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A B S T R A C T

In everyday life, there are situations where sensory input can be temporarily unavailable. To maintain a coherent 
perceptual experience, the brain then relies on internal predictive models, shaped by prior experience and 
informed by sensory signals from different modalities such as audition and vision. The present study investigated 
how our brain actively compensates for brief masking of auditory and visual input at the example of hurdling, a 
complex full-body movement. Participants underwent functional magnetic resonance imaging (fMRI) while 
watching hurdling videos in which visual and/or auditory information was briefly masked, requiring the reliance 
on internal models during a movement prediction task. Between two fMRI sessions, participants completed six 
weeks of hurdling training to strengthen their own sensorimotor models of hurdling. As expected, prediction 
accuracy declined when sensory input was masked. Under visual masking, the brain not only relied more on the 
remaining auditory stream but also engaged frontal, motor, and visual regions despite the absence of visual 
input, hinting at top-down visual prediction. Auditory masks increased the recruiting of visual regions but 
showed no clear evidence for an auditory analogue of the top-down effect seen under visual masking. Predictive 
accuracy improved after hurdling training, and the training-related changes in neural activation overlapped with 
activation patterns under visual masking in frontal control and visuomotor areas, consistent with more efficient 
internal models for visual prediction. Due to field of view restrictions, no reliable effects could be detected in the 
cerebellar cortex. Taken together, we demonstrated that the brain flexibly recruited modality-specific networks 
depending on the available input and, in the case of missing visual information, predictions.

1. Introduction

In everyday life, we often need to control and perceive movements, 
even when sensory input is temporarily unavailable - for example, when 
we drive on the highway and a car briefly disappears behind a truck or 
when we talk to a friend and a loud noise briefly obscures their words. 
Whether as actors or as observers, we can still keep track of what is 
happening and anticipate what comes next, allowing us to respond 
appropriately. That is because, according to the predictive coding 

framework, the brain constantly predicts the most likely incoming sen
sory signals, based on internal predictive models (Clark, 2013). Pre
dictions derived from these models travel down the neural hierarchy and 
are compared to actual sensory experiences. The difference between the 
two, the so-called prediction error, serves as a bottom-up learning signal 
to further improve predictive models and, in turn, allows us to optimize 
behavioral responses in the future. Taken together, in the exemplary 
situations described above, the brain relies on internal predictive 
models, shaped by prior experience and informed by sensory signals 
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from different modalities such as audition and vision, to infer unfolding 
events, including complex movements (Friston, 2005, 2012).

In the present study, we set out to investigate how predictive pro
cesses in different sensory modalities contribute to the perception and 
prediction of the same complex movement, namely hurdling. We chose 
hurdling because of the extreme importance of cadence here. While 
hurdlers do strongly rely on vision, making the visual modality the 
obvious candidate for prediction, hurdling also generates characteristic 
incidental movement sounds which are strongly rhythmic in nature, 
most so in expert hurdlers (MacPherson et al., 2009; Pizzera et al., 
2017). In that sense, with increasing expertise, movement sounds pro
duced during hurdling may become functionally similar to intentionally 
produced movement sounds, thereby becoming informative cues for 
prediction, too (Heins et al., 2020a; Murgia et al., 2017).

We employed a masking approach (auditory, visual, combined, or 
none) that allowed us to experimentally dissociate modality-specific 
prediction mechanisms. Our aims were threefold: first, to identify the 
neural networks that support auditory and visual predictions for com
plex whole-body movements; second, to determine the relative behav
ioral relevance of each modality; and third, to examine how predictive 
models themselves may change with practice.

As predictive models are thought to be shaped and refined through 
experience (Friston, 2005, 2012), we employed a pre-post training 
design in which participants practiced hurdling. This enabled us to 
investigate whether and how training modulates prediction-related 
brain networks as well as behavioral performance. Previous work has 
shown that both visual and auditory information are essential for pre
dicting and controlling movements and that deprivation or distortion of 
either modality can impair performance (Schaffert et al., 2019; Senna 
et al., 2021; Shadmehr et al., 2010).

For the visual domain, continuous visual feedback provides essential 
information about movement direction, distance, and speed (Saunders & 
Knill, 2003, 2005). When visual input is transiently removed or 
occluded, perceptive performance decreases and predictive processes 
are enhanced to compensate for the missing information (Brich et al., 
2018; Diersch et al., 2016; Stadler et al., 2011). Neuroimaging studies 
show that for these processes, biological-motion perception recruits 
occipito-temporal and fronto-parietal regions, including the 
middle-temporal area (MT), the fusiform gyrus, the dorsal premotor 
cortex (PMd), and the superior parietal lobe (SPL; Grosbas et al., 2012; 
Maes et al., 2020). For the auditory domain, natural movement sounds 
provide information about action quality and timing (Kennel et al., 
2014, 2015; Müller et al., 2019; Schaffert et al., 2019). Distorted or 
delayed auditory feedback alters the perception of movements and 
modulates a hierarchical network comprising the primary auditory 
cortex, posterior superior temporal gyrus (pSTG), and supplementary 
motor area (SMA; Chennu et al., 2016; Heins et al., 2020a,b; Lima et al., 
2016). Auditory deprivation can also elicit compensatory responses in 
this network, consistent with predictive coding accounts (Heins et al., 
2020b; Pfordresher, 2006).

Taken together, these findings motivated us to test how predictive 
models operate during the perception of hurdling, a complex full-body 
movement. To this end, we implemented a hurdling-specific occlusion 
paradigm during fMRI sessions conducted before and after a training 
intervention in a pre–post design. In both sessions, participants observed 
point-light displays of a person hurdling in which visual and/or auditory 
information was transiently masked, requiring reliance on predictive 
models. To probe successful movement prediction, participants had the 
task to judge whether the speed of the hurdler had remained the same or 
changed throughout each video. Between sessions, participants 
completed six weeks of hurdle training. We hypothesized that such 
transient masking would (i) reduce accuracy in the movement predic
tion task and activity in primary sensory areas, (ii) differentially recruit 
modality-specific prediction networks (auditory: A1/pSTG/SMA; visual: 
MT/SPL/PMd), and (iii) that intensive motor training in hurdling would 
improve predictive accuracy and modulate these networks by 

strengthening internal models. We tested these hypotheses at the whole- 
brain level, as well as within these predefined regions of interest. The 
present study did not specifically test hypotheses about cerebellar 
involvement in the described processes, despite the relevance of this 
region in motor prediction (e.g., Nixon & Passingham, 2001; Ebner & 
Pasalar, 2008). This was due to the decision to choose a field of view that 
is optimal for investigating activation in (pre-)motor cortex, including 
SMA, and visual and auditory regions, which were the central areas of 
interest here. As a consequence, cerebellar activation could only be 
partially investigated, and the present study does not warrant strong 
conclusions about cerebellar mechanisms.

2. Materials and Methods

2.1. Participants

Eighty-six participants without prior hurdling experience, enrolled at 
German Sport University Cologne, attended the first scanning session of 
the present study. A complete dataset from two MRI sessions could only 
be obtained from 65 participants, as 21 participants had to be excluded 
for different reasons. Data from three participants could not be included 
due to technical problems during MRI acquisition, five participants self- 
reported low attentiveness during one of the scanning sessions and 13 
participants terminated the study prematurely or did not complete the 
predefined required amount of training sessions (< 10), due to personal 
reasons. Please note that, as per our consent and data protection policy, 
participants were not required to state a reason why they wished to 
withdraw from the study, so that we cannot provide further details here. 
Furthermore, we did not exclude any participants due to their hurdling 
performance. The final sample of N = 65 included 27 men and 38 
women, and participants’ ages ranged from 19 to 29 years (M = 22.62, 
SD = 2.27). An a priori power analysis using G*Power (Erdfelder et al., 
1996) with α = .05, a power of .80 and an estimated effect size of .30 had 
predicted a required sample size of 66 participants. Most participants 
(58) were right-handed, as assessed by the Edinburgh Handedness In
ventory (Oldfield, 1971). None of the participants reported any history 
of psychiatric or neurological disorder. All participants gave written 
informed consent to participate in this study and were monetarily 
reimbursed (296 €). The study was approved by the Local Ethics Com
mittee of the University of Münster (Department of Psychology) as well 
as the Ethics Committee of the German Sport University Cologne in 
accordance with the Declaration of Helsinki.

