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A B S T R A C T

Recently, it has been suggested that brain dysconnectivity in patients with schizophrenia contributes to the wide- 
ranging cognitive deficits that characterize the disorder. Graph theoretical analysis offers a unique method for 
studying how architectural alterations in large-scale brain networks may contribute to cognitive impairments in 
these patients. Implementing this technique, we analyzed the functional brain activity during a predictive switch- 
drift task from 21 patients with schizophrenia and 22 matched healthy controls. We specifically calculated task- 
based global graph measures for the functional networks that were activated during expected events, events 
requiring a flexible updating of predictions, and events that required the stabilization of predictions. By 
implementing Bayesian multivariate generalized linear models, we found functional network alterations during 
all event types, which indicated less centralized, less integrated, and simultaneously less segregated network 
topology in patients with schizophrenia compared to controls. In addition, the rate of correctly detected switches, 
requiring flexible updating of internal models, predicted global graph measures differently for patients compared 
to controls. In particular, lower cognitive flexibility in patients was associated with reduced integration of 
functional networks. Overall, the results indicate alterations of network topologies, resulting in less optimal 
network organization in patients with schizophrenia compared to healthy controls.

1. Introduction

Cognitive impairments are among the core symptoms of schizo
phrenia (Elvevag & Goldberg, 2000). Specifically, individuals with 
schizophrenia suffer from poor cognitive control (Lesh et al., 2011; 
Orellana & Slachevsky, 2013), which is the ability to either adaptively 
ignore distractors (i.e., cognitive stability) or update inner representa
tions (i.e., cognitive flexibility) based on situational demands (Dreisbach 
& Fröber, 2019; Trempler et al., 2017). Previous theoretical accounts 
and empirical investigations focused on the role of frontostriatal circuits 
in balancing cognitive flexibility and stability (Arnsten & Rubia, 2012; 
Jiang et al., 2015; Liston et al., 2006; Miller & Cohen, 2001; Trempler 
et al., 2017). However, recent studies have shown that cognitive control 
is dependent on the interaction of several widespread networks, 

including but not restricted to the salient network (SN), the 
default-mode network (DMN), the dorsal and the ventral attention 
networks (DAN, VAN), and the frontoparietal network (Menon & 
D’Esposito, 2022; Zink et al., 2021). Hence, cognitive control and 
working memory might be better understood as entailing brain-wide 
switching between different networks, driven by D1 and D2 dopamine 
receptors (Braun et al., 2021). Likewise, even though frontostriatal ac
tivity reductions that relate to cognitive control deficits have been found 
in schizophrenia (Cadena et al., 2018; Morey et al., 2005; Standke et al., 
2021), this disorder is characterized by extensive brain dysconnectivity 
(Pettersson-Yeo et al., 2011; Zhou et al., 2015). Against this background, 
it is essential to investigate potential changes in the functional network 
as a whole in order to better understand cognitive deficits in patients 
with schizophrenia. Taking a step in this direction, in the current study, 
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we used graph-theoretical analysis of brain imaging data to explore the 
topological alterations in network architecture in schizophrenia.

Graph theory, which has gained increasing popularity in the field of 
neuroscience (Bassett & Sporns, 2017; Bullmore & Sporns, 2009; Sri
vastava et al., 2022; Stam & Reijneveld, 2007), explains brain activity in 
terms of properties of large-scale networks, which are separated into 
small, densely connected communities that implement a global 
communication structure (Sporns, 2013). To understand these 
large-scale networks, one can use several different graph measures 
representing aspects of (I) segregation, (II) integration, (III) centrality, 
and (IV) resilience (Rubinov & Sporns, 2010). Measures of (I) segrega
tion quantify the extent of functionally related regions with dense in
terconnections, whereas measures of (II) integration reveal how many 
integrative connections between segregated areas a network has, which 
combine specialized information. Further, (III) the centrality of a 
network reflects the tendency of its nodes to communicate with others. 
And finally, (IV) resilience assesses the network’s ability to cope with 
disruptions or damage.

So far, topological analyses of schizophrenia have yielded mixed 
results (Fornito et al., 2012; Kambeitz et al., 2016). The majority of 
studies implementing graph theory for fMRI data of these patients focus 
on resting-state data (e.g., Alexander-Bloch et al., 2010; Liu et al., 2008; 
Trempler et al., 2018; van den Heuvel et al., 2010; Yu et al., 2012; Yu 
et al., 2015), while only a few studies have analyzed task-based data of 
cognitive control or any of its components (e.g., Emmanuel D. Meram 
et al., 2023; Lindsay D. Oliver et al., 2021; Sheffield et al., 2015). 
Notably, although several studies of task-based data reported alterations 
of functional network topology in schizophrenia for all investigated 
graph measures (He et al., 2012; Ray et al., 2017; Yu et al., 2011), others 
only found group differences in particular measures (Ma et al., 2012; 
Sheffield et al., 2015; Wang et al., 2022; Yang et al., 2020), or no effects 
at all (Fornito et al., 2011; Lindsay D. Oliver et al., 2021). The significant 
findings of group differences suggested no clear direction of alterations 
for functional segregation and integration (He et al., 2012; Ma et al., 
2012; Ray et al., 2017; Wang et al., 2022; Yang et al., 2020; Yu et al., 
2011). Additionally, centrality has not been analyzed in this context, 
and only one study investigated network resilience, finding higher 
resilience in schizophrenia (Ray et al., 2017). In regards to cognitive 
control components, there have been topology investigations exclu
sively targeting working memory (He et al., 2012; Yang et al., 2020) or 
cognitive flexibility performance (Wang et al., 2022), whereas cognitive 
stability has not yet been investigated in patients with schizophrenia. 
Therefore, it is unclear whether network topology alterations during 
task performance depend on the process currently at play. Furthermore, 
for differentiating between components of cognitive control, it is bene
ficial to employ a task that requires both functions at different time 
points. Using one task where both cognitive flexibility and stability are 
required during different task events makes it possible to separate the 
effects of general task requirements (e.g., processes associated with 
input perception and output production) from involved cognitive 
functions.

Our study aims to clarify potential topology alterations in functional 
networks associated with schizophrenia that relate to the specific pro
cesses of stabilizing and flexibly updating internal rules. We constructed 
graphs based on fMRI data of patients with schizophrenia and control 
subjects collected during the performance of a switch-drift task 
(Trempler et al., 2017). In the switch-drift task, digit sequences must be 
monitored for rule changes (switches), while rule-conforming noises 
(drifts) should be ignored. In contrast to previous studies, a range of 
global graph measures describing different characteristics of the entire 
network were calculated to capture neural responses relevant to cogni
tive flexibility and stability. We implemented Bayesian generalized 
linear multivariate, multilevel modeling to test the differences between 
patients and controls. This approach eliminates the possibility of infla
ted type 1 error (Dienes, 2016; Dienes & Mclatchie, 2018). Further, the 
usage of multilevel analysis resolves the issue of having an imbalance in 

the number of events for different participants and conditions (van den 
Bergh et al., 2023). We expected patients with schizophrenia to signif
icantly differ from healthy controls in global graph measures consid
ering (a) the impairments of cognitive control in schizophrenia 
(Orellana & Slachevsky, 2013), (b) the wide-ranging abnormal con
nectivity patterns in these patients (Pettersson-Yeo et al., 2011; Zhou 
et al., 2015), and (c) indications of altered network topology in 
schizophrenia related to cognitive control (He et al., 2012; Ma et al., 
2012; Ray et al., 2017; Wang et al., 2022; Yang et al., 2020; Yu et al., 
2011). However, with previous task-based graph theoretical findings 
being contradictory and inconclusive, we had non-directional hypoth
eses. Finally, to investigate the association between topology and 
behavior, we further modeled the interaction between group differences 
and the behavioral measures obtained from the task for the global graph 
measures.

