digits, switches, and drifts all differed significantly from those
of control subjects (Table S3).

As an additional step, we have investigated global graph measures
based on connectivity matrices that were calculated using an alternative
brain atlas that is based on a series of meta-analyses of task-related fMRI
studies brain (Dosenbach et al., 2010). This was to ensure that our
findings were not sensitive to the choice of brain atlas. Four participants
(two patients and two healthy controls) had to be excluded from this
analysis because their brain imaging data did not allow for correct
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Fig. 2. Observed and posterior predictive global (G.) graph measure distributions. (A) Box and violin plots of the observed global graph measure distributions for
different groups and event types. Red frames indicate significant Group effects. (B) The density plot of the observed global graph measures distributions (y) and
simulated distributions (y,ep; Number of simulations = 100) based on the posterior predictive distributions.

processing with the alternative, more fine-grained brain atlas. Using the
same multivariate Bayesian generalized linear models, we found that the
results based on the Dosenbach atlas were consistent with our previous
findings, which relied on the anatomical atlas (Fig. S6). Furthermore,
using a confirmatory analysis, we obtained similar results when only
correct responses were included in our models, rather than all responses
described here (Fig. S7; see supplementary materials for a more detailed
description and results).

In order to test the predictive capabilities of the fixed effects, the full
model (Eq. 1) was compared to four additional models (Egs. 2-5), which
systematically excluded variables. As criteria for model comparison,
PSIS-loo estimations were used, which were first checked for reliability
using Pareto k values of the full model. Although less than 10% of Pareto
k values were above 0.7, only one was above 1, and therefore, the es-
timations are reliable. PSIS-loo criteria clearly showed that the model
only including Group (9,000 iterations used) as an effect of interest is
superior against all other models (Table 2). Adding Event Type as a
factor (7,000 iterations used) deteriorated the model performance by
more than two standard errors. This finding is in line with the strong
effect of Group that we found for the full model, as well as the absence of
an effect for Event Type or their interaction.

3.2. Effects of accuracy data on graph measures

Firstly, we confirmed the previously reported significant group dif-
ferences in the behavioral data (Standke et al., 2021) using Bayesian
modeling (see supplementary materials for details on method). Our re-
sults showed that patients with schizophrenia had significantly lower hit
rates (mean = 0.56 + 0.22) compared to healthy controls (mean = 0.79
+ 0.14) (Hy: GroupP = 0; mean = -0.25[-0.36, -0.15], sd = 0.05; p.p. =
0.00, BFp; = 0.00). Further, patients also showed a significantly lower
correct rejection rates (mean = 0.88 + 0.09) than healthy controls (mean
=0.91 + 0.09) (Hyp: GroupP = 0; mean = -0.06[-0.08, -0.04], sd = 0.01;
p.p. = 0.00, BFo] = 0.00).

To investigate the association between behavioral data and global
graph measures (Fig. 4), two models were calculated, using the accuracy
from the switch-drift task as a predictor (Eq.s 6 & 7). For the model that
included Hit Rate as a predictor for global graph measures of switch
processing (Eq. 6), we found significant group differences in all global
graph measures except for assortativity (Table 3). In contrast, evidence
was inconclusive regarding the effect of Hit Rate for global strength (Hy:
Hitrate = 0; mean = -360.58[-693.34, -11.07], sd = 173.84; p.p. = 0.42,
BFy; = 0.73), global characteristic path length (Hy: Hitrate = 0; mean =