2.2. Material

The presented stimuli were videos of a side-view point-light figure 
running over four hurdles using the common 3-step rhythm (4 contacts 
between hurdles). No hurdle, but only the figure was visible on the 
screen, staying fixated in the center to avoid saccadic eye as well as head 
movements by the participants in the scanner (Figure 1). Point-light 
displays were chosen for the present study to standardize the material 
and to be able to focus the participants’ attention to the relevant details 
of the videos, that is, the rhythmicity of the movement. We have pre
viously used such point-light displays in studies with the same focus 
(Heins et al., 2020a,b), and it is known that, despite their abstract na
ture, point-light videos are reliably perceived as biological motion by 
the brain (e.g., Saygin et al., 2004). The only sound audible in the videos 
was the hurdler’s steps. The average video duration was 7.39 s (range: 
5.88 to 9.0 s, SD = 0.93 s). To produce the stimuli, three athletes with 
different levels of hurdling experience (beginner, advanced, expert), 
assessed by licensed hurdle coaches from the German Sport University 
Cologne, were asked to run over four hurdles while being motion 
tracked and recorded. For motion tracking, we used the MVN Link Xsens 
motion capture suit and the software MVN 2022.0 (Schepers et al., 
2018). The steps of the athletes were recorded with in-ear microphones. 
The trajectories and positions of the tracked data points of each athlete 
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were then exported and analyzed using MATLAB® version R2023a (The 
MathWorks, Inc.). We generated mute videos in which hurdlers were 
represented as point-light figures using the imported data in Psy
chtoolbox 3 (Kleiner et al., 2007). For synchronizing the recorded audio 
and mute videos obtained from MATLAB®, we used DaVinci Resolve® 
18 (Blackmagic Design Pty. Ltd., South Melbourne, Australia). To enable 
a later analysis of missing visual and/or auditory information, different 
versions of the videos were created in which some sensory information 
was removed. We refer to these manipulations as masks in the following. 
Three types of masks were used: auditory masks (AM), in which the 
hurdler could be seen but not heard; visual masks (VM), in which the 
hurdler could be heard but not seen; and full audio-visual masks, in 
which the hurdler could be neither seen nor heard (AVM). Masks started 
immediately after the launching step for transversion of the second 
hurdle (we refer to this timepoint as mask onset in the following) and 
covered two, three, or four steps and ended immediately before the 
following step (which was an intermediate, launching, or landing step, 
respectively; we refer to this timepoint as mask offset in the following). 
We chose this timepoint for mask onset to ensure that enough (clearly 
rhythmic) information was presented before the masking to facilitate the 
establishment of a predictive model of the rhythm on a trial-by-trial 
basis. Mask duration varied between 0.79 and 2.04 s. Together with 
the differences in video duration (see above) this variability provided a 
natural jittering of the task, which is beneficial for the efficiency of an 
event-related fMRI design. Importantly, after the mask offset when the 
previously masked sensory modality returned, the other respective 
modality was masked until the end of the video. In the case of the AVM, 
both modalities returned (Figure 1). This mask switch was implemented 
so that participants could not simply rely on the remaining sensory input 
alone but would have to rely on their internal movement model to be 
able to predict the course of the action. We used videos with no mask 
(NOM) as a control condition. Additionally, to assess general effects of 
perceiving meaningful hurdling movements, we created another type of 
control stimulus, so-called scrambled videos (SCB). To this end, we cut 
each of the original videos into 125 ms segments and randomly reas
sembled those parts using DaVinci Resolve® 18.

Variations in hurdler expertise (beginner, advanced, experts) and 
mask duration (2, 3, 4 steps) were introduced to increase variability in 
the stimulus material and thus give rise to more robust results. All of 
these factors were perfectly balanced for each participant and will not be 
further analyzed in the present paper.

To assess how well participants could rely on their internal move
ment model in the different conditions, we designed a task that required 
them to tune into the beat of the hurdling movement and use top-down 

predictions to answer correctly (see section 2.3.2.1 for a detailed 
description of the task). From intense behavioral piloting, we identified 
a speed detection task as the most suitable task of appropriate difficulty 
that, at the same time, allowed for accounting for natural variability in 
the stimulus material. To this end, we applied a speed manipulation to 
50% of the videos using DaVinci Resolve® 18. The beginner and 
advanced hurdler speeds were modified to 80% and 125% of their 
original speed, respectively. The speed of the expert hurdler was 
modified to 75% and 110% of the original speed. These particular ma
nipulations were chosen to induce noticeable changes in speed, but at 
the same time avoid making the movement appear unnaturally fast or 
slow, as validated by the experimenters. Importantly, the speed 
manipulation only affected the time between the mask offset and the end 
of the video. For NOM and SCB videos where no mask was implemented, 
we used the corresponding timepoints of the masked videos as reference 
points for the speed manipulation.

2.3. Procedure

The present study was part of a large cooperation project with the 
German Sport University Cologne to address several different research 
questions. Therefore, the study design was relatively complex and not all 
findings are reported in the present paper. For more clarity, we also 
provide some methodological details in the Supplementary Material 
only.

The study consisted of three parts. For the first part, participants 
engaged in the first MRI session at the University of Münster. During this 
session, they underwent an fMRI measurement during which they were 
presented with the above-described point-light video stimuli to assess 
brain responses during different masking conditions. In parallel, par
ticipants completed a movement prediction task to assess how well they 
could rely on their internal predictive model of hurdling in the different 
conditions (see section 2.3.2.1). Additionally, we acquired several 
structural measures of the brain (standard anatomical T1 images, 
Diffusion Tensor Imaging; DTI, quantitative MRI; qMRI; see section 
2.3.2.2 and Supplementary Material) to investigate how intense physical 
training influences structural brain organization. The results of struc
tural analyses are not reported here but in a companion paper (Dührkop 
et al., in preparation).

In the second part of the study, participants attended a six-week 
hurdling training program at the German Sport University Cologne. To 
investigate how incidentally generated movement sounds affect motor 
learning, participants were divided into three different training groups 
(normal feedback, N = 21; auditory focus, N = 23; and auditory 

Figure 1. Overview of stimulus material.
Note. In the present study, we used videos showing a point-light figure running over hurdles for a movement prediction task (for task details, see Figure 2). Videos 
were derived from motion-tracked hurdle runs of real athletes and only showed the hurdler, fixed to the center of the screen, and included the sound of the hurdler’s 
steps (A). While some videos were not manipulated (NOM), others included an auditory, visual, or full audio-visual mask (AM, VM, AVM, respectively) during which 
the respective sensory information was missing. Mask duration varied between 0.79 and 2.04 s (B).
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deprivation, N = 21; see section 2.3.1). Behavioral results of the hur
dling training under varying auditory feedback conditions will be re
ported in a companion paper (Redlich et al., under review), as the 
present paper focuses on the neurofunctional findings. Importantly, due 
to the equal distribution of participants to the different training groups, 
we can rule out a systematic confound thereof on the data reported here. 
The controlled variability of training experiences might have even 
positively influenced the robustness of the effects presented in the pre
sent paper.

In part three, participants underwent a second MRI session that 
followed the same protocol as described above for part one. The aim of 
the second fMRI measurement was to examine the effect of motor 
training on the perception and prediction of hurdle running and 
respective neurofunctional and behavioral correlates thereof, given the 
strengthening of the internal predictive movement model of hurdling.

2.3.1. Hurdle Training
In the following, we provide a brief overview of the hurdle training 

procedure. For more details, see Supplementary Material.
The training was based on the usual requirements of the teaching 

plans for sport students’ hurdle training as well as the basic training plan 
by the German Athletics Association and was conducted by licensed 
coaches. As mentioned above, we split the participants into three 
training groups to investigate the effect the deprivation of and focus on 
incidentally generated movement sounds exhibit on motor learning. 
Please note that the different groups are not of interest for the current 
paper and will therefore be further described in a companion paper 
(Redlich et al., under review). All groups participated in a total of 10 - 12 
hurdling training sessions over six consecutive weeks (twice-weekly, 
equivalent to the usual training volume in beginner athletics courses). 
Hurdle training included three difficulty levels (t1, t2, and t3) with 
varying distances between the hurdles and increased height of the 
hurdles in t3. We implemented a pre-test (week one), two intermediate 
tests (week four and week six), a post-test (week seven), and a retention 
test (week 10, after the second MRI session) to track the development of 
participants’ performance over the training. The participants’ individual 
hurdling performance as well as specific improvements therein are 
analyzed in detail in the companion paper (Redlich et al., under review).

2.3.2. fMRI Sessions

2.3.2.1. Task. Immediately before entering the scanner, participants 
completed a short training on a laptop to familiarize themselves with the 
stimulus material as well as the prediction task. The training comprised 
three blocks. During the first block, participants were presented the 
point-light videos of the three hurdlers once each. They were instructed 
to watch the videos attentively, but no behavioral response was 
required. Next, 18 videos of the different mask conditions (AM, VM, 
AVM) were presented, followed by a block of 9 SCB videos. During 
blocks two and three, participants performed the same task as later in 
the scanner. They were instructed to attentively watch the video and 
judge whether the runner maintained the same speed throughout the 
video (50% of the videos) or not (25% faster, 25% slower) by pressing 
two different buttons on the keyboard. They were made aware of the fact 
that the speed change would occur after mask offset. During training 
only, participants received immediate feedback (500 ms) whether they 
had responded correctly, incorrectly, or too late (i.e., more than 500 ms 
after the video had ended). The order of videos within blocks was ran
domized for each participant. Importantly, if participants reached less 
than 60% correct responses, the training was repeated once. One 
training session lasted for about 5.5 min.

After entering the scanner, participants were first presented with a 
sample of the hurdling sounds while an echo planar imaging (EPI) 
sequence was running and could adjust the volume of the recording 
individually to make sure the scanner noise would not drown out the 

auditory stimuli.
During the following fMRI measurement, participants were pre

sented with the above-described stimuli. In total, participants had to 
complete 186 trials, divided into six blocks. In each block, only stimuli 
from one runner (beginner, advanced, expert) were presented, resulting 
in each runner being presented in two blocks. Each block consisted of six 
NOM videos, 18 videos with a mask (six each for AM, VM, and AVM), 
four SCB videos, and three null events (fixation cross on a grey back
ground for 7 s). In total, there were 36 trials for the NOM, AM, VM, and 
AVM conditions, 24 for SCB, and 18 null events. Block order was 
balanced over participants. Half of the videos per block were presented 
at normal speed, while the other half were either sped up or slowed 
down, as described above. The videos were presented in a pseudo- 
random order so that the same experimental condition could be 
repeated maximally four times in a row, and there were always at least 
five video trials between two null events. For all trial types except for 
null events, an interstimulus interval of 2.5 s, during which a fixation 
cross was presented, was used. In the case of null events, the fixation 
cross was instead presented for 7 s. Furthermore, video trials ended with 
500 ms of fixation cross as an extension of the response window for 
participants.