2. Methods

2.1. Participants

22 patients (36.41 ± 10.28 years, seven females) diagnosed with a 
schizophrenia spectrum disorder participated in the study. This included 
12 patients with schizophrenia and 10 patients with schizoaffective 
disorder. Additionally, 22 healthy controls (38.23 ± 12.26 years, nine 
females) were included in the present study.

All patients were recruited at the Department of Mental Health of the 
University Hospital Münster. Diagnoses were established at consensus 
conferences based on the structured Clinical Interview I (SCID-I) (First & 
Gibbon, 2004) for DSM-IV (American Psychiatric Association, 1994) and 
further available clinical data. Patients participated under regular 
medication, with a mean converted chlorpromazine equivalent (CPZ; 
Andreasen et al., 2010) of 654.28 (± 408.98). Eighteen patients were 
treated with atypical antipsychotic medication, one with typical anti
psychotic medication, and three did not receive any antipsychotic 
medication at the time of testing. Further, all patients with a history of 
substance abuse were at least four weeks abstinent before participating 
in the study.

Healthy controls were recruited via advertisements. Controls were 
checked to guarantee mental health via the short-form SCID-I screening 
and no known history of psychotic disorders in first-degree relatives. All 
participants were native German speakers. Further, as participants went 
through fMRI measurements, anyone with metal implants, a pacemaker, 
big tattoos within the neck and head area, history of serious head trauma 
or neurological disorders, or claustrophobia was excluded.

One patient was classified as an extreme outlier (Fig. S1) for most 
global graph measures, defined as being outside the following range: Q1 
– 3*IQR - Q3 + 3*IQR [Q = quartile; IQR = interquartile range]. Hence, 
data from this individual were excluded from all analyses, making the 
final sample N=21 (36.76 ± 10.40 years, seven females) patients and 
N=22 healthy controls. Behavioral and fMRI results of the present 
sample were reported previously by Standke et al. (2021). Study pro
cedures were approved by the local ethics committee of the University of 
Münster, in accordance with the Declaration of Helsinki, except for 
pre-registration. Participants signed informed consent forms and were 
compensated for their participation in the study, either through mone
tary reimbursement or course credits.

2.2. Clinical assessments

The positive and negative symptoms of all participants were assessed 
using the Scale for the Assessment of Positive Symptoms (SAPS; 
Andreasen, 1984) and the Scale for the Assessment of Negative Symp
toms (SANS; Andreasen, 1984), respectively. Both tools are commonly 
used for assessing schizophrenia spectrum disorders symptoms for aca
demic and clinical purposes and show high interrater reliability and 
moderate temporal stability (Andreasen & Olsen, 1982; Kumari et al., 
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2017).
Participants’ handedness was measured using the Edinburgh in

ventory (Oldfield, 1971). Finally, all participants completed the Hei
delberg Scale for Neurological Soft Signs (NSS; Schroder et al., 1991), 
the Beck’s Depression Inventory II (BDI-II; Beck et al., 1996), and the 
Barratt Impulsiveness Scale (BIS; Patton et al., 1995). Details on de
mographic and clinical characteristics are presented in Table 1.

2.3. Stimuli and task

A serial predictive switch-drift paradigm (Trempler et al., 2017) was 
used to assess cognitive flexibility and stability. In the task, a predictable 
sequence consisting of four consecutive digits was presented repeatedly 
with a presentation time of 1 s per digit and 100 ms in between (Fig. 1). 
Three different types of unexpected events occurred at variable positions 
of the sequence during the task. Firstly, the direction of the sequence 
presentation could be reversed from ascending to descending or vice 
versa (switches). Consequently, the generated internal model had to be 
updated, indicating cognitive flexibility as a response to prediction er
rors. Participants were instructed to press a button as a reaction to this 
event. Secondly, omissions of single digits could appear during the 
sequence (drifts). Here, participants were asked not to respond, 
demonstrating shielding of the current internal model and, thus, 
cognitive stability. Lastly, motor control trials were included, where one 
digit was repeated up to eight times until participants reacted by 
pressing a button. The motor control trials provided the basis for the 
calculation of individual reaction time windows that were used to 
classify button presses as event-related or not.

The task consisted of 12 blocks with an average of 125 digits per 
block. The different event types were distributed in a balanced way 
during the task using the stochastic universal sampling method (Baker, 
1987). Between blocks, a fixation cross was presented for 6 s, serving as 
the baseline. MATLAB R2012b (The MathWorks Inc., Natick, MA, USA) 
was used to implement the randomization, and stimuli were presented 
using Presentation 18.1 (Neurobehavioral Systems, San Francisco, CA, 
USA). All participants completed ten blocks, each with 80 trials as 
practice a day before the main session. In the main session, three prac
tice blocks were administrated directly before the task. The task was 
performed by the participants during fMRI data acquisition in the 
scanner.

2.4. FMRI data acquisition and preprocessing

Imaging data were collected using a 20-channel head coil on a 3 
Tesla MRI Scanner (Magnetom Prisma, Siemens Medical Solutions, 
Erlangen, Germany). Functional images were acquired using a T2*- 
weighted single-shot echo-planar imaging (EPI) sequence (210 mm 
field of view, 64×64 matrix, 90◦ flip angle, repetition time = 2000 ms, 
echo time = 30 ms). Thirty-three axial slices per volume with a slice 
thickness of 3 mm and a gap of 1 mm were recorded, with images being 
oriented parallel to the anterior commissure-posterior commissure (AC- 
PC) line. Structural data were collected using a standard Siemens T1- 
weighted magnetization-prepared rapid acquisition with gradient echo 
(MPRAGE) sequence for a detailed reconstruction of anatomy (field of 
view = 256 mm, 256×256 matrix, 192 slices, voxel size = 1×1×1 mm³, 
repetition time = 2130 ms, echo time = 2.28 ms).

Brain image preprocessing was performed using SPM12 (Wellcome 
Department of Imaging Neuroscience, London, UK). Images were slice- 
timed to the middle slice, and individual functional magnetic reso
nance (EPI) images were realigned to the mean image. The anatomical 
scan was further co-registered by rigid body transformation to the mean 
functional image. In order to normalize each participant’s functional 
scan to the Montreal Neuroimaging Institute (MNI ICBM-152 linear) 
space (Mazziotta et al., 2001), scans were segmented into native space 
tissue components. After that, spatial smoothing with a Gaussian kernel 
of 8 mm full width at half-maximum (FWHM) was applied. In order to 
remove potential confounding effects, a denoising procedure was per
formed on the EPI data with the CONN toolbox (Whitfield-Gabrieli & 
Nieto-Castanon, 2012) using the default settings. The toolbox removes 
confounds by implementing the anatomical component-based noise 
correction method (aCompCor). During denoising, the first five prin
cipal components for white matter, cerebrospinal fluid, motion param
eters, and their temporal derivatives were included in the model as 

Table 1 
Demographic and clinical characteristics of patients with schizophrenia and 
healthy controls.

