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Both the absence of a predicted stimulus and the unexpected presentation of another stimulus result in increased activation in the 
areas processing the stimuli. These signals are termed negative and positive prediction errors, respectively. Here, we showed that both 
types of prediction errors can occur simultaneously and independently of stimulus repetition effects. Participants performed a reaction 
time task in a magnetic resonance scanner while being exposed to face and place stimuli with a distinct probabilistic distribution 
resulting in unexpected omissions and unexpected presentations of those stimuli. Participants’ responses were significantly faster 
for expected as compared to neutral or unexpected trials, showing that they learned the statistical regularities inherent to the task. 
Moreover, the region of interest analysis of beta estimates extracted from the fusiform face area and the parahippocampal place area 
revealed co-occurring negative and positive prediction error signals. This was evidenced by increases in brain activation for unexpected 
omissions and unexpected presentations of visual stimuli when compared to expected stimuli. Our results also underlined that these 
effects occur independently of stimulus repetition effects. Altogether, these findings support a predictive coding model of cognition, 
highlighting the importance of considering the potential dual nature of expectation violations. 
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Introduction 
We live in a highly consistent world in which our brains have 
the extraordinary capacity to extract the statistical regularities 
in our environment to predict the future. However, the brain also 
has to revise expectations when the context changes. According 
to predictive coding models of sensory processing, the sensory 
cortices operate under a hierarchical structure where higher-level 
areas send predictions about sensory inputs to lower-level areas, 
which then compute the difference between predictions and the 
actual sensory input (Rao and Ballard 1999). A mismatch between 
a prior expectation and reality is referred to as a prediction error 
(Den Ouden et al. 2012). To re-estimate and update the predictions, 
the prediction error is forwarded from lower- to higher-level areas 
of the processing system (Kiebel et al. 2008). Previous studies have 
shown that different prediction error signals can be identified in 
the brain depending on the nature of the expectation violation 
(Friston 2005; Den Ouden et al. 2009; Keller and Mrsic-Flogel 2018). 
While the unexpected presentation of a visual stimulus results 
in the increased bottom–up input in the sensory area processing 
that unexpectedly appearing stimulus (Egner et al. 2010; Meyer 
and Olson 2011; Amado et al. 2016), the surprising omission of an 
expected stimulus has been shown to result in a robust cortical 
response in the area processing the missing stimulus (Eliades and 
Wang 2008; Den Ouden et al. 2012; Fiser et al. 2016). These two 
different kinds of expectation violation signal increase are called 
positive and negative prediction errors, respectively (Keller and 
Mrsic-Flogel 2018). 

In a recent study, we were the first to scrutinize positive and 
negative prediction errors in the same experimental paradigm 
(Schliephake et al. 2021). We used a speeded forced-choice 
functional magnetic resonance imaging (fMRI) task where 
unpredicted cross-category stimulus transitions of faces and 
places would evoke simultaneous activation of the fusiform face 
area (FFA) and parahippocampal place area (PPA), representing 
the unexpected omission of a face stimulus (negative prediction 
error) on the one hand and the unexpected presentation of a place 
stimulus (positive prediction error) on the other hand. However, 
this study could not resolve whether these expectation-related 
effects were independent of stimulus repetition effects. Both the 
repetition of the same stimulus and the expectation of a specific 
stimulus because of the probabilistic distribution of stimuli within 
a trial sequence have been shown to trigger decreases in brain 
responses (ie Summerfield et al. 2008; Grotheer and Kovács 2015). 
Until now, the exact neural mechanisms of these effects are still 
unclear. The repetitive and simultaneously predictable nature of 
paradigms involving repeating stimuli has been suggested to be 
partly driven by expectation effects, underlining the importance 
of a clear distinction between repetition and expectation 
effects (Summerfield et al. 2008). Previous research revealed 
mixed findings regarding the potentially interactive effects of 
stimulus repetition and stimulus expectation, sometimes due to 
different approaches of experimental designs. In several studies 
(Summerfield et al. 2008; Grotheer and Kovács 2015; Kronbichler 
et al. 2018), stimulus transitions were not manipulated
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orthogonally to the statistical regularities that were implemented 
in the task at hand. An unequal stimulus category transition 
was, for example, more likely than an equal stimulus category 
transition, and the results were, therefore, inconclusive. While 
independently manipulating stimulus repetition and expectation, 
Grotheer and Kovács (2015) identified additive rather than 
interactive effects of both factors, showing that repetition 
suppression was more pronounced for expected as compared to 
unexpected trials and vice versa. However, there is also evidence 
that repetition and expectation effects may interact (Todorovic 
et al. 2011), even though they are expressed at different time 
scales (Todorovic and de Lange 2012). 