During each video, participants were required to judge whether the 
runner shown in the video changed or maintained their speed, as 
described above. This task was used because it requires the participants 
to tune into the beat of the hurdling rhythm and maintain it also during 
the masked parts using top-down predictions. For responding, partici
pants used two buttons on a four-button response box. They were 
instructed to press the left button with their index finger if they 
perceived the hurdler’s speed to remain the same and press the right 
button with their middle finger if they believed the speed was manip
ulated (slowed down or sped up). No feedback was provided during the 
completion of the task in the scanner. The whole duration of one task 
session was around 30 minutes. Figure 2 shows an example trial of the 
prediction task used during the scanner sessions.

2.3.2.2. MRI Acquisition. Participants were scanned in a 3-Tesla 
Siemens Magnetom Prisma MR tomograph (Siemens, Erlangen, Ger
many) using a 20-channel head coil. A 3D multiplanar rapidly acquired 
gradient-echo (MPRAGE) sequence was used to obtain high-resolution 
T1-weighted images ahead of functional scanning, with scanning pa
rameters set to 192 slices, a repetition time (TR) of 2130 ms, an echo 
time (TE) of 2.28 ms, a slice thickness of 1 mm, a field of view (FoV) of 
256 × 256 mm2, and a flip angle of 8◦.

Gradient-echo echoplanar imaging (EPI) was used to measure the 
blood-oxygen-level-dependent (BOLD) contrast for functional imaging 
data of the whole brain. Scanning parameters were set to a TE of 30 ms, a 
TR of 1500 ms, a flip angle of 71◦, 63 slices with a slice thickness of 2.4 
mm (voxel size: 2.5 × 2.5 × 2.4 mm³), an acceleration factor of 3, and a 
FoV of 210 × 210 mm2 (please note that approximately the lower half of 
the cerebellum could not be included in the FoV). For later correction for 
magnetic field inhomogeneities, we additionally acquired five images 
with an EPI sequence that was equivalent to the one reported above, but 
with a 180◦ flip along the y-axis (we refer to this as inverted EPI 
sequence in the following). Furthermore, we acquired diffusion- 
weighted imaging as well as qMRI (Guilfoyle et al., 2003) sequences. 
Because the results of these additional MRI acquisitions are not reported 
in the present paper, the corresponding scanning parameters are pro
vided in the Supplementary Material.

2.4. Statistical Analysis

2.4.1. Individual Improvement in Hurdling Performance
For understanding the establishment and consolidation of a predic

tive movement model of hurdling in the brain, the individual training 
success might play an important role. While the participants’ individual 

S. Siestrup et al.                                                                                                                                                                                                                                 NeuroImage 325 (2026) 121673 

4 



hurdling improvements are presented in detail in the companion paper 
(Redlich et al., under review), we still considered this an important 
influencing factor for the present analyses. For this reason, we calculated 
individual hurdling improvement (most improved athlete, MIA) scores 
from before to after the training to include as a covariate in our analyses.

First, we calculated the so-called technique index (TI) before and 
after the training period for each participant, using the data acquired 
during the pre- and the post-test. The TI was defined as the ratio of the 
time it took to run over the hurdle course and sprinting the same dis
tance (Kaisidou et al., 2021). A separate TI was calculated for the t1 and 
t2 training difficulties and then averaged for each timepoint. Note that 
for the t3 difficulty, no TI was calculated, as eleven participants did not 
master the hurdling course at this difficulty stage, even after intense 
training. Finally, MIA was defined as the difference between the average 
TI after and before the training period.

Due to technical difficulties during hurdling recordings, no TI was 
available for 6 participants at one or both timepoints. To avoid an 
exclusion of these participants from fMRI analyses, missing TI data
points were interpolated using the k-Nearest Neighbor Imputation of the 
VIM package (Kowarik & Templ, 2016) in RStudio (R Core Team, 2025; 
Version 2025.05.0) to then calculate MIA scores.

2.4.2. Behavioral Data Analysis
To assess whether the different masking conditions affect how well 

participants can predict movements based on their internal model, we 
analyzed the mean accuracy and reaction times (RT) per condition and 
timepoint from the prediction task. The analysis of behavioral data was 
conducted with RStudio (R Core Team, 2025; Version 2025.05.0).

For the analysis of accuracy, missed and preliminary responses (i.e., 
before mask offset when the speed manipulation became detectable, 
which means, outside of the valid response window) were counted as 

correct in 50% (chance level) of the cases. By doing so, we followed the 
recommendation to not count missing responses as incorrect in the 
analysis of accuracy (e.g., De Ayala et al., 2001), but to treat them as 
fractionally correct (Dai, 2021).

For the analysis of RTs, only truly correct responses were considered. 
Extreme outliers per condition and participant (as defined as values 
above 3rd quartile + 3 * interquartile range (IQR) or lower than 1st 

quartile – 3 * IQR) were excluded for the RT analysis on a single-trial 
basis prior to forming averages per condition. One participant was 
excluded from the RT analysis completely, as they did not produce any 
correct responses in one condition (SCB).

For the statistical analysis, we used repeated measures ANOVAs 
(rmANOVAs) with the factors Time (pre, post) and Condition (NOM, 
AM, VM, AVM, SCB) and the covariates Gender and MIA (mean- 
centered). By using a repeated-measures design, we ensured that the 
individual differences between subjects were accounted for in the 
analysis. As post-hoc tests, we applied paired t-tests (one- or two-sided, 
depending on hypothesis), corrected for multiple comparisons with 
Bonferroni-correction. Additionally, we performed an exploratory post- 
hoc test for the Time x Condition interaction. For this, we calculated the 
pre-to-post increase in accuracy and decrease in RT per condition and 
used an rmANOVA with the factor Condition. Additionally, we applied 
one-sided one-sample t-tests against zero for each condition to test for 
significant increases/decreases of the described variables individually to 
better understand the influence of the hurdling intervention on the hy
pothesized performance improvement for the different masking condi
tions. P-values obtained from these one-sample t-tests were adjusted for 
multiple comparisons using Bonferroni-correction, and are reported 
accordingly.

Lastly, we performed a control analysis to investigate whether im
provements in the movement prediction task would be expected from 

Figure 2. Example trial of the movement prediction task.
Note. Each video trial of 5.9 – 9.0 s was embedded by a 2.5 s intertrial interval during which a fixation cross was presented. In the case of null events, the fixation 
cross was displayed for 7 s. Additionally, 500 ms of fixation cross were added after each video as an extension of the response window. After mask offset, the video 
speed either remained the same or changed, and the participants’ task was to indicate this with a button press. Participants were supposed to press the left button 
with their index finder when the hurdler’s speed remained the same and press the right button with their middle finger when the speed was manipulated.
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task familiarization alone. To this end, we performed a rmANOVA with 
the factor Block (with six levels) on accuracy and RT data from the first 
fMRI session.

We report mean values and standard errors of the mean. A signifi
cance level of α = .05 was applied. Normality was assessed using the 
Shapiro-Wilk test. Whenever the assumption of sphericity was violated 
(Mauchly’s test of sphericity), we report Greenhouse-Geisser-corrected 
degrees of freedom and p-values.

2.4.3. fMRI Data Analysis

2.4.3.1. Preprocessing. The MRI images were processed using SPM12 
(Wellcome Trust, London, England) and FSL (Jenkinson, 2012; Smith 
et al., 2004; version 6.0.5). First, fMRI images were corrected for B0 field 
inhomogeneities using the topup and applytopup (Andersson et al., 2003; 
Smith et al., 2004) functions in FSL. For the fieldmap estimation in 
topup, we used the last three images of the EPI and inverted EPI 
sequences.

The remaining preprocessing of functional data was conducted in 
SPM12, including slice time correction to the first slice, movement 
correction and realignment to the mean image, co-registration of each 
participant’s anatomical scan to the mean functional image, normali
zation into the standard MNI (Montreal Neurological Institute, Mon
treal, QC, Canada) space based on segmentation parameters including 
resampling of the functional images to 2.5 mm³, and spatial smoothing 
using a Gaussian Kernel full-width half maximum (FWHM) of 8 mm. A 
128-s high-pass temporal filter was applied.

2.4.3.2. fMRI Model Specification. fMRI data were analyzed in SPM12 
using general linear models (GLMs) for serially autocorrelated obser
vations (Friston et al., 1994; Worsley & Friston, 1995). For each 
participant, we used the smoothed (8-mm FWHM) normalized gray 
matter image obtained from segmentation, which was thresholded at .2 
using ImCalc in SPM12, to create a binary gray matter mask that was 
applied at the first level of analyses.

On the first-level, we calculated two GLMs (GLM1, GLM2) on fMRI 
data from before and after the training phase (Pre, Post):

GLM1 focused on the neural correlates of the different masking 
conditions and included 19 regressors. For each type of (masking) 
condition (NOM, VM, VM, AVM, SCB), we added two regressors, 
modelled as events due to their brief duration. Onsets were time-locked 
to the points of mask onset to model brain responses during the short 
(0.79 to 2.04 s) mask interval. Additionally, we modeled the event of 
mask offset as a proxy of participants’ responses, as at this time-point, a 
button press was required from them. We validated that the time-point 
of mask offset well represented this motor response by inspecting the 
mask offset > null event contrast for the expected activation in sensory 
motor areas. For NOM and SCB trials, the hypothetical times of mask 
onset and offset were used, as derived from the masked video counter
parts. Furthermore, we added two more regressors for the full duration 
of NOM and SCB trials as additional controls (fullNOM, fullSCB), with 
onsets time-locked to the beginning of the video. Null events were 
modeled with their full presentation time (7 s), as this duration provided 
a long enough time window for the meaningful modeling as epochs. 
Regressors were convolved with the canonical hemodynamic response 
function. Additionally, the six subject-specific rigid-body trans
formations obtained from realignment were included as regressors of no 
interest.