Patients 
(n = 21)

Healthy 
Controls 
(n = 22)

Mean (± SD) Test 
statistic

p- 
value

Effect 
size

Age [years] 36.76 (±
10.40)

38.23 (±
12.26)

t = 0.42 0.676 g =
0.13

Gender (female/ 
male)

7/14 9/13 - 0.755 OR =
0.73

Handedness 
(right/left)

19/2 19/3 - 1.00 OR =
0.64

CPZ [mg] 654.28 (±
408.98)

- - - -

Years since 
diagnosis

12.90 (±
10.22)

- - - -

History of 
Substance 
abuse

11 (52.4%) 0 - <

0.001
OR = ∞

SAPS 13.86 (±
16.32)

0 (± 0) U = 66 <

0.001
r =
0.61

SANS 22.43 (±
18.71)

0.05 (±
0.21)

U = 23 <

0.001
r =
0.77

BDI-II 10.48 (±
8.53)

2.36 (±
3.47)

U =
102.5

<

0.001
r =
0.48

BIS-11 63 (± 7.21) 58 (± 7.11) t = -2.29 0.027 g =
0.69

NSS 14.62 (±
8.76)

5.91 (±
3.82)

t = -4.19 <

0.001
g =
1.27

Note: Age, BIS-11, and NSS differences between groups were tested using inde
pendent samples t-tests with Welch’s correction applied when Levene’s test 
indicated unequal variances. The distributions of gender, handedness, and 
substance abuse were compared between the two groups using Fisher’s exact 
tests. BDI-II, SAPS, and SANS group differences were tested using nonparametric 
Mann-Whitney U-tests. CPZ: chlorpromazine equivalents; BDI-II: Beck’s 
Depression Inventory-II; BIS-11: Baratt Impulsiveness Scale; NSS: Heidelberg 
Scale for Neurological Soft Signs; SAPS: Scale for the Assessment of Positive 
Symptoms; SANS: Scale for the Assessment of Negative Symptoms; SD: standard 
deviation; g: Hedges’ g; OR = odds ratio; r = rank-biserial correlation.

Fig. 1. Schematic diagram of the task design. During the presentation of a 
predictable sequence of four consecutive digits, three different unexpected 
events occurred at various positions of the sequence. Switches represent the 
reversal of sequence direction and have to be indicated by a button press. Drifts 
are omissions of single digits that had to be ignored. Motor control trials 
involved the repetition of a single digit up to eight times and at least until 
participants reacted with a button press. These trials were used to calculate 
individual reaction time windows and, therefore, classify button presses during 
the task as event-related or not.
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nuisance regressors. Lastly, data was filtered with a 128-s temporal 
discrete cosine transform (DCT) high-pass filter.

As our analyses focused on networks distributed across the whole 
brain, and data were acquired on a modern MRI scanner with advanced 
shimming algorithms, we do not expect our results to be affected by any 
geometrical distortion.

2.5. Graph construction and graph theoretical measures

To model event-specific functional connectivity networks, the 
MATLAB toolbox BASCO (Beta Series Correlation; Göttlich et al., 2015) 
was used to create beta series correlations (Rissman et al., 2004). This 
method is specifically designed to capture inter-regional interactions for 
event-based fMRI data (Rissman et al., 2004). Using this method, one 
can model functional connectivity during distinct, closely spaced stages 
of a cognitive task. The advantage over other approaches is that beta 
series correlations can tease cognitive subcomponents apart by esti
mating the proportion of the functional connectivity allocated to each 
cognitive operation. In the current study, this allows us to differentiate 
the functional connectivity underlying standard digit processing from 
functional connectivity specifically present during cognitive flexibility 
and stability performance. The use of beta series correlations is 
well-established in prior research analyzing multiple components of 
task-based fMRI data (e.g., Fornito et al., 2011; He et al., 2012; Wang 
et al., 2022), demonstrating its utility in investigating functional con
nectivity during cognitive tasks. The approach includes modeling the 
BOLD response in a general linear model (GLM) where the evoked ac
tivity in each voxel is modeled as a separate regressor for each event. 
Each regressor reflects brain activity using the canonical hemodynamic 
response function (HRF). Event length was set to zero; with the actual 
repetition time being 2 seconds, this allows only the immediate BOLD 
response to be captured. Resulting beta values can then be sorted by 
experimental conditions, creating corresponding beta series. Using this 
procedure, beta series were created for the presentation of standard 
digits, representing expected events, as well as switches and drifts, 
representing unexpected events. Only drifts and switches with a mini
mum distance to the next unexpected event (calculated using the par
ticipants’ specific response time windows) were included in calculating 
the beta series. Due to these exclusions, the number of events per 
participant varied slightly, but the overall number of standard digits 
(mean = 113.205; sd = 6.238), switches (mean = 103.886; sd= 4.363), 
drifts (mean = 103.682; sd = 5.552) was sufficiently large to make the 
variation statistically irrelevant. In other words, the differences between 
the number of conditions per participant were less than 10% of the total 
number of events per condition and participant. Afterward, the brains of 
all participants were parcellated according to the automated anatomical 
labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002). Mean beta series per 
brain region were calculated and correlated for each pair of regions 
using Pearson correlation. This resulted in three correlation matrices per 
participant, indicating the functional connectivity between brain re
gions for each type of event.

Functional connectivity matrices were further processed with 
GraphVar (Kruschwitz et al., 2015), a MATLAB toolbox specifically 
designed to perform graph theoretical analyses of brain connectivity. 
Negative correlations were set to zero as they are difficult to interpret 
and would interfere with graph measure calculations. Finally, matrices 
were proportionally thresholded over a range of possible thresholds to 
avoid conclusions based on arbitrary threshold choice. This resulted in 
different network sparsity levels, with the strongest links (10% to 50% 
with 2% increments) extracted, representing the final edges of the 
constructed graph. This approach is in line with recommendations from 
the literature (Rubinov & Sporns, 2010) and has been used by previous 
studies (Fornito et al., 2011; Ray et al., 2017; Yang et al., 2020). Still, to 
ensure that our results are reliable, we additionally calculated 
non-thresholded, fully weighted connectivity matrices (Fig. S2). 
Importantly, graphs were not binarized since the inclusion of edge 

weights can partially compensate for differences in overall functional 
connectivity (van den Heuvel et al., 2017; Váša et al., 2018).

Topological measures were calculated at each threshold for the un
directed, weighted connectivity matrices of each participant. This 
resulted in graph theoretical measures for networks that were activated 
during the presentation of switches, drifts, and standard digits, respec
tively. Global measures were calculated for each network and represent 
a selection of measures that were previously analyzed in the relevant 
literature (Fornito et al., 2011; Ray et al., 2017; Yang et al., 2020). We 
decided to include a range of global graph measures that describe 
different aspects of topology to allow for a comprehensive character
ization of functional networks. As a measure of centrality, global strength 
was calculated as the average of the sum of link weights across all nodes, 
reflecting the overall connectivity strength of a network. Global char
acteristic path length was computed as the average shortest path length 
between all pairs of nodes and serves as a measure of network integra
tion. A related integration measure is global efficiency, defined as the 
inverse of the characteristic path length, which emphasizes efficient 
information transfer across the network. To capture segregation, we 
calculated the global clustering coefficient, describing the average fraction 
of triangles formed around each node. Transitivity is a similar measure 
but is computed globally rather than node-wise, providing a 
network-wide normalization that reduces the disproportionate influence 
of low-strength nodes. Lastly, assortativity is a measure of resilience and 
indicates how much highly connected nodes tend to cluster together. 
Mathematical definitions of these global graph measures can be found in 
the supplementary material (Table S1).