This latter finding supports the idea that alternating stimulus 
categories generate lower-level prediction errors that generate 
larger neural responses when a stimulus is different from its 
directly preceding neighbor and smaller responses when stimuli 
are identical (Hosoya et al. 2005). Stimulus expectation effects, on 
the other hand, might exert effects at higher levels of the process-
ing hierarchy and during later time points. Therefore, hierarchical 
predictive coding models inspire the hypothesis that stimulus 
repetition and stimulus expectation effects may be manifesta-
tions of prediction errors on different time scales and hierarchy 
levels (Friston 2005; Kiebel et al. 2008; Wacongne et al. 2012). 
During the first stages of cortical processing, alternating stimulus 
categories would generate sensory prediction errors, while higher-
order expectations that are based on more complex statistical reg-
ularities may shape subsequent neural processing of the stimulus, 
giving rise to higher-order contextual prediction errors (Todorovic 
and de Lange 2012). 

The aim of the current fMRI study was to investigate posi-
tive and negative prediction errors resulting from higher-order 
implicit expectation violations while controlling for the effects 
of lower-level stimulus repetition effects. We used an adapted 
version of the paradigm of our previous study (Schliephake et al. 
2021), employing three different block conditions in a speeded 
forced choice task where participants categorized two different 
types of stimuli. As in the previous study, we employed face and 
place stimuli that have been shown to differentially activate FFA 
and PPA, respectively (Epstein and Kanwisher 1998; Haxby et al. 
2000). Introducing two distinct stimulus categories enabled us to 
investigate brain responses resulting from an omitted stimulus 
category (eg a face) and, at the same time, looking at brain activa-
tion resulting from an unexpectedly presented stimulus from the 
other category (eg a place). In order to control for stimulus repe-
tition effects, each block condition had a different distribution of 
stimulus category transitions. In the first block condition, unequal 
transitions (ie face–place; place–face) were more likely than equal 
transitions (ie face–face; place–place). The opposite pattern was 
used in the second block condition. Lastly, we employed a third 
block condition where equal and unequal transitions were equally 
likely since we wanted to include a “neutral” condition in which 
no biased expectations were induced (Amado et al. 2016). 

On the behavioral level, we expected that participants would 
implicitly learn the regularities implemented in the task showing 
decreased response times for expected as compared to either 
neutral or unexpected stimuli. Additionally, we expected the per-
centage of correct responses (CRs) to increase for expected stimuli 
when compared to either neutral or unexpected stimuli. Moreover, 
we hypothesized to find positive evidence for an independence of 
the factor expectation and stimulus repetition. 

On the neural level, we hypothesized to find both positive and 
negative prediction error signals for unexpected events. On the 
one hand, our hypothesis posited the occurrence of a positive 

prediction error when a stimulus category appeared unexpectedly 
(eg a face) as compared to the expected stimulus category (eg 
a place), reflected by increased brain activation in the region 
preferentially processing the unexpected stimulus category (here 
FFA). On the other hand, we expected the simultaneous manifes-
tation of a negative prediction error, indicated by an increased 
blood oxygenation level–dependent (BOLD) signal within the brain 
area processing the unexpectedly omitted stimulus category (here 
PPA), thereby representing the absence of a preferentially pro-
cessed expected stimulus category (eg a place). Specifically, when 
considering face stimuli, “preferred” activity should be observed 
in the FFA, and “non-preferred” in the PPA. Likewise, for place 
stimuli, “preferred” activity was expected in the PPA and “non-
preferred” activity in the FFA. Additionally, we hypothesized that 
the same pattern would hold if we compare unexpected with 
neutral events since activation should increase for unexpected 
events and decrease for expected events. Importantly, we also 
expected to find positive evidence for the null hypothesis that the 
two factors’ stimulus repetition and expectation do not interact. 

Materials and methods 
Participants 
Thirty-three volunteers (25 identified as women, 8 identified as 
men) participated in the experiment. All participants were right-
handed as assessed by the Edinburgh Handedness Inventory 
(Oldfield 1971). One of them was excluded because of excessive 
movement during scanning (>4 mm). Two further participants 
were excluded after initial inspection of the behavioral data due 
to low performance levels with an accuracy of more than 2 SDs 
below the mean accuracy level of all participants. Additionally, 
one participant had to be excluded as they did now show any 
significant PPA activity in the localizer. The mean age of the 
remaining 29 participants was 23.31 years (SD = 4.07 years), and 
the sample included 22 women and 7 men. All participants 
had normal or corrected-to-normal vision and reported no prior 
history of psychiatric or neurological disorders. They provided 
written informed consent to all procedures and data usage before 
the study started. The experimental procedures were approved 
by the ethics committee at the University of Münster (approval 
ID: 2017-2031-MR). 