GLM2 focused on the relation of functional data to behavioral per
formance in the prediction task. We reasoned that when participants are 
able to successfully draw information from their predictive model to 
identify speed changes, we should specifically see evidence of brain 
activation in modality-specific predictive networks. The model specifi
cations were as described above for GLM1, but the regressors coding for 
the mask onsets of AM and VM were split into correct and incorrect 

responses (AMcorrect, AMincorrect, VMcorrect, VMincorrect). Only truly cor
rect responses were included in the AMcorrect and VMcorrect regressors (i. 
e., no missed or preliminary responses, which were included in the 
AMincorrect and VMincorrect regressors) to be able to pinpoint neural 
activation related to successful prediction only. To ensure meaningful 
statistical modeling of brain responses, each regressor had to include at 
least 5 trials, which led to the exclusion of 13 participants from this 
particular analysis. The number of trials per regressor ranged from 5 to 
31 per participant (M = 18). Please note that due to this reduced number 
of participants and trials per regressor, as well as the partially uneven 
distribution of trial numbers, the sensitivity of this second GLM was 
likely compromised.

2.4.3.3. Whole Brain Analysis. For GLM1, we calculated the first-level 
contrasts VM>NOM (reflecting a situation where no visual but only 
auditory input is available), VM>AVM (reflecting an isolated focus on 
the auditory modality), AM>NOM (reflecting a situation where no 
auditory but only visual input is available), AM>AVM (reflecting an 
isolated focus on the visual modality), and NOM>SCB (reflecting brain 
activation for the general perception of natural hurdling movements). 
Additionally, we calculated the reverse contrasts NOM>VM and 
NOM>AM to investigate the hypothesized downregulation in auditory 
and visual cortices in the absence of the respective stimulus. For GLM2 
the contrasts AMcorrect>AMincorrect as well as VMcorrect>VMincorrect were 
calculated. For all contrasts, we used the condition regressors based on 
the mask onsets.

For second-level group analyses, we applied a full-factorial design 
with Time as a factor and Gender and MIA (mean-centered) as cova
riates. For each first-level contrast of GLM1 and GLM2, we calculated the 
positive effect of condition (t-contrast), i.e., the overall condition effect, 
and the main effect of Time (F-contrast). When the latter showed sig
nificant activation after correction (see below), we additionally calcu
lated the Pre>Post and Post>Pre t-contrasts. We applied false discovery 
rate (FDR) correction and used a minimal threshold of p < .05 (voxel 
level) to determine significant activation. FDR correction provides 
greater sensitivity for detecting effects than more conservative methods, 
such as family-wise error correction (Genovese et al., 2002; Poldrack 
et al., 2011). We therefore chose FDR for this first-of-its-kind study to 
reduce the risk of overlooking meaningful activations in hypothesized 
regions. Since we often found very large activation clusters spanning 
multiple brain regions with this minimal significance threshold, but at 
the same time wanted to apply the same correction method (FDR) to all 
T-maps, we report several T-maps with a higher threshold of p < .0001 
for a more comprehensible report. Generally, we only report clusters 
with a minimum size of 20 voxels. Brain activation was visualized with 
MRIcroGL (Version 1.2.20220720 × 86-64 FPC, McCausland Center for 
Brain Imaging, University of South Carolina).

2.4.3.4. ROI Analysis. To specifically investigate brain responses in 
hypothesized regions, we performed a planned region of interest (ROI) 
analysis in predefined brain regions belonging to the auditory and visual 
processing and prediction networks.

Functional ROIs were constructed as spheres with a radius of 8 mm 
around previously published peak voxel coordinates in MNI space, using 
the MarsBar Toolbox (Brett et al., 2002). ROIs were left and right A1 (x 
= -42, y = -22, z = 7; x = 46, y = -14, z = 8; Jo et al., 2019), pSTG (x =
-61, y = -32, z = 8; x = 59, y = -25, z = 8; Jo et al., 2019), SMA (x = 10, y 
= 4, z = 54; x = -6, y = 4, z = 54; Jo et al., 2019), V1 (x = -12, y = -88, z 
= 2; x = 12, y = -88, z = 2; Kuhnke et al., 2023), MT (x = -44, y = -76, z 
= 4; x = 46, y = -70, z = 0; Kuhnke et al., 2023), PMd (x = -32, y = -4, z 
= 52; x = 26, y = 0, z = 56; Kuhnke et al., 2023), and SPL (x = -20, y =
-64, z = 58; x = 22, y = -62, z = 56; Kuhnke et al., 2023). Please note that 
coordinates used for SMA and V1 were manually adjusted for better 
symmetry across hemispheres. Beta values were extracted from the 
first-level contrasts VM>NOM, VM>AVM, AM>NOM, AM>AVM, and 
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NOM>SCB and averaged over hemispheres.
To analyze the extracted beta values, we first tested for general 

activation/deactivation within each ROI. To this end, we applied one- 
sample t-tests against zero with regard to our hypotheses. Within each 
ROI, we used Bonferroni-correction to correct for multiple testing and 
report the corrected p-values. To then analyze the influence of hurdling 
training on brain activation, we used rmANOVAs with the factor Time 
(Pre, Post) and the covariates Gender and MIA (mean-centered) in 
RStudio (R Core Team, 2025; Version 2025.05.0). Additionally, when 
significant (interaction) effects for MIA were found, we further investi
gated the relationship of MIA with beta values using exploratory Pearson 
correlations. Reported p-values were corrected for multiple comparisons 
using Bonferroni-correction. Additionally, we used exploratory Pearson 
correlations to further assess the connection between behavioral accu
racy in the VM, AM, and NOM conditions with betas extracted from A1, 
V1, and SMA (a region high in the predictive hierarchy) from the 
VM>NOM and AM>NOM contrasts. P-values were corrected for 

multiple comparisons. However, we could not detect any significant 
correlations here (all p > .57).

We report mean values and standard errors of the mean. A signifi
cance level of α = .05 was applied.

3. Results

3.1. Behavioral Results

To assess the behavioral costs of omitted sensory input during hur
dling prediction, we analyzed the mean accuracy and reaction times 
(RT) per condition and timepoint from the fMRI task (Figure 3).

For accuracy, we found a significant main effect of the factor Time (F 
(1, 62) = 13.84, p < .001, ηp

2 = .182), meaning participants’ perfor
mance improved after hurdling training, as expected. Additionally, there 
was a significant main effect of Condition (F(2.54, 157.31) = 79.70, p <
.001, ηp

2 = .563). Paired t-tests revealed that accuracy in the NOM 

Figure 3. Behavioral results from movement prediction task during fMRI sessions.
Note. During two fMRI sessions, one before (Pre) and after (Post) hurdling training, participants watched videos of a point-light hurdler. In some videos, auditory 
information (AM), visual information (VM) or both (AVM) were missing for a brief duration. Some videos were presented without any missing sensory information 
(NOM), and some were edited into random, scrambled sequences (SCB). The participants’ task was to tune into the beat of the hurdling movement and decide 
whether the speed remained the same throughout each video. We analyzed accuracy (A) and RT (B) as performance measures. Statistics: rmANOVAs and post-hoc 
paired t-tests. * = p < .05, ** = p < .01, *** = p < .001.
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condition was higher than in the AM (t(64) = 15.16, p < .001, d = 1.88), 
VM (t(64) = 11.12, p < .001, d = 1.38), AVM (t(64) = 7.82, p < .001, d =
0.97), and SCB (t(64) = 12.45, p < .001, d = 1.54) conditions. Addi
tionally, accuracy in the SCB was also significantly lower than in the AM 
(t(64) = 3.05, p = .017, d = 0.38), VM (t(64) = 7.43, p < .001, d = 0.92), 
and AVM (t(64) = 8.85, p < .001, d = 1.10) conditions. Interestingly, we 
also found that accuracy in the AM condition was significantly lower 
than in the VM condition (t(64) = -5.54, p < .001, d = -0.69). There was 
also a significant effect of the covariate Gender, as men showed a higher 
mean accuracy compared to women (Mmen = .768 ± .013, Mwomen =

.721 ± .010; F(1, 62) = 9.75, p = .003, ηp
2 = .136). We did not find 

further significant main or interaction effects (all p > .05, ηp
2 < .035), but 

opted for an exploratory post-hoc analysis for the Time x Condition 
interaction due to a non-significant trend detected here (F(2.75, 170.53) 
= 2.21, p = .094, ηp

2 = .034). For this, we calculated the pre-to-post 
training increase in accuracy per condition. A near-significant trend 
for an effect of Condition (F(2.75, 170.53) = 2.21, p = .094, ηp

2 = .034), 
but no further significant main or interaction effects could be detected (p 
> .05, ηp

2 < .01). One-sample t-tests against zero were used to further 
investigate the condition-wise improvement as hinted at by the statis
tical trend for a Condition effect. These revealed significant improve
ment from before to after the hurdling training only in the AM (t(64) =
4.09, p < .001, d = 0.508), VM (t(64) = 2.74, p = .019, d = 0.340), and 
AVM (t(64) = 2.67, p = .023, d = 0.331) conditions, but not in the NOM 
(t(64) = 1.67, p = .252, d = 0.207) and SCB (t(64) = 0.36, p = 1, d =
0.045) conditions.