M. Sundermeier et al.

Neurolmage 318 (2025) 121416

Group EventStandard EventSwitch Group:EventStandard Group:EventSwitch
£ - v v v v
2 1 1 1 1 1
g 1 I 1
n 1 1 !
o T T T T : T T T T T T : T T T : T T T
-400 -300 -200 -100 O 200 -100 O 100 200 -200 -100 0 100 200 -200 0 200 -400 -200 0
L
£ x . x x
G c |l 1 1 1 1
Lo
o |
- i [
O T Iy 1 1 1
o “ y T y ¥ Y Y T ' ' ' Y ' T T T ' ? T
0.00 0.25 0.50 0.75 02 00 02 04 -0.25 0.00 025 -0.25 0.00 0.25 0.50 -04 0.0 0.4 0.8
>
(&) v T T T T
S 1 1 1 1 1
S 1 1
- 1 3 3 I I
(O] T T T T T T T T T T T T T
0.05 0.00 -0.04 -0.02 0.00 0.02 0.00 0.05 005 000 005 -0.10 -0.05 0.0
()]
_E .2 T T T T
3 1 1 1 1 1
® O
R ! ! 1
o0 1 1 1
. 1 1 1
O T T T T T T T T T T T L] T T T T T T
-0.10 -0.05 0.00 -0.04 0.00 0.04 -0.05 0.00 0.05 0.10 -0.10 -0.05 0.00 0.05 -0.10 -0.05 0.00 0.05
‘Zs T T T T
= 1 1 1 1 1
5 1 1 1
c
s 1 1 | 1
= f T } ' ¢ T T " } ? t I 1 T
0.10 -0.05 0.00 -0.04 0.00 004 0.08 -0.05 0.00 0.05 0.10 -0.10 -0.05 0.00 0.05 -0.15 -0.05 0.05
2 1 1 1 1 1
B 1 |
@ 1 1 I
1] 3 3 1
< y T y T Y T u T ' Y ' y
0.0 0.1 0.0 0.1 -0.05 0.05 02 01 00 0. 01 00 0.

Fig. 3. Posterior distributions of full model B coefficients. Means are indicated by the straight red lines, and 90% central posterior uncertainty intervals are indicated
by blue shaded areas. The dashed black lines show null hypotheses, and red frames indicate significant effects.

Table 2
Fit indices of the graph measure models computed using multivariate, multilevel
bayesian cumulative modeling.

se
(elpdl,,)
26.3

epdio,

elpdagr %

(elpd aigy)

Model 4:
Group + Age + Gender + (1|
Subject)

Model 2:
Group + Event Type + Age + Gender
+ (1|Subject)

Model 1:
Group * Event Type + Age + Gender
+ (1|Subject)

Model 5:
Age + Gender + (1|Subject)

Model 3:
Event Type + Age + Gender + (1|
Subject)

0.0 0.0 794.6

-7.8 786.8 26.2

-15.9 6.1 778.8 26.0

-43.9 8.5 750.7 27.0

-53.6 8.6 741.0 26.9

Note. a;;:llm = the expected log pointwise predictive density for a new dataset
using the Pareto smoothed importance sampling (PSIS) leave-one-out cross-

validation (LOO) criterion; J;ddiff = the difference between e/l;dloo of two
compared models; se = the standard error of the targeted variable. Models are
ordered by fit, with the best-fitting model at the top. All models are compared to
the best-fitting model (i.e., Model 4). If a more complex model shows e’lp\ddiff

greater than two and a half standard errors, it is considered to be a better fit
(Magnusson et al., 2020; Vehtari et al., 2017).

0.82[0.06, 1.57], sd = 0.39; p.p. = 0.41, BFy; = 0.69) and global effi-
ciency (Hp: Hitrate = 0; mean = -0.10[-0.18, -0.02], sd = 0.04; p.p. =
0.42, BFy; = 0.72) with Bayes factors below 1 but higher than {. How-
ever, the interaction between Group and Hit Rate was significant for
global strength (Hp: GroupP:Hitrate = 0; mean 534.12[135.43,
925.33], sd = 202.46; p.p. = 0.14, BFg; = 0.17), global characteristic
path length (Hy: GroupP:Hitrate = 0; mean = -1.59[-2.50, -0.70], sd =
0.46; p.p. = 0.02, BFp; = 0.02) and global efficiency (Hp: GroupP:
Hitrate = 0; mean = 0.14[0.05, 0.23], sd = 0.05; p.p. = 0.13, BFy; =
0.15). This showed that lower values for global strength and global ef-
ficiency were associated with higher hit rates in healthy controls but
with lower hit rates in patients. Similarly, a high global characteristic
path length was associated with higher hit rates in control subjects but
lower hit rates in patients. EMMs of linear trends revealed that global
strength, global efficiency, and global characteristic path length in
healthy control subjects, as well as global characteristic path length in
patients, could be significantly predicted based on hit rates (Table S4).
Further, modeling results with the model that included Correct
Rejection Rate as a variable to predict graph measures during drift
processing (Eq. 7) did not yield any significant effects (Table S5).