2.6. Statistical analysis

Statistical analyses of graph measures were first run in GraphVar to 
check effects for all network sparsity levels. Since effects stabilized over 
a wide range of sparsity levels (see supplementary materials; Fig. S3-S5), 
further Bayesian inference statistics were applied to graph measures 
calculated with the middle sparsity level of 0.3, as a reasonable sparsity 
level around which effects were stable. This approach allowed for a 
more detailed analysis using multivariate Bayesian generalized linear 
models. We refrained from calculating Bayesian models for all sparsity 
levels as the stable effects over sparsity levels indicate the benefit to be 
negligible, and it is computationally not reasonably feasible. We were 
interested in investigating group differences as well as differences be
tween event types and the possible interaction of these factors for all 
graph measures. Therefore, a Bayesian generalized linear multivariate, 
multilevel model was implemented with Group (i.e., Patients vs. Healthy 
Controls), Event Type (i.e., Standards, Drifts, and Switches), and their 
interaction as fixed effects of interest. The intercepts for all models were 
healthy controls and drift events; however, the choice of intercept does 
not affect the final results, as we calculated all possible contrasts using 
the posterior draws. Age and Gender were assumed as nuisance vari
ables, and further, a random intercept for subjects was assumed (Model 
1; Eq. 1). Lastly, the residual correlation between the response variables 
was assumed. The residual correlation explicitly takes into account the 
correlations between noises of different measures due to originating 
from the same source (i.e., the same participant, condition, task, etc.). 

Model 1 : GraphMeasure

∼ Group ∗ EventType + Age + Gender + (1|Subject) (1) 

For testing the predictive capabilities of the main variables of interest, 
four models were compared to the full model (i.e., Model 1). The base 
model (Model 5, Equation 5) comprised Age and Gender as nuisance 
variables and assumed a random intercept for subjects. Adding to the 
base model, one model assumed only Group (Model 4, Equation 4), 
another only Event Type (Model 3, Equation 3), and the last one, both 
Event Type and Group as fixed effects but no interaction between them 
(Model 2, Equation 2). 
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Model 2 : GraphMeasure

∼ Group + EventType + Age + Gender + (1|Subject) (2) 

Model 3 : GraphMeasure ∼ EventType + Age + Gender + (1|Subject) (3) 

Model 4 : GraphMeasure ∼ Group + Age + Gender + (1|Subject) (4) 

Model 5 : GraphMeasure ∼ Age + Gender + (1|Subject) (5) 

To further investigate the association between behavioral data and 
the graph measures, participants’ accuracy in the switch-drift task was 
calculated. To classify hits and false alarms, we calculated individual 
response time windows based on the average response times for motor 
control trials plus one standard deviation. Response times of under 150 
ms were excluded from the analyses since those are unlikely to represent 
deliberate responses. Also, unexpected events, i.e., drifts and switches, 
that did not have a minimum distance to the next unexpected events 
(calculated using the participants’ specific response time window) were 
excluded from analyses. The rate of correctly detected switches per 
subject was calculated, representing the hit rate, whereas the rate of 
correctly ignored drifts per subject corresponds to the correct rejection 
rate. We fitted two Bayesian generalized linear multivariate models, 
including hit or correct rejection rate as a covariate of interest. One 
model addressed the graph measures calculated during switch process
ing and, therefore, included Hit Rate, Group, their interaction, as well as 
Age and Gender as fixed effects (Model 6, Eq. 6). Equivalently, the other 
model addressed graph measures during drift processing and included 
Correct Rejection Rate, Group, their interaction, Age, and Gender as 
fixed effects (Model 7, Eq. 7). Notably, as graph measures were calcu
lated for different events, having a single model that included both hit 
rates and correct rejections is impossible, as it creates complete segre
gation in the data. 

Model 6 : GraphMeasure ∼ Group ∗ HitRate + Age + Gender (6) 

Model 7 : GraphMeasure ∼ Group ∗ CorrectRejectionRate + Age + Gender
(7) 

Bayesian modeling was implemented using R programming language 
(https://www.r-project.org/) with brms (Bürkner, 2017a) and RSTan 
(https://mc-stan.org/) being utilized for Bayesian modeling. We used 
weakly informative priors, scaling their distributions approximately to 
the corresponding standard deviations of our sample, to account for the 
immensely varying absolute values of the different graph measures. As 
we did not have a priori hypotheses regarding the data, weakly infor
mative priors were used (van den Bergh et al., 2023). The following 
priors were used for β coefficients: for global strength: N(0, 1000); for 
global characteristic path length: N(0, 2.5); and for global efficiency, 
global clustering coefficient, transitivity, and assortativity: N(0, 0.5). 
We used the default student-t priors for the intercepts, standard de
viations, sigmas, and lkj(1) for residual correlations.

All models were fitted using four chains with 5,000 iterations each, 
including 2,000 iterations as warmups. If any variable showed an R-hat 
above 1.05 or the effective sample size was too low, the model was 
recalculated with increased iterations and reported accordingly. Hy
potheses were tested using the hypothesis package included in brms 
(Bürkner, 2017b). Based on the suggestion of van Doorn et al. (2021), 
Bayes factors (BF) > 3 and BF < 1

3 were considered significant evidence 
for accepting and rejecting the tested hypothesis, respectively. All tests 
were two-sided (denoted by: BF01 or BF10) and the comparison between 
hypotheses and their alternative was computed via the Savage-Dickey 
density ratio method (Verdinelli & Wasserman, 1995). The significant 
Bayes factors are made bold for better distinguishability. For each test, 
we also reported the posterior probability (p.p.) regarding the presented 
hypothesis and further made it bold when p.p. > .95 or p.p. < .05. 
Finally, for the model comparison, we used the Pareto smoothed 
importance sampling (PSIS) estimation of leave-one-out cross-validation 

(LOO) implemented in the loo package (Magnusson et al., 2020; Vehtari 
et al., 2017). LOO assesses pointwise out-of-sample prediction accuracy 
from a fitted Bayesian model using the log-likelihood evaluated at the 
posterior simulations of the parameter values; however, as it is difficult 
to calculate, commonly importance weights will be used instead, which 
results in PSIS-loo (Magnusson et al., 2020; Vehtari et al., 2017). To 
make sure that PSIS-loo estimation is accurate, one can use 
Pareto k̂ < 0.7. However, Pareto k̂ < 1 still shows that PSIS-loo estima
tion can be employed and trusted (Magnusson et al., 2020; Vehtari et al., 
2017).

The current study uses multivariate Bayesian statistics to provide 
statistical analyses that are robust (Dienes, 2016; Dienes & Mclatchie, 
2018), and do not suffer from multiple comparison issues in the same 
way that a univariate frequentist analysis would do (Huberty & Morris, 
1992). In other words, since multivariate models test multiple outcomes 
simultaneously, they do not suffer from the multiple comparison issue 
and therefore, handle the inflated type I error intrinsically. Further, due 
to the partial pooling in the used multilevel model (Gelman & Hill, 2007; 
McElreath, 2018; van Doorn et al., 2021), unbalanced group sizes and 
trials are handled adequately. Therefore, the current results are reliable 
in terms of type I error and offer statistical insight that is independent of 
the sample size (Dienes, 2016; Dienes & Mclatchie, 2018).

3. Results

3.1. Group and event effects on global graph measures

Firstly, we analyzed the effects of Group, Event Type, and the 
interaction of these factors on the different global graph measures 
(Fig. 2A). For the full model (Eq. 1), we used 8,000 iterations, and all 
chains converged with R-hats = 1.00. Further, bulk effective sample 
sizes were > 2,000, and tail effective sample sizes were > 1,000. Pos
terior predictive checks showed that the model could adequately 
simulate datasets with distributions representing the observed distri
butions for all global graph measures (Fig. 2B).