Regarding RT, there was a significant main effect of Time (F(1, 61) =
10.88, p = .002, ηp

2 = .151), as participants became faster to respond 
correctly after training. Additionally, we detected a significant main 
effect of Condition (F(1.91, 116.25) = 18.08, p < .001, ηp

2 = .229). 
Paired t-tests revealed that participants answered significantly faster in 
the NOM (t(63) = -11.13, p < .001, d = -1.39) and VM conditions (t(63) 
= 7.70, p < .001, d = 0.96) compared to the AM condition. We did not 
find further significant main or interaction effects (p > .05, ηp

2 < .045), 
but again a non-significant trend for a Time x Condition interaction (F 
(2.26, 138.03) = 2.83, p = .056, ηp

2 = .044). An exploratory post-hoc 
analysis on condition-wise RT decreases revealed a non-significant 
trend for a Condition effect (F(2.26, 138.03) =, p = .056, ηp

2 = .044). 
One-sample t-tests against zero were applied to further investigate the 
condition-wise improvement in RTs. These demonstrated significant RT 
decreases for the NOM (t(63) = 4.91, p < .001, d = 0.614), AM (t(63) =
2.77, p < .001, d = 0.346), VM (t(63) = 2.89, p = .013, d = 0.361), and 
AVM (t(63) = 2.85, p = .015, d = 0.357) conditions, but not for the SCB 
condition (t(63) = 0.49, p = 1, d = 0.06).

The control analysis to investigate possible task improvement due to 
familiarization effects revealed no significant improvement over the 
course of the first fMRI session for accuracy (F(3.99, 255.42) = 0.77, p =
.542, ηp2 = .012) or RT (F(3.94, 251.95) = 2.27, p = .063, ηp2 = .034).

3.2. Whole Brain Results

To test our hypothesis that a transient masking of one sensory mo
dality would reduce activity in respective primary sensory areas, we 
contrasted the NOM condition with the individual mask conditions (AM, 
VM). The whole brain contrast NOM>AM from GLM1 yielded higher 
activation in left and right Heschl’s gyrus. Accordingly, the contrast 
NOM>VM revealed higher activation in the right visual cortex (V1).

Next, we investigated whether transient masking of auditory and/or 
visual information recruits modality-specific prediction networks. In the 
VM>NOM contrast, reflecting a situation where no visual but only 
auditory input is available, we found higher brain activity in Heschl’s 
gyrus, pSTG, supramarginal gyrus (SMG), the SMA, the precuneus, Area 
MT, and V1. Additionally, the VM>AVM contrast, representing an iso
lated focus on the auditory modality, revealed higher activation in 
Heschl’s gyrus, the precentral gyrus (BA 4), and pSTG.

The AM>NOM contrast, reflecting available visual but no auditory 

input, showed increased activity in the amygdala as well as V1, the 
fusiform gyrus, area MT, the PMd, the SPL, and cerebellum. The 
AM>AVM contrast, i.e., a specific focus on visual input, revealed higher 
activation in the posterior cingulate gyrus, fusiform gyrus, primary vi
sual cortex, area MT, cerebellum, and the intraparietal sulcus (IPS).

To see which brain areas are involved for the general perception of 
natural hurdling movements, we additionally calculated the NOM>SCB 
contrast. Here, we observed increased activity in the superior frontal 
gyrus (SFG), V1, inferior frontal gyrus, angular gyrus, and the pCC.

Regarding the pre- vs. post-training comparison, only the NOM>SCB 
and VM>NOM contrasts revealed significant differences before and 
after the hurdle training. In the NOM>SCB contrast, the mPFC, the 
angular gyrus, the middle temporal gyrus, parts of the cuneus and pre
cuneus, and cerebellum, were more active in the first MRI session. For 
the VM>NOM contrast, we found more activity in the first MRI session 
in the anterior insula, the SMA, the middle frontal gyrus, and the left 
superior frontal gyrus. Peak activity coordinates (Table 1 and Table 2) 
and visualizations of the results of GLM1 (Figure 4 and Figure 5) can be 
found below.

Additionally, we calculated a second GLM to investigate the relation 
of functional data and behavioral performance in the prediction task. To 
this end, we formed contrasts between activation in trials with correct 
and incorrect responses in the mask conditions. These contrasts from 
GLM2 did not show any significantly activated brain regions after 
correction for multiple comparisons. However, for the AMcor

rect>AMincorrect contrast, we found subthreshold (p < .05, uncorrected) 
activation in several hypothesized brain regions, including primary and 
secondary auditory cortices. Accordingly, the VMcorrect>VMincorrect 
contrast revealed subthreshold (p < .05, uncorrected) activation in the 
right secondary visual cortex (Table 3, Figure 6).

3.3. ROI Results

According to our hypotheses, we extracted beta values from our first- 
level contrasts in functional ROIs of A1, SMA, pSTG, V1, MT, SPL, and 
PMd. Per contrast and ROI, we first calculated one-sample t-tests to 
assess general activation or deactivation within ROIs before and after 
the training period (Figure S1).

For the AM>NOM contrast, one-sample t-tests revealed a significant 
deactivation in A1 before (t(64) = -6.00, p < .001, d = -0.744) and after 
training (t(64) = -6.35, p < .001, d = -0.788) and a significant activation 
before training in SMA (t(64) = 3.02, p = .036, d = 0.375), after training 
in V1 (t(64) = 3.41, p = .006, d = 0.423), and in MT before (t(64) =
23.71, p < .001, d = 2.94) and after (t(64) = 22.49, p < .001, d = 2.79) 
training.

For the VM>NOM contrast, one-sample t-tests showed significant 
activation before and after training in A1 (Pre: t(64) = 8.74, p < .001, 
d = 1.084; Post: t(64) = 12.12, p < .001, d = 1.504), pSTG (Pre: t(64) =
13.77, p < .001, d = 1.708; Post: t(64) = 15.14, p < .001, d = 1.878), V1 
(Pre: t(64) = 8.505, p < .001, d = 1.055; Post: t(64) = 8.304, p < .001, 
d = 1.030), SMA (Pre: t(64) = 5.83, p < .001, d = 0.722; Post: t(64) =
2.82, p = .032, d = 0.349), MT (Pre: t(64) = 7.08, p < .001, d = 0.878; 
Post: t(64) = 6.99, p < .001, d = 0.867) and before training in PMd (t(64) 
= 4.25, p <.001, d = 0.427).

For the AM>AVM contrast, we found significant activation before (t 
(64) = 21.64, p < .001, d = 2.683) and after training (t(64) = 21.71, p <
.001, d = 2.692) in MT, and significant deactivation in STG (t(64) =
-3.671, p = .005, d = -0.455) and SMA (t(64) = -3.277, p = .017, d =
-0.406) before training.

In the VM>AVM contrast, significant activation before and after 
training was found in A1 (Pre: t(64) = 18.83, p < .001, d = 2.336; Post: t 
(64) = 19.07, p < .001, d = 2.366) and pSTG (Pre: t(64) =16.47, p <
.001, d = 2.043; Post: t(64) = 14.46, p < .001, d = 1.793).

Lastly, for the NOM>SCB contrast, one-sample t-tests revealed sig
nificant deactivation in pSTG before (t(64) = -4.03, p = .001, d = -0.500) 
and after training (t(64) = -5.72, p < .001, d = -0.710) and in A1 after 
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training (t(64) = -3.35, p = .014, d = -0.415). Significant activation was 
present in V1 before training (t(64) = 3.18, p = .023, d = 0.395).

Additionally, we conducted rmANOVAs with the factor Time and the 
covariates Gender and MIA per ROI and contrast (Figure S1).

For the AM>NOM contrast, the rmANOVA revealed no significant 
effects in A1, V1, and pSTG. A significant effect of Gender was found in 
SMA (F(1, 62) = 6.42, p = .014, ηp

2 = .094), MT (F(1, 62) = 10.13, p =
.002, ηp

2 = .140), SPL (F(1, 62) = 4.91, p = .030, ηp
2 = .073), and PMd (F 

(1, 62) = 8.22, p = .006, ηp
2 = .117), driven by higher beta values for 

women than for men in these ROIs. Furthermore, there was a significant 
effect of Time in MT (F(1, 62) = 4.01, p = 0.05, ηp

2 = .061), due to higher 
beta values before training.

The rmANOVA for the VM>NOM contrast did not reveal significant 
effects in A1. In pSTG, there was a significant effect of MIA (F(1, 62) =
5.59, p = .021, ηp

2 = 0.083), and in MT (F(1, 62) = 5.47, p = .023, ηp
2 =

0.081), PMd (F(1, 62) = 4.33, p = .042, ηp
2 = 0.065), and SPL (F(1, 62) =

4.51, p = .038, ηp
2 = 0.068), we found significant interactions of Time x 

MIA. Significant effects of Time were detected in SMA (F(1, 62) = 9.92, p 
= .003, ηp

2 = 0.138) and PMd (F(1, 62) = 11.72, p = .001, ηp
2 = 0.159), 

driven by higher beta values before training. Furthermore, there was a 
significant effect of Gender in V1 (F(1, 62) = 12.25, p < .001, ηp

2 = .165), 
as women had higher beta values than men.

For the AM>AVM contrast, the rmANOVA showed a significant ef
fect of time in V1 (F(1, 62) = 6.46, p = .027, ηp

2 = .094) due to lower beta 
values before than after training. Additionally, there was a significant 
effect of Gender in MT (F(1, 62) = 10.15, p = .002, ηp

2 = 0.141), driven 
by higher beta values for women than men.

In the VM>AVM contrast, the only significant effect was found for 
MIA in V1 (F(1, 62) = 5.48, p = .022, ηp

2 = .081).
Lastly, for the NOM>SCB contrast, there was a significant effect of 

Time in SMA (F(1, 62) = 5.97, p = .017, ηp
2 = 0.088) due to lower beta 

Table 1 
Peak coordinates for the contrasts VM>NOM, VM>AVM, AM>NOM, AM>AVM, 
and NOM>SCB from GLM1.