4. Discussion

Aiming to gain insights into functional network topology in schizo-
phrenia while performing a task that requires cognitive flexibility and
stability, we analyzed fMRI data obtained during a switch-drift task.
There is still no substantial body of literature that has investigated graph
theoretical measures for understanding the neurocognitive deficits
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Fig. 4. Correlations of accuracy data from the switch-drift task and global (G.) graph measures of related event types. The x-axis shows the accuracy rate, and the y-
axis shows graph measure values. Red frames indicate significant slopes for healthy controls, and dashed red frames indicate significant slopes for both, healthy
controls and patients. (A) Correlations of Hit Rate and global graph measures of switch processing for factor Group. (B) Correlations of Correct Rejection Rate and

global graph measures of drift processing for factor Group.

underlying schizophrenia using task-based fMRI data (e.g., Lindsay D.
Oliver et al., 2021; Sheffield et al., 2015), and the results are inconclu-
sive. Therefore, we focused on whole-brain analysis rather than focusing
on network-specific analysis, which should have been conducted based
on a priori hypotheses. In the current study, Bayesian generalized linear
multivariate, multilevel modeling revealed extensive alterations in
graph measures for patients with schizophrenia compared to controls
during the detection of rule changes (i.e., switches) and ignoring of
rule-conforming noises (i.e., drifts). Meaningful differences were present
for (I) network centrality, indicated by global strength; (II) network
integration, indicated by global characteristic path length and global
efficiency; and finally, (III) network segregation, measured by the global
clustering coefficient and transitivity. Assortativity as a measure of
network resilience was not significantly altered in schizophrenia.

Analyzing the task components, there was substantial evidence that
global graph measures were similar for expected digit processing, drift
processing, and switch processing. Notably, we found that hit rates for
correct switch detection predicted global strength, global characteristic
path length, and global efficiency during switch presentation differently
in patients compared to healthy subjects, while correct rejection rates
did not have any predictive value for any global graph measures during
drift presentation.

4.1. General group differences in network topology

As expected, our study revealed that patients with schizophrenia had
a network topology that differed from healthy controls, not only during
processing predictable events but also during processing and coping
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Table 3
Results of hit rate as predictor for global graph measures.

Coefficient Estimate [95% CI] E.E. hypothesis p-p. BF.

G. Strength GroupP -693.98 [-976.06, 149.67 GroupP = 0 0.00 0.00

-393.74]
HitRate -360.58 [-693.34, 173.84 HitRate = 0 0.42 0.73
-11.071

Age -1.29 [-4.83, 2.32] 1.81 Age =0 1.00 418.21
Gender -1.83 [-83.72, 80.44] 42.14 Gender= 0 0.96 24.07
GroupP:HitRate 534.12 [135.43, 925.33] 202.46 GroupP:HitRate = 0 0.14 0.17

G. Char. Path Length GroupP 1.73 [1.07, 2.39] 0.34 GroupP =0 0.00 0.00
HitRate 0.82 [0.06, 1.57] 0.39 HitRate = 0 0.41 0.69
Age 0.01 [0.00, 0.01] 0.00 Age=0 0.99 162.18
Gender 0.02 [-0.16, 0.20] 0.09 Gender= 0 0.96 25.80
GroupP:HitRate -1.59 [-2.50, -0.70] 0.46 GroupP:HitRate = 0 0.02 0.02

G. Efficiency GroupP -0.17 [-0.24, -0.11] 0.03 GroupP =0 0.00 0.00
HitRate -0.10 [-0.18, -0.02] 0.04 HitRate = 0 0.42 0.72
Age 0.00 [0.00, 0.00] 0.00 Age =0 1.00 385.22
Gender 0.00 [-0.02, 0.02] 0.01 Gender= 0 0.98 51.76
GroupP:HitRate 0.14 [0.05, 0.23] 0.05 GroupP:HitRate = 0 0.13 0.15

G. Clustering Coefficient GroupP -0.20 [-0.31, -0.08] 0.06 GroupP =0 0.07 0.07
HitRate -0.08 [-0.21, 0.06] 0.07 HitRate = 0 0.79 3.68
Age 0.00 [0.00, 0.00] 0.00 Age=0 1.00 606.99
Gender 0.00 [-0.04, 0.03] 0.02 Gender= 0 0.97 30.78
GroupP:HitRate 0.13 [-0.04, 0.29] 0.08 GroupP:HitRate = 0 0.65 1.82

Transitivity GroupP -0.19 [-0.31, -0.07] 0.06 GroupP = 0 0.09 0.09
HitRate -0.06 [-0.20, 0.09] 0.07 HitRate = 0 0.83 4.90
Age 0.00 [0.00, 0.00] 0.00 Age =0 1.00 660.24
Gender -0.01 [-0.04, 0.03] 0.02 Gender= 0 0.97 27.91
GroupP:HitRate 0.13 [-0.04, 0.29] 0.08 GroupP:HitRate = 0 0.65 1.84