To examine the effects of the variables included in the model, we 
tested hypotheses using the estimated posterior distributions (Fig. 3). 
Since we had non-directional hypotheses, all parameters were tested 
against the relevant null hypotheses. Table S2 (see supplementary ma
terials) depicts all parameter estimations and hypothesis tests for the 
different global graph measures. The results showed that patients with 
schizophrenia, compared to healthy controls, had significantly lower 
global strength (H0: GroupP = 0; mean = -217.56[-301.83, -134.74], sd 
= 42.81; p.p. ¼ 0.00, BF01 ¼ 0.00), higher global characteristic path 
length (H0: GroupP = 0; mean = 0.55[0.38, 0.72], sd = 0.09; p.p. ¼
0.00, BF01 ¼ 0.00), lower global efficiency (H0: GroupP = 0; mean =
-0.05[-0.07, -0.04], sd = 0.01; p.p. ¼ 0.00, BF01 ¼ 0.00), lower global 
clustering coefficient (H0: GroupP = 0; mean = -0.07[-0.10, -0.04], sd =
0.02; p.p. ¼ 0.00, BF01 ¼ 0.00) and lower transitivity (H0: GroupP = 0; 
mean = -0.06[-0.09, -0.03], sd = 0.02; p.p. = 0.06, BF01 ¼ 0.06). Only in 
assortativity (H0: GroupP = 0; mean = 0.02[-0.03, 0.07], sd = 0.02; p.p. 
= 0.93, BF01 ¼ 14.15), evidence suggested no group differences. Event 
Type did not have a main effect on graph measures and did not interact 
with Group either. Furthermore, post hoc contrasts using the estimated 
marginal means (EMMs) revealed that significant Group differences 
were present for all event types, i.e., patient’s graph measures for 
standard digits, switches, and drifts all differed significantly from those 
of control subjects (Table S3).

As an additional step, we have investigated global graph measures 
based on connectivity matrices that were calculated using an alternative 
brain atlas that is based on a series of meta-analyses of task-related fMRI 
studies brain (Dosenbach et al., 2010). This was to ensure that our 
findings were not sensitive to the choice of brain atlas. Four participants 
(two patients and two healthy controls) had to be excluded from this 
analysis because their brain imaging data did not allow for correct 
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processing with the alternative, more fine-grained brain atlas. Using the 
same multivariate Bayesian generalized linear models, we found that the 
results based on the Dosenbach atlas were consistent with our previous 
findings, which relied on the anatomical atlas (Fig. S6). Furthermore, 
using a confirmatory analysis, we obtained similar results when only 
correct responses were included in our models, rather than all responses 
described here (Fig. S7; see supplementary materials for a more detailed 
description and results).

In order to test the predictive capabilities of the fixed effects, the full 
model (Eq. 1) was compared to four additional models (Eqs. 2-5), which 
systematically excluded variables. As criteria for model comparison, 
PSIS-loo estimations were used, which were first checked for reliability 
using Pareto k values of the full model. Although less than 10% of Pareto 
k values were above 0.7, only one was above 1, and therefore, the es
timations are reliable. PSIS-loo criteria clearly showed that the model 
only including Group (9,000 iterations used) as an effect of interest is 
superior against all other models (Table 2). Adding Event Type as a 
factor (7,000 iterations used) deteriorated the model performance by 
more than two standard errors. This finding is in line with the strong 
effect of Group that we found for the full model, as well as the absence of 
an effect for Event Type or their interaction.

3.2. Effects of accuracy data on graph measures

Firstly, we confirmed the previously reported significant group dif
ferences in the behavioral data (Standke et al., 2021) using Bayesian 
modeling (see supplementary materials for details on method). Our re
sults showed that patients with schizophrenia had significantly lower hit 
rates (mean = 0.56 ± 0.22) compared to healthy controls (mean = 0.79 
± 0.14) (H0: GroupP = 0; mean = -0.25[-0.36, -0.15], sd = 0.05; p.p. =
0.00, BF01 ¼ 0.00). Further, patients also showed a significantly lower 
correct rejection rates (mean = 0.88 ± 0.09) than healthy controls (mean 
= 0.91 ± 0.09) (H0: GroupP = 0; mean = -0.06[-0.08, -0.04], sd = 0.01; 
p.p. = 0.00, BF01 ¼ 0.00).

To investigate the association between behavioral data and global 
graph measures (Fig. 4), two models were calculated, using the accuracy 
from the switch-drift task as a predictor (Eq.s 6 & 7). For the model that 
included Hit Rate as a predictor for global graph measures of switch 
processing (Eq. 6), we found significant group differences in all global 
graph measures except for assortativity (Table 3). In contrast, evidence 
was inconclusive regarding the effect of Hit Rate for global strength (H0: 
Hitrate = 0; mean = -360.58[-693.34, -11.07], sd = 173.84; p.p. = 0.42, 
BF01 = 0.73), global characteristic path length (H0: Hitrate = 0; mean =

Fig. 2. Observed and posterior predictive global (G.) graph measure distributions. (A) Box and violin plots of the observed global graph measure distributions for 
different groups and event types. Red frames indicate significant Group effects. (B) The density plot of the observed global graph measures distributions (y) and 
simulated distributions (yrep; Number of simulations = 100) based on the posterior predictive distributions.
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0.82[0.06, 1.57], sd = 0.39; p.p. = 0.41, BF01 = 0.69) and global effi
ciency (H0: Hitrate = 0; mean = -0.10[-0.18, -0.02], sd = 0.04; p.p. =
0.42, BF01 = 0.72) with Bayes factors below 1 but higher than 13. How
ever, the interaction between Group and Hit Rate was significant for 
global strength (H0: GroupP:Hitrate = 0; mean = 534.12[135.43, 
925.33], sd = 202.46; p.p. = 0.14, BF01 ¼ 0.17), global characteristic 
path length (H0: GroupP:Hitrate = 0; mean = -1.59[-2.50, -0.70], sd =
0.46; p.p. ¼ 0.02, BF01 ¼ 0.02) and global efficiency (H0: GroupP: 
Hitrate = 0; mean = 0.14[0.05, 0.23], sd = 0.05; p.p. = 0.13, BF01 ¼

0.15). This showed that lower values for global strength and global ef
ficiency were associated with higher hit rates in healthy controls but 
with lower hit rates in patients. Similarly, a high global characteristic 
path length was associated with higher hit rates in control subjects but 
lower hit rates in patients. EMMs of linear trends revealed that global 
strength, global efficiency, and global characteristic path length in 
healthy control subjects, as well as global characteristic path length in 
patients, could be significantly predicted based on hit rates (Table S4).

Further, modeling results with the model that included Correct 
Rejection Rate as a variable to predict graph measures during drift 
processing (Eq. 7) did not yield any significant effects (Table S5).

4. Discussion

Aiming to gain insights into functional network topology in schizo
phrenia while performing a task that requires cognitive flexibility and 
stability, we analyzed fMRI data obtained during a switch-drift task. 
There is still no substantial body of literature that has investigated graph 
theoretical measures for understanding the neurocognitive deficits 

Fig. 3. Posterior distributions of full model β coefficients. Means are indicated by the straight red lines, and 90% central posterior uncertainty intervals are indicated 
by blue shaded areas. The dashed black lines show null hypotheses, and red frames indicate significant effects.

Table 2 
Fit indices of the graph measure models computed using multivariate, multilevel 
bayesian cumulative modeling.