Localization H Cluster 
extent

MNI coordinates t 
value

x y z

VM>NOM (FDR p <.0001) ​ ​ ​ ​ ​ ​
Supplementary motor area R 389 5.5 8 57.5 6.48
Superior frontal sulcus R l.m. 13 5.5 70 5.98
Supplementary motor area L l.m. -4.5 5.5 62.5 5.46
Medial frontal gyrus L l.m. -9.5 10.5 45 4.44
Cingulate sulcus R l.m. 10.5 13 37.5 4.41
BA 4 L 65 -4.5 -27 57.5 4.80
​ R l.m. 5.5 -22 55 4.57
Supramarginal gyrus / BA 40 L 45 -52 -42 52.5 5.01
Precuneus R 58 8 -44.5 50 6.05
Intraparietal sulcus R 76 25.5 -59.5 42.5 5.28
Superior temporal gyrus 

(bilaterally extending into 
V1 and area MT)

R 17000 60.5 -39.5 17.5 15.57

Lingual gyrus / BA 18 L l.m. -9.5 -79.5 -7.5 14.67
Superior temporal gyrus 

(A2) extending into 
Heschl’s gyrus (A1)

L l.m. -57 -34.5 15 14.53

Lingual gyrus / BA 18 R l.m. 10.5 -77 -5 13.79
Superior temporal gyrus 

(A2) extending into 
Heschl’s gyrus (A1)

R l.m. 58 -17 7.5 13.72

Anterior Insula L 72 -32 23 7.5 6.28
​ R 38 35.5 25.5 5 4.69
VM>AVM (FDR p <.0001) ​ ​ ​ ​ ​ ​
Precentral gyrus / BA 4 R 23 53 -2 47.5 6.15
Heschl‘s gyrus (A1) L 1435 -47 -22 7.5 17.73
​ R 1684 53 -17 7.5 17.34
Superior temporal gyrus R l.m. 43 3 -17.5 5.38
AM>NOM (FDR p <.0001) ​ ​ ​ ​ ​ ​
Postcentral gyrus / S1 R 28 23 -34.5 62.5 4.77
S1 / BA 3 R l.m. 15.5 -39.5 67.5 4.53
Putamen L 277 -27 -7 7.5 5.96
Amygdala L l.m. -27 -4.5 -17.5 5.47
Caudate nucleus (head) L l.m. -12 13 0 4.62
Middle temporal gyrus (area 

MT / V5: also extending 
into dorsal premotor 
cortex and superior 
parietal lobule)

R 6693 48 -69.5 2.5 25.27

V1 R l.m. 28 -92 5 23.34
Inferior temporal gyrus R l.m. 43 -57 -12.5 17.31
Inferior occipital gyrus / BA 

19
R l.m. 35.5 -82 -12.5 15.61

Thalamus R 28 20.5 -29.5 2.5 5.73
V1 (also extending into 

dorsal premotor cortex 
and superior parietal 
lobule)

L 6018 -27 -92 -2.5 23.78

Middle occipital gyrus L l.m. -42 -82 2.5 17.76
Fusiform gyrus L l.m. -39.5 -52 -15 12.32
Cerebellum L l.m. -12 -74.5 -42.5 7.94
Precentral gyrus / M1 L l.m. -49.5 -2 40 7.86
Amygdala R 434 30.5 -4.5 -17.5 7.80
Putamen R l.m. 30.5 -12 0 7.14
AM>AVM (FDR p <.0001) ​ ​ ​ ​ ​ ​
Intraparietal sulcus, 

ascending segment
R 107 33 -39.5 57.5 5.87

BA 7 R l.m. 28 -49.5 60 5.74
Intraparietal sulcus, 

ascending segment
L 102 -32 -39.5 55 5.95

Supramarginal gyrus / BA 40 R 107 53 -32 25 6.66
Supramarginal gyrus L 64 -47 -32 22.5 7.34
Posterior cinuglate gyrus L 54 -4.5 -52 22.5 5.16
Thalamus R 64 20.5 -29.5 0 8.26
​ L 64 -19.5 -29.5 -2.5 8.68
V1 R 1925 28 -94.5 -5 26.75
Middle temporal gyrus (area 

MT / V5)
R l.m. 45.5 -72 0 21.08

Inferior temporal gyrus R l.m. 43 -49.5 -15 11.48
V1 L 1669 -24.5 -94.5 -7.5 28.67

Table 1 (continued )

Localization H Cluster 
extent 

MNI coordinates t 
value

x y z

Middle temporal gyrus (area 
MT / V5)

L l.m. -42 -69.5 5 16.63

Inferior temporal gyrus L l.m. -42 -47 -17.5 9.14
Inferior frontal gyrus (pars 

orbitalis)
R 56 43 33 -15 6.86

​ L 77 -44.5 28 -15 6.16
Cerebellum R 24 0.5 -54.5 -37.5 6.21
NOM>SCB (FDR p <.0001) ​ ​ ​ ​ ​ ​
Superior frontal gyrus R 375 18 43 45 6.60
Superior frontal sulcus R l.m. 25.5 25.5 47.5 5.74
Middle frontal gyrus R l.m. 35.5 20.5 42.5 5.72
Superior frontal sulcus L 157 -22 23 45 6.03
​ L l.m. -9.5 33 60 5.56
Angular gyrus R 252 53 -64.5 32.5 7.45
BA 19 R l.m. 43 -74.5 40 5.52
Angular gyrus / BA 39 L 318 -49.5 -69.5 32.5 6.23
Supramarginal gyrus L l.m. -44.5 -54.5 27.5 6.18
Posterior superior temporal 

sulcus
L l.m. -52 -57 25 6.07

BA 19 L l.m. -42 -74.5 37.5 5.99
Posterior cingulate cortex R 174 8 -52 30 5.56
Posterior cingulate cortex / 

BA 31
L l.m. -4.5 -49.5 30 5.32

Cingulate gyrus / BA 30 R l.m. 3 -49.5 20 5.12
Superior frontal gyrus, 

medial part
L 841 -2 63 17.5 6.62

Superior frontal gyrus R l.m. 20.5 63 17.5 6.13
BA 9 L l.m. -4.5 53 42.5 5.95
V1 L 53 -22 -99.5 5 6.28
Inferior frontal gyrus (pars 

orbitalis)
R 87 43 35.5 -15 6.18

Note. H = Hemisphere, MNI = Montreal Neurological Institute, L = Left, R =
Right, BA = Brodmann Area, l.m. = local maximum, V1 = primary visual cortex, 
M1 = primary motor cortex. Only clusters with a minimum extent of 20 voxels 
are reported.
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values before training.
To better understand the influence of individual hurdling perfor

mance improvement on brain activation, we used exploratory Pearson 
correlations to further analyze any (interaction) effects found for MIA. A 
main effect of MIA was detected for the VM>NOM contrast in pSTG and 
for the VM>AVM contrast in V1. In both ROIs, there was a non- 
significant trend for a negative correlation of MIA and beta values 
(pSTGVM>NOM: r = -.327, p = .063; V1VM>AVM: r = -.329, p = .059), i.e., 
participants with lower performance increases in hurdling had higher 
brain activation. An interaction effect of Time and MIA was observed for 
the VM>NOM contrast in MT, SPL, and PMd. Descriptively, we observed 
a negative association between MIA and beta values only before, but not 
after, hurdling training in these ROIs. However, the negative correlation 
only reached significance in MT (Pre: r = -.351, p = .033; Post: r = -.084, 
p = 1), but not the other ROIs (SPLPre: r = -.185, p = 1; SPLPost: r = .007, p 
= 1; PMdPre: r = -.229, p = .532; PMdPost: r = -.002, p = 1).

4. Discussion

The present study investigated visual and auditory prediction in 
hurdling using fMRI within a pre-post training design. Participants 
watched point-light hurdling videos while visual and/or auditory in
formation was briefly masked, requiring them to rely on internal 

models, or the remaining modality, during a movement prediction task. 
Between sessions, participants completed six weeks of hurdling training 
to strengthen their own sensorimotor hurdling models. We found that 
prediction accuracy declined when sensory input was masked. At the 
same time, the brain flexibly recruited modality-specific networks 
depending on the available input. As expected, under visual masking, 
the brain not only relied more on the remaining auditory stream but also 
engaged frontal, motor, and visual regions despite the absence of visual 
input, hinting at top-down visual prediction. In contrast, auditory 
masking increased recruitment in visual regions but showed no signifi
cant evidence for an auditory analogue of the top-down effect seen 
under visual masking. Consistent with this asymmetry, behavioral costs 
were largest under auditory masking. On correctly solved no-sound 
trials, we observed increases in the early auditory cortex, though this 
transient recruitment showed no robust group-level effect. Following 
hurdling training, predictive accuracy improved, and training-related 
changes in neural activation overlapped with the systems recruited 
under visual masking in frontal control and visuomotor nodes, consis
tent with more efficient internal models for visual prediction. Taken 
together, the findings support a visually anchored predictive architec
ture that is sharpened by practice. The following sections detail the 
behavioral asymmetry, neural markers of top-down visual prediction, 
candidate reasons for the absent auditory counterpart, and training- 
related efficiency gains.

4.1. Predicting unfolding movement: The role of audiovisual input and 
motor expertise

Behaviorally, our results reveal that both visual and auditory infor
mation are integral to accurate movement prediction. Accuracy declined 
under all masking conditions compared to the no-mask control, with 
participants performing least accurately in the auditory mask condition 
among the masked conditions. Moreover, participants were particularly 
slow in responding when auditory information was absent. These find
ings align with previous work showing auditory input is a critical source 
of temporal information, for example, in beat sensitivity tasks (Grahn, 
2012). Importantly, we observed the expected overall increase in ac
curacy and faster reaction times after hurdle training, indicating that 
motor expertise strengthens reliance on internal predictive models in a 
movement speed prediction task. Notably, gains were especially evident 
in masked conditions, while no significant improvements emerged in the 
no-mask or scrambled control trials. This pattern is consistent with prior 
evidence showing expertise allows athletes to extract highly specific 
movement cues, even within occlusion paradigms (Abernethy et al., 
2001; Williams et al., 2011). Thus, training appears to enhance the ca
pacity to cope with missing information by consolidating an internal 
predictive model of hurdling, whereas scrambled sequences, as ex
pected, did not benefit from expertise, as they lack a meaningful 
movement structure to predict.