Assortativity GroupP 0.02 [-0.19, 0.23] 0.11 GroupP = 0 0.83 4.79
HitRate -0.04 [-0.28, 0.21] 0.12 HitRate = 0 0.80 3.99
Age 0.00 [0.00, 0.00] 0.00 Age =0 1.00 402.21
Gender 0.02 [-0.04, 0.07] 0.03 Gender= 0 0.94 15.20
GroupP:HitRate -0.01 [-0.30, 0.26] 0.14 GroupP:HitRate = 0 0.78 3.57

Note. E.E. = estimation error; p.p. = posterior probability; B.F. = Bayes factor; G. = Global; GroupP = level Patients of factor Group. Highlighted Bayes factors and
posterior probabilities indicate significant evidence for rejecting the tested hypothesis (van Doorn et al., 2021).

with surprising events, i.e., prediction errors. The decreased global
strength that was found in patients expresses an overall lower centrality
of nodes in the functional networks. Graph measures further revealed a
consistent pattern of a functional network topology in patients
compared to controls: patients’ network was (a) less capable of inte-
grating information globally, as indicated by higher global characteristic
path length and lower global efficiency, and simultaneously, (b) less
segregated in densely interconnected specialized networks, as indicated
by the lower global clustering coefficient and lower transitivity.
Together, these findings indicate that functional networks in schizo-
phrenia lack the ideal properties of a highly efficient network, i.e., a
small-world network, that would promote optimal cognitive functioning
(Bassett & Bullmore, 2006). Previous studies disagreed on the direction
of topological alterations associated with schizophrenia during cogni-
tive control task completion or the existence of those altogether. While
there have been investigations indicating unaltered network integration
(Fornito et al., 2011; Ma et al., 2012) and segregation (Fornito et al.,
2011; Ma et al., 2012; Yu et al., 2011) for cognitive control, other
findings are in line with our results, revealing diminished network
integration (Ray et al., 2017; Wang et al., 2022; Yu et al., 2011), and
segregation (Ray et al., 2017) in patients with schizophrenia. Potential
explanations for the diverging results include differences in methodol-
ogy, such as the choice of the utilized task and whether graph con-
struction was based on the whole brain or pre-selected areas.
Nevertheless, previous studies clearly show that the functional connec-
tivity during the resting state differs between patients with schizo-
phrenia and healthy controls, especially within the frontostriatal and
parietostriatal networks (Sarpal et al., 2016; Sarpal et al., 2015), and
these differences can predict the outcome of treatment (Sarpal et al.,
2017; Sarpal et al., 2015).

Notably, in our study, networks in patients did not show increased
resilience, as reported previously (Ray et al., 2017). Ray et al. (2017)

focused their analysis on an expanded frontoparietal network, which
differs from our approach since we did not pre-define a network to
investigate. This could be the reason for the divergent findings in these
two studies. It seems that the network active during the switch-drift task
does not show group differences regarding the extent of interconnec-
tedness among central nodes.

In contrast to former studies that focused on working memory (He
etal., 2012; Yang et al., 2020) or cognitive flexibility (Wang et al., 2022)
as specific components of cognitive control, our study showed that to-
pology alterations are also present during task conditions that require
cognitive stability. While we found consistent group differences for all
event types, differentiating between cognitive components had no effect
on topological features. Notably, our results provided substantial evi-
dence that healthy controls, similar to patients, showed similar topol-
ogies when responding to different events (i.e., standard, drift, and
switch events). In other words, the different event types did not cause
any significant changes in topology. Corroborating our results, func-
tional studies focusing on the loci of activation during tasks that require
cognitive flexibility versus stability show that these tasks require similar
areas and networks (Niendam et al., 2012; Rottschy et al., 2012).
However, one should note that if another task is employed that signifi-
cantly differs from the current task, for instance, in terms of input-output
modality or cognitive processes involved, we expect that the topology of
brain activity will differ significantly. Therefore, one possible interpre-
tation would be that differences between event types do not reveal
themselves when looking at the topology of activity. Hence, the current
results might be used as preliminary findings indicating the importance
of temporal aspects of the activity rather than topological differences.

In summary, our results support the hypothesis that topological
features in functional networks can generally be differentiated between
patients and healthy controls during a task that requires both cognitive
flexibility and stability. Further, these results can be interpreted as
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indicating that the targeted topological characteristics were relatively
stable during task performance.