êlpddiff
se 
(êlpddiff)

êlpdloo
se 
(êlpdloo)

Model 4: 
Group + Age + Gender + (1| 
Subject)

0.0 0.0 794.6 26.3

Model 2: 
Group + Event Type + Age + Gender 
+ (1|Subject)

-7.8 3.3 786.8 26.2

Model 1: 
Group * Event Type + Age + Gender 
+ (1|Subject)

-15.9 6.1 778.8 26.0

Model 5: 
Age + Gender + (1|Subject)

-43.9 8.5 750.7 27.0

Model 3: 
Event Type + Age + Gender + (1| 
Subject)

-53.6 8.6 741.0 26.9

Note. êlpdloo = the expected log pointwise predictive density for a new dataset 
using the Pareto smoothed importance sampling (PSIS) leave-one-out cross- 
validation (LOO) criterion; êlpddiff = the difference between êlpdloo of two 
compared models; se = the standard error of the targeted variable. Models are 
ordered by fit, with the best-fitting model at the top. All models are compared to 
the best-fitting model (i.e., Model 4). If a more complex model shows êlpddiff 
greater than two and a half standard errors, it is considered to be a better fit 
(Magnusson et al., 2020; Vehtari et al., 2017).
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underlying schizophrenia using task-based fMRI data (e.g., Lindsay D. 
Oliver et al., 2021; Sheffield et al., 2015), and the results are inconclu
sive. Therefore, we focused on whole-brain analysis rather than focusing 
on network-specific analysis, which should have been conducted based 
on a priori hypotheses. In the current study, Bayesian generalized linear 
multivariate, multilevel modeling revealed extensive alterations in 
graph measures for patients with schizophrenia compared to controls 
during the detection of rule changes (i.e., switches) and ignoring of 
rule-conforming noises (i.e., drifts). Meaningful differences were present 
for (I) network centrality, indicated by global strength; (II) network 
integration, indicated by global characteristic path length and global 
efficiency; and finally, (III) network segregation, measured by the global 
clustering coefficient and transitivity. Assortativity as a measure of 
network resilience was not significantly altered in schizophrenia. 

Analyzing the task components, there was substantial evidence that 
global graph measures were similar for expected digit processing, drift 
processing, and switch processing. Notably, we found that hit rates for 
correct switch detection predicted global strength, global characteristic 
path length, and global efficiency during switch presentation differently 
in patients compared to healthy subjects, while correct rejection rates 
did not have any predictive value for any global graph measures during 
drift presentation.

4.1. General group differences in network topology

As expected, our study revealed that patients with schizophrenia had 
a network topology that differed from healthy controls, not only during 
processing predictable events but also during processing and coping 

Fig. 4. Correlations of accuracy data from the switch-drift task and global (G.) graph measures of related event types. The x-axis shows the accuracy rate, and the y- 
axis shows graph measure values. Red frames indicate significant slopes for healthy controls, and dashed red frames indicate significant slopes for both, healthy 
controls and patients. (A) Correlations of Hit Rate and global graph measures of switch processing for factor Group. (B) Correlations of Correct Rejection Rate and 
global graph measures of drift processing for factor Group.
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with surprising events, i.e., prediction errors. The decreased global 
strength that was found in patients expresses an overall lower centrality 
of nodes in the functional networks. Graph measures further revealed a 
consistent pattern of a functional network topology in patients 
compared to controls: patients’ network was (a) less capable of inte
grating information globally, as indicated by higher global characteristic 
path length and lower global efficiency, and simultaneously, (b) less 
segregated in densely interconnected specialized networks, as indicated 
by the lower global clustering coefficient and lower transitivity. 
Together, these findings indicate that functional networks in schizo
phrenia lack the ideal properties of a highly efficient network, i.e., a 
small-world network, that would promote optimal cognitive functioning 
(Bassett & Bullmore, 2006). Previous studies disagreed on the direction 
of topological alterations associated with schizophrenia during cogni
tive control task completion or the existence of those altogether. While 
there have been investigations indicating unaltered network integration 
(Fornito et al., 2011; Ma et al., 2012) and segregation (Fornito et al., 
2011; Ma et al., 2012; Yu et al., 2011) for cognitive control, other 
findings are in line with our results, revealing diminished network 
integration (Ray et al., 2017; Wang et al., 2022; Yu et al., 2011), and 
segregation (Ray et al., 2017) in patients with schizophrenia. Potential 
explanations for the diverging results include differences in methodol
ogy, such as the choice of the utilized task and whether graph con
struction was based on the whole brain or pre-selected areas. 
Nevertheless, previous studies clearly show that the functional connec
tivity during the resting state differs between patients with schizo
phrenia and healthy controls, especially within the frontostriatal and 
parietostriatal networks (Sarpal et al., 2016; Sarpal et al., 2015), and 
these differences can predict the outcome of treatment (Sarpal et al., 
2017; Sarpal et al., 2015).

Notably, in our study, networks in patients did not show increased 
resilience, as reported previously (Ray et al., 2017). Ray et al. (2017)

focused their analysis on an expanded frontoparietal network, which 
differs from our approach since we did not pre-define a network to 
investigate. This could be the reason for the divergent findings in these 
two studies. It seems that the network active during the switch-drift task 
does not show group differences regarding the extent of interconnec
tedness among central nodes.

In contrast to former studies that focused on working memory (He 
et al., 2012; Yang et al., 2020) or cognitive flexibility (Wang et al., 2022) 
as specific components of cognitive control, our study showed that to
pology alterations are also present during task conditions that require 
cognitive stability. While we found consistent group differences for all 
event types, differentiating between cognitive components had no effect 
on topological features. Notably, our results provided substantial evi
dence that healthy controls, similar to patients, showed similar topol
ogies when responding to different events (i.e., standard, drift, and 
switch events). In other words, the different event types did not cause 
any significant changes in topology. Corroborating our results, func
tional studies focusing on the loci of activation during tasks that require 
cognitive flexibility versus stability show that these tasks require similar 
areas and networks (Niendam et al., 2012; Rottschy et al., 2012). 
However, one should note that if another task is employed that signifi
cantly differs from the current task, for instance, in terms of input-output 
modality or cognitive processes involved, we expect that the topology of 
brain activity will differ significantly. Therefore, one possible interpre
tation would be that differences between event types do not reveal 
themselves when looking at the topology of activity. Hence, the current 
results might be used as preliminary findings indicating the importance 
of temporal aspects of the activity rather than topological differences.

In summary, our results support the hypothesis that topological 
features in functional networks can generally be differentiated between 
patients and healthy controls during a task that requires both cognitive 
flexibility and stability. Further, these results can be interpreted as 

Table 3 
Results of hit rate as predictor for global graph measures.

Coefficient Estimate [95% CI] E.E. hypothesis p.p. B.F.

G. Strength GroupP -693.98 [-976.06, 
-393.74]

149.67 GroupP = 0 0.00 0.00

HitRate -360.58 [-693.34, 
-11.07]

173.84 HitRate = 0 0.42 0.73

Age -1.29 [-4.83, 2.32] 1.81 Age = 0 1.00 418.21
Gender -1.83 [-83.72, 80.44] 42.14 Gender= 0 0.96 24.07
GroupP:HitRate 534.12 [135.43, 925.33] 202.46 GroupP:HitRate = 0 0.14 0.17

G. Char. Path Length GroupP 1.73 [1.07, 2.39] 0.34 GroupP = 0 0.00 0.00
HitRate 0.82 [0.06, 1.57] 0.39 HitRate = 0 0.41 0.69
Age 0.01 [0.00, 0.01] 0.00 Age = 0 0.99 162.18
Gender 0.02 [-0.16, 0.20] 0.09 Gender= 0 0.96 25.80
GroupP:HitRate -1.59 [-2.50, -0.70] 0.46 GroupP:HitRate = 0 0.02 0.02

G. Efficiency GroupP -0.17 [-0.24, -0.11] 0.03 GroupP = 0 0.00 0.00
HitRate -0.10 [-0.18, -0.02] 0.04 HitRate = 0 0.42 0.72
Age 0.00 [0.00, 0.00] 0.00 Age = 0 1.00 385.22
Gender 0.00 [-0.02, 0.02] 0.01 Gender= 0 0.98 51.76
GroupP:HitRate 0.14 [0.05, 0.23] 0.05 GroupP:HitRate = 0 0.13 0.15