4.2. Using what is left: Flexible selection of available sensory information

We observed the expected decrease in A1 activity when auditory 
input was masked compared with the no-mask condition. Conversely, 
when only auditory information was available (i.e., visual masking), 
activity increased in A1, SMA, and STG relative to no-mask, consistent 
with leveraging auditory evidence and sensorimotor prediction (Chennu 
et al., 2016; Heins et al., 2020a,b; Jo et al., 2019). On the visual side, 
visual masking produced the expected decrease in V1 relative to no 
mask. When only visual information was available (i.e., auditory 
masking), we observed increased activation across visual cortices, 
including area MT, SPL, and PMd, relative to no mask. Taken together, 
these patterns indicate increased recruitment of the auditory network 
when visual information is missing and of the visual network when 
auditory information is missing, alongside reduced activity in the pri
mary cortex of the occluded modality. These findings provide evidence 

Table 2 
Peak coordinates for the Pre>Post training comparisons for the NOM>SCB and 
VM>NOM contrasts from GLM1.

Localization H Cluster 
extent

MNI coordinates t 
value

x y z

Pre>Post for NOM>SCB (FDR p <.05)
Superior parietal lobule / 

BA 5
R 24 20.5 -49.5 67.5 3.37

Superior frontal gyrus R 41 20.5 43 47.5 3.36
Superior frontal sulcus R l.m. 23 38 40 3.29
Middle cingulate cortex R 37 5.5 -19.5 40 3.79
​ L l.m. -7 -14.5 40 2.99
Angular gyrus / BA 39 R 94 48 -72 32.5 4.24
Middle occipital gyrus L 150 -39.5 -69.5 27.5 3.52
Angular gyrus L l.m. -52 -62 32.5 2.95
BA 19 L l.m. -39.5 -74.5 37.5 2.93
Parieto-occipital sulcus L 2995 -7 -64.5 15 5.38
Precuneus R l.m. 10.5 -57 27.5 5.34
Cuneus R l.m. 10.5 -84.5 32.5 5.31
Parieto-occipital sulcus R l.m. 0.5 -74.5 30 4.83
Cuneus L l.m. -12 -87 32.5 4.77
Medial prefrontal cortex R 838 5.5 58 -2.5 4.55
Superior frontal sulcus, 

medial part
L l.m. -2 63 17.5 4.26

Medial prefrontal cortex L l.m. -9.5 55.5 10 4.06
BA 25 L l.m. -4.5 23 -17.5 3.89
Anterior cingulate cortex R l.m. 3 40.5 2.5 3.49
Inferior temporal sulcus L 20 -59.5 -19.5 -12.5 3.16
Cerebellum R 24 20.5 -87 -25 3.48
Middle temporal gyrus / 

BA 21
L 38 -54.5 8 -27.5 3.71

Middle temporal gyrus R 211 48 13 -37.5 5.11
Pre>Post for VM>NOM (FDR p <.05)
Superior frontal sulcus L 38 -22 5.5 57.5 3.96
Supplementary motor 

area
R 584 3 15.5 52.5 5.32

Middle frontal gyrus R l.m. 38 5.5 55 4.39
Superior frontal sulcus / 

PMd
R l.m. 23 3 57.5 3.71

Inferior frontal junction L 21 -52 10.5 17.5 3.63
Middle frontal gyrus R 108 35.5 50.5 15 4.61
​ L 73 -42 45.5 15 4.06
Anterior insula L 74 -32 28 0 5.21
​ R 94 33 25.5 0 4.02

Note. H = Hemisphere, MNI = Montreal Neurological Institute, L = Left, R =
Right, BA = Brodmann Area, l.m. = local maximum, PMd = dorsal premotor 
cortex. Only clusters with a minimum extent of 20 voxels are reported.
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Figure 4. Whole brain results for the contrasts VM>NOM, VM>AVM, AM>NOM, and AM>AVM from GLM1.
Note. All contrasts are presented at FDR (p<.0001) (voxel level). A2 = secondary auditory cortex, STG = superior temporal gyrus, V1 = primary visual cortex, Area 
MT = middle temporal area/V5, SMA = supplementary motor area, FG = fusiform gyrus, Amy = Amygdala, IFG = inferior frontal gyrus, Cun = Cuneus, ant. Ins =
anterior Insula, SPL = superior parietal lobule, PMd = dorsal premotor area.

Figure 5. Overlay for the contrasts VM>NOM (A) and NOM>SCB (B) from GLM1 with their respective Pre>Post training activation contrasts.
Note. SMA = supplementary motor area, PMd = dorsal premotor area, mPFC = medial prefrontal cortex, ant. Ins = anterior Insula.
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that the brain relies on the available modality and flexibly selects sen
sory input to inform internal models during transient deprivation 
(Andersson et al., 2019; Chennu et al., 2016; Heins et al., 2020a,b; Jo 
et al., 2019; Maes et al., 2020). This increase in bottom-up sensory 
processing might be modulated by top-down re-orientation of attention 
to the available modality, or related to an upregulation of the prediction 
error gain for the remaining modality, which we cannot differentiate 
with the current study.

4.3. Supplementing missing information: The asymmetry of visual and 
auditory prediction

Interestingly and beyond this shifting, visual masking also yielded 
additional engagement of visual areas despite the absence of visual 
input, which cannot be explained by residual sensory drive, or atten
tional mechanisms, for which also activation in higher-order attention 
networks would be expected (e.g., Posner & Rothbart, 2007; Posner, 

2012). Previous studies have shown that in the absence of visual input, 
participants can generate mental images that evoke activity in corre
sponding visual areas (Ishai et al., 2000; Kosslyn & Thompson, 2003; 
Stokes et al., 2009). We did not directly assess whether participants used 
sensory imagery, and they were not instructed to do so. Importantly, 
neural activation patterns alone do not prove imagery or prediction 
(Hubbard, 2010; Zatorre & Halpern, 2005). That said, explicit, 
conscious imagery is not required - predictive processes can occur 
automatically and outside awareness (Ford & Mathalon, 2012; Tivadar 
et al., 2021). Additionally, Chennu et al. (2016) argue that paradigms 
with omitted sensory input provide a direct measure of top-down sen
sory prediction. Accordingly, we interpret the extra visual activity 
during visual masking as the internal predictive model generating the 
missing visual input via top-down prediction, in line with reports of 
imagery-related activations in similar regions (e.g., Andersson et al., 
2019; Ganis et al., 2004; Guillot et al., 2009). Supporting this inter
pretation, better individual performance during visually masked trials 
was associated (albeit subthreshold at the group level) with greater 
activation in the visual cortex. Interestingly, when only visual infor
mation was available, we also found increased activation in the cere
bellum, an important hub for motor prediction (e.g., Nixon & 
Passingham, 2001; Ebner & Pasalar, 2008). The cerebellum is known to 
be involved in the prediction of sensory consequences of motor com
mands, as well as the computation of prediction errors when these 
predictions do not match sensory feedback (Popa & Ebner, 2019). Thus, 
activation detected here can be taken as a further hint for ongoing 
predictive processes concerning the visual modality in hurdling 
perception. However, we would like to highlight once again that this 
study was not designed in an optimal way to investigate cerebellar 
mechanisms. To this end, these findings, and, more importantly, the lack 
of more prominent cerebellar activations throughout the study, should 
be interpreted with caution.

In contrast, we did not observe a comparable up-regulation within 
the auditory association cortex or SMA during auditory masking that 
might have been expected as part of top-down predictive substitution of 
missing auditory input (Lima et al., 2016). Unlike earlier imagery 
studies, participants were not instructed to imagine the missing sounds, 
allowing us to assess spontaneous neural responses. In contrast to earlier 
studies that reported SMA and pSTG activity during the prediction of 
self-generated sounds (Guenther & Hickok, 2015; Jo et al., 2019; Oes
treich et al., 2018; Waszak et al., 2012), our paradigm did not involve 
speech, music, or auditory feedback to button presses. Instead, we used 
hurdling as a whole-body movement in which sounds occurred inci
dentally rather than intentionally. This distinction is important, since 
the brain is generally quite effective at interpolating beats and main
taining performance under auditory masking when sounds are inten
tionally produced, such as in speech or music (Finney, 1997; Repp, 
1999; Tal et al., 2017). In hurdling, by contrast, the sounds are rhyth
mically structured but incidental to the action, and this lack of inten
tional sound production may limit their use as a basis for predictive 
compensation. Consistent with this interpretation, previous work 
showed that auditory scrambling impaired evaluation of intentional (tap 
dancing) more than incidental (hurdling) sounds, with stronger SMA 
and pSTG activation for tap dancing, and that temporal delays in these 
sounds elicited transient increases in pSTG activity and stronger 
pSTG–SMA coupling, with SMA showing an additional delay-related 
increase for tap dancing (Heins et al., 2020a,b). Together, these find
ings suggest that incidental sounds may not provide a sufficiently reli
able basis for auditory prediction, offering a plausible explanation for 
the present null result.