4.2. Aberrant association of flexibility and global graph measures

An important finding of the current study was that healthy controls
and patients with schizophrenia differed with respect to the relationship
between correct switch detection, i.e., hit rates, and global topological
measures during switch processing. Specifically, we found significant
group differences in the associations of hit rate with global strength,
global characteristic path length, and global efficiency. When examining
the effects of behavioral performance on global network measures
within each group, control subjects exhibited a significant positive as-
sociation between hit rate and global characteristic path length, as well
as a significant negative association between global strength and global
efficiency. In contrast, patients showed a significant negative association
between global characteristic path length and hit rate and numerically
positive associations of hit rate with global strength and global effi-
ciency. Hence, in healthy subjects, lower levels of network centrality
and integration appear to facilitate cognitive flexibility performance.
Conversely, individuals with schizophrenia who exhibit better cognitive
performance measured relatively higher centrality and integration
levels in our data. The divergent associations of hit rate with global
graph measures reflect that the biggest discrepancies in graph measures
were found for the worse-performing individuals of each group. In
contrast, the better-performing individuals of each group tended to have
more similar global graph measures. Thus, it becomes apparent that
network characteristics of centrality and integration that best supported
cognitive flexibility were closer together for both groups while graph
measures related to worse performance strived to diverge. This finding
indicates alterations of network topologies in patients with schizo-
phrenia compared to healthy controls that appear to be more expressed
in cognitively impaired patients and is of great importance for under-
standing the neural activity of these patients.

Previous studies in schizophrenia successfully correlated graph
measures with behavioral data of cognitive functions such as working
memory (Bassett et al., 2009; He et al., 2012) or an overall cognitive
ability measure summarizing episodic memory, verbal memory, pro-
cessing speed, goal maintenance, and visual integration (Sheffield et al.,
2017; Sheffield et al., 2015). The reported positive associations of
network integration with task performance (Bassett et al., 2009; Shef-
field et al., 2017; Sheffield et al., 2015) agree with our results for pa-
tients with schizophrenia. Furthermore, higher network segregation was
associated with lower reaction times (He et al., 2012), which is in line
with our finding for patients, indicating a numerical positive relation
between segregation and task performance. Less integrated and less
segregated functional networks in schizophrenia, therefore, might be
associated with stronger cognitive impairments over different cognitive
functions. Critically, to our knowledge, group differences in associations
have only been reported for resting-state fMRI data (Sheffield et al.,
2017) and not for task-based data (Sheffield et al., 2015), while we have
now shown that they can also be found in task-based data. This suggests
that alterations in network topology underlying specific cognitive
functions can be directly and distinguishably related to behavioral
consequences. The fact that we found significant group differences in
associations could reflect that groups greatly differ in how functional
network topology supports cognitive flexibility. Our switch-drift para-
digm is potentially a good candidate for differentiating associations of
global graph measures and task performance between groups. However,
further studies are needed in order to confirm our findings.

Interestingly, no associations and no corresponding group differ-
ences between measures of stability (i.e., correct rejection rates) and
global graph measures were found. In a previous study, fMRI results
from the same sample revealed reduced activity in a network comprising
the inferior frontal gyrus, posterior insula, and basal ganglia when
shielding against drifts (Standke et al., 2021). With these regions
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presumably playing a critical role in the rejection of drifts (Guo et al.,
2018; Sakagami & Pan, 2007; Uddin et al., 2017), one can interpret this
finding as indicating that patients did not actively reject drifts but
simply missed them. This idea may explain why, in the current study, no
systematic relationship was found between correct rejection rates and
graph measures, and no group differences appeared. In other words,
inflexibility may have contributed to the correct rejection rates in
addition to stability.

4.3. Limitations and future directions

Currently, existing graph theoretical methods cannot resolve all the
challenges inherent in investigating clinical samples. As investigated by
van den Heuvel et al. (2017), when applying proportional thresholds in
studies including clinical samples with generally reduced functional
connectivity, more spurious edges are prone to be included in the clin-
ical sample, leading to potentially less accurate conclusions in group
comparisons. In order to address this problem, we used weighted mea-
sures in the current study, but future studies should confirm our findings
utilizing other approaches like probabilistic thresholding (Vasa et al.,
2018).

Furthermore, next to our interpretation of the findings, simpler
properties might have contributed to the observed effects. For instance,
it cannot be ruled out that findings are at least partially based on spatial
or temporal autocorrelation (Rubinov, 2023; Shinn et al., 2023). How-
ever, this does not make the differences between the two groups irrel-
evant, as the underlying mechanisms causing these differences can still
be dissociated between the two groups. Hence, further studies are
needed in order to determine what drives systematic differences in
global graph measures in general, which can also provide a better
interpretation of the current results.