G. Clustering Coefficient GroupP -0.20 [-0.31, -0.08] 0.06 GroupP = 0 0.07 0.07
HitRate -0.08 [-0.21, 0.06] 0.07 HitRate = 0 0.79 3.68
Age 0.00 [0.00, 0.00] 0.00 Age = 0 1.00 606.99
Gender 0.00 [-0.04, 0.03] 0.02 Gender= 0 0.97 30.78
GroupP:HitRate 0.13 [-0.04, 0.29] 0.08 GroupP:HitRate = 0 0.65 1.82

Transitivity GroupP -0.19 [-0.31, -0.07] 0.06 GroupP = 0 0.09 0.09
HitRate -0.06 [-0.20, 0.09] 0.07 HitRate = 0 0.83 4.90
Age 0.00 [0.00, 0.00] 0.00 Age = 0 1.00 660.24
Gender -0.01 [-0.04, 0.03] 0.02 Gender= 0 0.97 27.91
GroupP:HitRate 0.13 [-0.04, 0.29] 0.08 GroupP:HitRate = 0 0.65 1.84

Assortativity GroupP 0.02 [-0.19, 0.23] 0.11 GroupP = 0 0.83 4.79
HitRate -0.04 [-0.28, 0.21] 0.12 HitRate = 0 0.80 3.99
Age 0.00 [0.00, 0.00] 0.00 Age = 0 1.00 402.21
Gender 0.02 [-0.04, 0.07] 0.03 Gender= 0 0.94 15.20
GroupP:HitRate -0.01 [-0.30, 0.26] 0.14 GroupP:HitRate = 0 0.78 3.57

Note. E.E. = estimation error; p.p. = posterior probability; B.F. = Bayes factor; G. = Global; GroupP = level Patients of factor Group. Highlighted Bayes factors and 
posterior probabilities indicate significant evidence for rejecting the tested hypothesis (van Doorn et al., 2021).
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indicating that the targeted topological characteristics were relatively 
stable during task performance.

4.2. Aberrant association of flexibility and global graph measures

An important finding of the current study was that healthy controls 
and patients with schizophrenia differed with respect to the relationship 
between correct switch detection, i.e., hit rates, and global topological 
measures during switch processing. Specifically, we found significant 
group differences in the associations of hit rate with global strength, 
global characteristic path length, and global efficiency. When examining 
the effects of behavioral performance on global network measures 
within each group, control subjects exhibited a significant positive as
sociation between hit rate and global characteristic path length, as well 
as a significant negative association between global strength and global 
efficiency. In contrast, patients showed a significant negative association 
between global characteristic path length and hit rate and numerically 
positive associations of hit rate with global strength and global effi
ciency. Hence, in healthy subjects, lower levels of network centrality 
and integration appear to facilitate cognitive flexibility performance. 
Conversely, individuals with schizophrenia who exhibit better cognitive 
performance measured relatively higher centrality and integration 
levels in our data. The divergent associations of hit rate with global 
graph measures reflect that the biggest discrepancies in graph measures 
were found for the worse-performing individuals of each group. In 
contrast, the better-performing individuals of each group tended to have 
more similar global graph measures. Thus, it becomes apparent that 
network characteristics of centrality and integration that best supported 
cognitive flexibility were closer together for both groups while graph 
measures related to worse performance strived to diverge. This finding 
indicates alterations of network topologies in patients with schizo
phrenia compared to healthy controls that appear to be more expressed 
in cognitively impaired patients and is of great importance for under
standing the neural activity of these patients.

Previous studies in schizophrenia successfully correlated graph 
measures with behavioral data of cognitive functions such as working 
memory (Bassett et al., 2009; He et al., 2012) or an overall cognitive 
ability measure summarizing episodic memory, verbal memory, pro
cessing speed, goal maintenance, and visual integration (Sheffield et al., 
2017; Sheffield et al., 2015). The reported positive associations of 
network integration with task performance (Bassett et al., 2009; Shef
field et al., 2017; Sheffield et al., 2015) agree with our results for pa
tients with schizophrenia. Furthermore, higher network segregation was 
associated with lower reaction times (He et al., 2012), which is in line 
with our finding for patients, indicating a numerical positive relation 
between segregation and task performance. Less integrated and less 
segregated functional networks in schizophrenia, therefore, might be 
associated with stronger cognitive impairments over different cognitive 
functions. Critically, to our knowledge, group differences in associations 
have only been reported for resting-state fMRI data (Sheffield et al., 
2017) and not for task-based data (Sheffield et al., 2015), while we have 
now shown that they can also be found in task-based data. This suggests 
that alterations in network topology underlying specific cognitive 
functions can be directly and distinguishably related to behavioral 
consequences. The fact that we found significant group differences in 
associations could reflect that groups greatly differ in how functional 
network topology supports cognitive flexibility. Our switch-drift para
digm is potentially a good candidate for differentiating associations of 
global graph measures and task performance between groups. However, 
further studies are needed in order to confirm our findings.

Interestingly, no associations and no corresponding group differ
ences between measures of stability (i.e., correct rejection rates) and 
global graph measures were found. In a previous study, fMRI results 
from the same sample revealed reduced activity in a network comprising 
the inferior frontal gyrus, posterior insula, and basal ganglia when 
shielding against drifts (Standke et al., 2021). With these regions 

presumably playing a critical role in the rejection of drifts (Guo et al., 
2018; Sakagami & Pan, 2007; Uddin et al., 2017), one can interpret this 
finding as indicating that patients did not actively reject drifts but 
simply missed them. This idea may explain why, in the current study, no 
systematic relationship was found between correct rejection rates and 
graph measures, and no group differences appeared. In other words, 
inflexibility may have contributed to the correct rejection rates in 
addition to stability.

4.3. Limitations and future directions

Currently, existing graph theoretical methods cannot resolve all the 
challenges inherent in investigating clinical samples. As investigated by 
van den Heuvel et al. (2017), when applying proportional thresholds in 
studies including clinical samples with generally reduced functional 
connectivity, more spurious edges are prone to be included in the clin
ical sample, leading to potentially less accurate conclusions in group 
comparisons. In order to address this problem, we used weighted mea
sures in the current study, but future studies should confirm our findings 
utilizing other approaches like probabilistic thresholding (Váša et al., 
2018).

Furthermore, next to our interpretation of the findings, simpler 
properties might have contributed to the observed effects. For instance, 
it cannot be ruled out that findings are at least partially based on spatial 
or temporal autocorrelation (Rubinov, 2023; Shinn et al., 2023). How
ever, this does not make the differences between the two groups irrel
evant, as the underlying mechanisms causing these differences can still 
be dissociated between the two groups. Hence, further studies are 
needed in order to determine what drives systematic differences in 
global graph measures in general, which can also provide a better 
interpretation of the current results.

A potential limitation of the current study is its sample size, which, 
while comparable to other studies (e.g., Meram et al., 2023), may be 
considered small. However, this concern is mitigated by the application 
of Bayesian statistics. By leveraging this approach, we can derive 
meaningful statistical insights that are less dependent on sample size, as 
by choosing appropriate priors, asymptomatic assumptions such as 
normality of the data are not affecting the results (Dienes, 2016; Dienes 
& Mclatchie, 2018). Notably, the use of weakly informative priors (Scott 
& Berger, 2006) yielded robust results, as these priors allow the data to 
speak for itself without imposing strong assumptions. This reinforces the 
validity of our findings, and as such, the present results offer a signifi
cant contribution to advancing knowledge in the field. However, it is 
important to note that the current sample cannot predict effects in a 
sample with different characteristics, regardless of the statistical 
methods used. Further, no single study, including the current experi
ment, regardless of sample size, will be enough to reconcile previous 
inconsistencies in the field. Still, the current paper provides insights that 
are valuable to the field.