Notably, we did observe subthreshold activation in A1, STG, left 
medial frontal gyrus, and right inferior frontal gyrus on correctly 
answered auditory-masked trials compared to incorrect responses dur
ing auditory masking. Paralleling the findings for visually masked trials, 
this might indicate that to some degree, the brain is able to supplement 
missing auditory information by using top-down predictive processes 

Table 3 
Peak coordinates for the contrasts VMcorrect>VMincorrect and AMcor

rect>AMincorrect from GLM2.

Localization H Cluster 
extent

MNI coordinates t 
value

x y z

VMcorrect>VMincorrect (uncorrected at p < .05)
V2, extending into V1 R 217 25.5 -97 10 2.51
AMcorrect>AMincorrect (uncorrected at p < .05)
Supramarginal gyrus L 81 -52 -37 47.5 2.68
Posterior insula R 73 35.5 -9.5 20 2.26
Middle frontal gyrus L 31 -42 45.5 17.5 2.47
Superior temporal gyrus 

(A2)
R 362 53 -24.5 10 2.91

Heschl’s gyrus (A1) R l.m. 35.5 -27 10 1.83
Superior temporal gyrus 

(A2), extending into 
Heschl’s gyrus (A1)

L 353 -49.5 -24.5 2.5 3.03

Inferior frontal gyrus (pars 
triangularis)

R 101 50.5 38 5 3.24

Putamen R 69 23 3 -5 2.17
Parahippocampal gyrus R 28 20.5 -2 -22.5 2.06
Amygdala R l.m. 30.5 -2 -20 1.99
Cerebellum R 32 20.5 -54.5 -45 2.17

Note. H = Hemisphere, MNI = Montreal Neurological Institute, L = Left, R =
Right, l.m. = local maximum. A1 = primary auditory cortex, A2 = secondary 
auditory cortex, V1 = primary visual cortex, V2 = secondary visual cortex.

Figure 6. Whole brain results for the contrasts AMcorrect>AMincorrect and 
VMcorrect>VMincorrect from GLM2.
Note. MFG = middle frontal gyrus, IFG = inferior frontal gyrus, A1= primary 
auditory cortex, A2 = secondary auditory cortex, V2 = secondary visual cortex. 
Subthreshold (uncorrected, p < .05) findings are depicted here.
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and that the degree to which it does is behaviorally relevant. In line with 
this, auditory information is considered to be usually more critical for 
tasks involving rhythmic beat (Grahn, 2012), and our behavioral find
ings further supported this view by showing that performance suffered 
most when auditory input was masked. This suggests that auditory in
formation was to some degree used for successful movement prediction, 
and while compensatory recruitment of other areas was detectable, this 
effect was not robust at the group level. Importantly, these findings need 
to be interpreted with caution due to their subthreshold nature and 
require further investigation. For example, individual variability in 
musical expertise or attentional strategies may play a role, a possibility 
that should be addressed in future studies.

4.4. On becoming a hurdler: Effects on auditory and visual prediction

If sensory masking compels reliance on top-down prediction, then 
regions recruited under masking should also be modulated by training 
once participants can draw on their own experience-shaped internal 
models. For visual masking, we observed precisely this pattern: The 
comparison between visual masking and no masking engaged visual 
cortices, motion-sensitive areas, and SMA. Training then reduced acti
vation in SMA (ROI-confirmed) and a number of further frontal areas. 
Importantly, only SMA met both criteria, namely being recruited under 
visual masking and showing training-related modulation, identifying it 
as the strongest candidate region for experience-shaped predictive 
control in our task. SMA is a functionally heterogeneous region that 
contributes in a domain-general way to sequence processing (Shima & 
Tanji, 2000) across diverse domains, including action, timing, space, 
music, and language, by integrating sequential elements into 
higher-order representations, with pre-SMA and SMA-proper making 
distinct contributions (Cona & Semenza, 2017). At the same time, pre
motor areas, including SMA, have been described as serving both motor 
control and the prediction of forthcoming sensory consequences 
(afferent or reafferent; Schubotz, 2007). In this sense, SMA emerges as a 
key site where training-induced changes in predictive processing can be 
observed, bridging its general role in sequence integration with its 
specific role in anticipating sensory consequences of movement. How
ever, evidence on SMA modulation during motor learning is somewhat 
mixed: while reviews emphasize that SMA activity often increases and 
pre-SMA decreases with practice (Dayan & Cohen, 2011), studies on 
motor expertise have instead reported reduced SMA recruitment during 
imagery of well-learned movements, interpreted as neural efficiency 
(Zhang et al., 2019). Our finding of reduced SMA activity after hurdling 
training aligns with this latter pattern, extending it to movement pre
diction under sensory masking. By contrast, we did not see comparable 
top-down signatures for auditory masking, nor parallel pre-post modu
lation tied to the auditory condition.

In sum, hurdling prediction appears to rely on a visually anchored, 
SMA-centered top-down mechanism sharpened by training, whereas no 
analogous auditory reinstatement was observed. This modality-specific 
asymmetry refines accounts of predictive control in complex action 
and highlights an important next step: delineating the task and context 
conditions under which auditory prediction is engaged.

4.5. Limitations and future directions

One limitation of our study is that all participants went through the 
hurdling training and we did not include a control group without a 
hurdling intervention. Thus, it cannot be completely ruled out that the 
behavioral and neural changes from the first to the second fMRI session 
were driven by simply becoming more familiar with the task rather than 
a strengthening of an embodied predictive model. However, this 
explanation seems insufficient to explain our findings. A control analysis 
on task improvement within the first fMRI session did not reveal sig
nificant improvement in accuracy or reaction times. This finding, 
together with the long time interval of six weeks between experimental 

sessions, makes it highly unlikely that participants’ performance would 
increase due to a familiarization with the task alone. However, it will be 
highly interesting to compare our results to a group of participants who 
did not experience hurdling training in a future study.

In the present study, we demonstrated visual predictive processes in 
the absence of visual input, while finding only limited evidence for 
auditory prediction. This may reflect a genuine modality asymmetry, 
but task design could also have favored vision: hurdling can be per
formed using vision alone, whereas audition is not sufficient. Tasks 
emphasizing beat continuation or rhythmic movement contexts may be 
better suited to elicit auditory prediction (Kennel et al., 2015; Repp, 
1999; Tal et al., 2017).

Another important limitation of our present study is the fact that due 
to a methodological constraint, namely the field of view during fMRI 
acquisition, we could not specifically test hypotheses about cerebellar 
involvement in the described processes, despite the relevance of this 
region in motor prediction (e.g., Nixon & Passingham, 2001; Ebner & 
Pasalar, 2008). While we did detect some cerebellar activation clusters, 
it is important to note that the lack of more prominent involvement of 
the cerebellum must not be interpreted as a non-involvement in the 
perceptual and predictive mechanisms described here, but can likely be 
attributed to signal loss in large parts of this brain region. We thus highly 
recommend repeating the study with an adjusted field of view to 
investigate cerebellar involvement in hurdling perception and predic
tion in more depth.

A further methodological consideration is the MRI environment: 
rhythmic scanner noise can reduce auditory BOLD responses (Gaab 
et al., 2007) and impair auditory task performance (Mazard et al., 2002). 
While unlikely to explain the full asymmetry, it may have contributed 
and should be controlled in future studies. For example, using 
sparse-sampling fMRI, which introduces silent delays between acquisi
tion volumes, could help to overcome this problem (Perrachione and 
Ghosh, 2013).

Despite the considerable merit of our present results, the analyses 
were, for now, limited to univariate contrasts. Consequently, they do not 
allow us to determine how different regions interact with one another 
during modality-specific prediction. To better understand these net
works, our next step is to examine directed connectivity (Dührkop et al., 
in preparation) using dynamic causal modeling (Friston et al., 2003).

As expected, we observed training-related changes in both brain 
activity and prediction accuracy that likely reflect the strengthening of 
an internal sensorimotor model of hurdling. A natural next step will be 
to ask whether such functional changes are accompanied by structural 
adaptations (Chang, 2014; Dayan & Cohen, 2011), for example, in terms 
of white matter connectivity or other characteristics of brain architec
ture, like the degree of myelination (Wang et al., 2023).

Finally, we observed that activity in regions commonly associated 
with social-cognitive functions, i.e., the TOM network (Brown & Brüne, 
2012; Schurz et al., 2014), declined after training, as reflected in the 
baseline contrast no-mask vs. scrambled-movement. One intriguing 
possibility is that, as one’s own sensorimotor model of hurdling con
solidates, reliance on “other-minds” interpretive processes diminishes. 
Although this was not a primary focus of our study, it represents an 
exciting avenue for future research. On a related note, it is worth 
considering that visual stimuli were presented from a third-person 
perspective, while auditory stimuli were available from a 
quasi-first-person perspective. This could have influenced the degree to 
which participants identified with the point-light display depending on 
the sensory modality and, in turn, how they relied on visual and auditory 
information for their internal predictive model. Thus, it would be 
interesting to also use first-person videos of hurdling in future studies. 
Additionally, the abstract nature of the point-light videos might have 
influenced the participants’ perception of the movement. Thus, future 
work should address how naturalistic hurdling displays affect the results 
reported here.
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4.6. Conclusions

This study examined how the brain compensates for missing sensory 
information during observation of hurdling, a complex whole-body 
movement. Prediction accuracy dropped under both auditory and vi
sual masking, but only visual masking elicited clear top-down recruit
ment of predictive networks. In contrast, auditory prediction showed 
only weak, subthreshold evidence, highlighting a potential asymmetry 
between modalities in this task. Hurdling training improved prediction 
under sensory masking and reduced SMA activity during visual occlu
sion, suggesting more efficient reliance on internal models. Together, 
these findings point to a visually anchored predictive architecture that 
can be sharpened through motor practice, while the conditions for 
robust auditory prediction remain to be clarified.
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