A potential limitation of the current study is its sample size, which,
while comparable to other studies (e.g., Meram et al., 2023), may be
considered small. However, this concern is mitigated by the application
of Bayesian statistics. By leveraging this approach, we can derive
meaningful statistical insights that are less dependent on sample size, as
by choosing appropriate priors, asymptomatic assumptions such as
normality of the data are not affecting the results (Dienes, 2016; Dienes
& Mclatchie, 2018). Notably, the use of weakly informative priors (Scott
& Berger, 2006) yielded robust results, as these priors allow the data to
speak for itself without imposing strong assumptions. This reinforces the
validity of our findings, and as such, the present results offer a signifi-
cant contribution to advancing knowledge in the field. However, it is
important to note that the current sample cannot predict effects in a
sample with different characteristics, regardless of the statistical
methods used. Further, no single study, including the current experi-
ment, regardless of sample size, will be enough to reconcile previous
inconsistencies in the field. Still, the current paper provides insights that
are valuable to the field.

Further, aligned with the norm in the field (Gupta et al., 2015; for
review, see Haijma et al., 2013; Williams, 2008), and due to ethical and
practical reasons, the patient population in the current study was not
drug naive. However, to ensure that the results of the current study were
not due to drug consumption, we conducted an extra model ruling out
any medication effects on the measured network characteristics (see
supplementary materials for more details). Additionally, the partici-
pants with schizophrenia had a higher history of substance abuse, which
is also a common finding in the field (Winklbaur et al., 2006). Therefore,
it was ensured that all patients with a history of substance abuse were at
least four weeks abstinent before participating in the study. However,
the drug abstinence was controlled via self-reports rather than using
urinary tests, which would have provided better control. Further,
smoking was not controlled, as there is no evidence that it will affect
performance in the task used in the current study, and only five patients
had a history of smoking. Nevertheless, patients with specific subtypes
of schizophrenia have a higher rate of smoking compared to the normal
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population (Beratis et al., 2001), and hence, controlling for this might be
beneficial in future studies.

Finally, in the current study, we mainly focused on the whole-brain
analysis. First, unless a specific hypothesis about a particular region
exists, current best practices in the field suggest that a whole-brain
analysis is more appropriate (Lieberman & Cunningham, 2009; Woo
et al., 2014). Moreover, network properties of the brain, by definition,
cannot be fully captured within a specific ROI, as networks are inher-
ently distributed across multiple regions (Vanhaudenhuyse et al., 2010).
Given the mixed findings in previous studies (Meram et al., 2023; Oliver
et al., 2021; Sheffield et al., 2015), we also intentionally refrained from
focusing on a specific network, as we did not have a prior hypothesis
supporting such an approach. Focusing on a specific network, however,
is a valuable approach that needs to be the focus of future studies with a
priori hypotheses regarding different networks.

To date, there is no standard or common procedure for graph theo-
retical analyses (Hallquist & Hillary, 2019). Further studies are needed
to test and confirm the influence of different processing steps on the
results. The lack of a standard procedure led to a plethora of different
approaches, which might at least partly have caused the inconsistent
findings in patients with schizophrenia (Kambeitz et al., 2016). Future
studies would, therefore, benefit from clear guidelines similar to what is
proposed for resting-state data by Hallquist and Hillary (2019) in order
to make results comparable and facilitate meta-analyses.

4.4. Conclusion

The current study sheds light on the relationship between functional
network topology and impaired cognitive flexibility and stability in
schizophrenia. Our results indicate that patients with schizophrenia
spectrum disorders show a less optimally organized functional network
architecture characterized by reduced centrality, integration, and
segregation during task performance, regardless of task event type.
Hence, patients had fewer specialized local networks, and these net-
works showed poorer global communication and integration of infor-
mation. In addition, lower network integration was associated with
worse cognitive flexibility in patients. Lastly, compared to controls,
patients showed opposite associations between cognitive flexibility and
network centrality, integration, and segregation. These results indicate
alterations of network topologies in patients compared to healthy con-
trols, which deteriorated their performance regardless of whether
cognitive flexibility or stability was required for the task at hand. Our
findings highlight the necessity of employing a whole-brain approach to
understanding cognitive deficits in schizophrenia spectrum disorders.
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