Further, aligned with the norm in the field (Gupta et al., 2015; for 
review, see Haijma et al., 2013; Williams, 2008), and due to ethical and 
practical reasons, the patient population in the current study was not 
drug naïve. However, to ensure that the results of the current study were 
not due to drug consumption, we conducted an extra model ruling out 
any medication effects on the measured network characteristics (see 
supplementary materials for more details). Additionally, the partici
pants with schizophrenia had a higher history of substance abuse, which 
is also a common finding in the field (Winklbaur et al., 2006). Therefore, 
it was ensured that all patients with a history of substance abuse were at 
least four weeks abstinent before participating in the study. However, 
the drug abstinence was controlled via self-reports rather than using 
urinary tests, which would have provided better control. Further, 
smoking was not controlled, as there is no evidence that it will affect 
performance in the task used in the current study, and only five patients 
had a history of smoking. Nevertheless, patients with specific subtypes 
of schizophrenia have a higher rate of smoking compared to the normal 
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population (Beratis et al., 2001), and hence, controlling for this might be 
beneficial in future studies.

Finally, in the current study, we mainly focused on the whole-brain 
analysis. First, unless a specific hypothesis about a particular region 
exists, current best practices in the field suggest that a whole-brain 
analysis is more appropriate (Lieberman & Cunningham, 2009; Woo 
et al., 2014). Moreover, network properties of the brain, by definition, 
cannot be fully captured within a specific ROI, as networks are inher
ently distributed across multiple regions (Vanhaudenhuyse et al., 2010). 
Given the mixed findings in previous studies (Meram et al., 2023; Oliver 
et al., 2021; Sheffield et al., 2015), we also intentionally refrained from 
focusing on a specific network, as we did not have a prior hypothesis 
supporting such an approach. Focusing on a specific network, however, 
is a valuable approach that needs to be the focus of future studies with a 
priori hypotheses regarding different networks.

To date, there is no standard or common procedure for graph theo
retical analyses (Hallquist & Hillary, 2019). Further studies are needed 
to test and confirm the influence of different processing steps on the 
results. The lack of a standard procedure led to a plethora of different 
approaches, which might at least partly have caused the inconsistent 
findings in patients with schizophrenia (Kambeitz et al., 2016). Future 
studies would, therefore, benefit from clear guidelines similar to what is 
proposed for resting-state data by Hallquist and Hillary (2019) in order 
to make results comparable and facilitate meta-analyses.

4.4. Conclusion

The current study sheds light on the relationship between functional 
network topology and impaired cognitive flexibility and stability in 
schizophrenia. Our results indicate that patients with schizophrenia 
spectrum disorders show a less optimally organized functional network 
architecture characterized by reduced centrality, integration, and 
segregation during task performance, regardless of task event type. 
Hence, patients had fewer specialized local networks, and these net
works showed poorer global communication and integration of infor
mation. In addition, lower network integration was associated with 
worse cognitive flexibility in patients. Lastly, compared to controls, 
patients showed opposite associations between cognitive flexibility and 
network centrality, integration, and segregation. These results indicate 
alterations of network topologies in patients compared to healthy con
trols, which deteriorated their performance regardless of whether 
cognitive flexibility or stability was required for the task at hand. Our 
findings highlight the necessity of employing a whole-brain approach to 
understanding cognitive deficits in schizophrenia spectrum disorders.

Data and code availability statement

The data, codes, and models supporting the results of this study are 
available in the following public repository: https://osf.io/3hpdx/.

CRediT authorship contribution statement

Maren Sundermeier: Writing – review & editing, Writing – original 
draft, Visualization, Formal analysis. Isabel Standke: Investigation, 
Data curation. Ricarda I. Schubotz: Writing – review & editing, Writing 
– original draft, Supervision, Project administration, Conceptualization. 
Udo Dannlowski: Supervision, Funding acquisition, Conceptualization. 
Rebekka Lencer: Supervision, Funding acquisition, Conceptualization. 
Falko Mecklenbrauck: Methodology. Ima Trempler: Supervision, 
Project administration, Data curation, Conceptualization. Anoushir
avan Zahedi: Writing – review & editing, Writing – original draft, 
Visualization, Supervision, Methodology, Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Supplementary materials

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.neuroimage.2025.121416.

References

Alexander-Bloch, A.F., Gogtay, N., Meunier, D., Birn, R., Clasen, L., Lalonde, F., 
Lenroot, R., Giedd, J., Bullmore, E.T., 2010. Disrupted modularity and local 
connectivity of brain functional networks in childhood-onset schizophrenia. Front. 
Syst. Neurosci. 4, 147. https://doi.org/10.3389/fnsys.2010.00147.

American Psychiatric Association, 1994. Diagnostic and statistical manual of mental 
disorders, 4th ed.

Andreasen, N.C., 1984. The Scale for the Assessment of Positive Symptoms (SAPS). 
University of Iowa.

Andreasen, N.C., Olsen, S., 1982. Negative v positive schizophrenia. Definition and 
validation. Arch. Gen. Psychiatry 39 (7), 789–794. https://doi.org/10.1001/ 
archpsyc.1982.04290070025006.

Andreasen, N.C., Pressler, M., Nopoulos, P., Del Miller, Ho, B.‑C, 2010. Antipsychotic 
dose equivalents and dose-years: A standardized method for comparing exposure to 
different drugs. Biol. Psychiatry 67 (3), 255–262. https://doi.org/10.1016/j. 
biopsych.2009.08.040.

Arnsten, A.F.T., Rubia, K., 2012. Neurobiological circuits regulating attention, cognitive 
control, motivation, and emotion: Disruptions in neurodevelopmental psychiatric 
disorders. J. Am. Acad. Child Adolesc. Psychiatry 51 (4), 356–367. https://doi.org/ 
10.1016/j.jaac.2012.01.008.

Baker, J.E., 1987. Reducing bias and inefficiency in the selection algorithm. In: Genetic 
Algorithms and Their Applications : Proceedings of the Second International 
Conference on Genetic Algorithms : July 28-31, 1987 at the Massachusetts Institute 
of Technology, Cambridge, MA. https://agris.fao.org/agris-search/search.do?recor 
dID=US201301782152.

Bassett, D.S [Danielle S.], Bullmore, E.T., 2006. Small-world brain networks. 
Neuroscientist. 12 (6), 512–523. https://doi.org/10.1177/1073858406293182.

Bassett, D.S [Danielle S.], Bullmore, E.T., Meyer-Lindenberg, A., Apud, J.A., 
Weinberger, D.R., Coppola, R., 2009. Cognitive fitness of cost-efficient brain 
functional networks. Proc. Natl. Acad. Sci. 106 (28), 11747–11752. https://doi.org/ 
10.1073/pnas.0903641106.

Bassett, D.S [Danielle S.], Sporns, O., 2017. Network neuroscience. Nat. Neurosci. 20 (3), 
353–364. https://doi.org/10.1038/nn.4502.

Beck, A.T., Steer, R.A., Brown, G., 1996. Beck depression inventory–II. Psychol. Assess. 
https://doi.org/10.1037/t00742-000.

Beratis, S., Katrivanou, A., Gourzis, P., 2001. Factors affecting smoking in schizophrenia. 
Compr. Psychiatry 42 (5), 393–402. https://doi.org/10.1053/comp.2001.26273.

Braun, U., Harneit, A., Pergola, G., Menara, T., Schäfer, A., Betzel, R.F., Zang, Z., 
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