Stimuli 
We used 36 digital photographs that consisted of 18 face images (9 
female, 9 male) and 18 place images (8 indoor, 8 outdoor). The face 
images were drawn from the Radboud Faces Database (Langner 
et al. 2010), and the place images were collected from the internet. 
The place stimuli were cropped and resized in order to match 
the face stimulus set using the GNU Image Manipulation Program 
(GIMP, https://gimp.org, freeware). All photographs were displayed 
in the middle of a uniform gray background at a visual angle of 
approximately 4.20◦ × 6.17◦. 

Trial sequence and task design 
The stimulus sequence was programmed using Matlab (Version 
R2022a; The MathWorks Inc., Natick, MA, USA). The Presentation 
Software (Version 19.0, Neurobehavioral Systems, Inc., Berkeley, 
CA) was used to present the stimuli and to record participants’ 
behavioral responses. The paradigm used was an adapted version 
of the paradigm employed in Schliephake et al. (2021). For each 
participant, the 36 stimuli were randomly assigned to three dif-
ferent stimulus sets (blocks). In all three sets, 12 images includ-
ing three photographs of each category (female and male faces,
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indoor and outdoor places) were repeated 10 times, which resulted 
in 120 trials per block. Further, we manipulated the transitional 
probabilities of the stimuli to introduce statistical regularities. The 
stimulus transitions used in the current paradigm were either 
within- or between-category, meaning that either a face (place) 
followed another face (place) stimulus (within-category transi-
tion) or a face (place) followed a place (face) stimulus (between-
category transition) or vice versa. 

In three different block conditions, we varied the probability 
of these transitions. In the “unequal dominant” block, 12 images 
were shown in random succession with 70% of the transitions 
being between-category and 30% of the transitions being within-
category. Therefore, in this block, the between-category transi-
tions were the expected trials and the within-category transi-
tions the unexpected ones. The “equal dominant” block consisted 
of another set of 12 images. Here, 70% of the transitions were 
within-category and expected and 30% between-category and 
unexpected. The third block was used as a control condition, 
including 50% within-category and 50% between-category transi-
tions with yet again another set of images (Fig. 1). Because within-
and between-category transitions were equally likely, these trials 
represented the neutral condition in which no clear expectations 
about the upcoming stimulus category could be made. Intro-
ducing the unequal and equal dominant conditions, we ensured 
that participants would be able to implicitly predict the most 
likely upcoming stimulus category when presented with a given 
stimulus. 

Task 
Participants were told that we were investigating how the brain 
responds to different types of images. This cover story was used 
to ensure that the transitional probabilities were only learned 
implicitly. During the main task in the MR scanner, stimuli were 
centrally back-projected onto a screen. Participants viewed the 
screen through a mirror above the head coil. All photographs were 
displayed for 350 ms each followed by a jittered intertrial interval 
(ITI) of 3,500, 4,000, 4,500, or 5,000 ms during which a fixation 
cross was presented. To indicate whether the depicted image was 
a face or place, participants were asked to respond as quickly 
and accurately as possible by pressing one of two response keys 
with their right index or middle finger. The stimulus–response 
mapping was counterbalanced across participants. The task 
consisted of five experimental blocks including two repetitions of 
the “unequal-dominant” and “equal-dominant” block conditions 
and one “neutral” block. The order of the block conditions 
was counterbalanced across participants so that half of the 
participants started the experiment with “unequal-dominant” 
block and the other half started with the “equal-dominant” block. 
The neutral block was always the third block. After each block, a 
short break of 8 s was introduced informing the participants that 
a block had ended and introducing the start of the new block at 
the end of the break. All in all, the task included 600 trials and 
lasted around 47 min. 

To define the individual anatomical location of the FFA and 
the PPA, we let participants subsequently perform a localizer 
task (Kanwisher et al. 1997). The localizer consisted of a 1-back 
task during which face and place stimuli were presented block-
wise on a gray background. Participants were asked to press the 
response button whenever two identical stimuli were presented 
in a row. Each block consisted of 15 stimuli (including one to two 
repetitions), with each stimulus presented for 750 ms followed by 
250-ms fixation. Between the blocks, there was a short break with 
10 s fixation. The task consisted of 12 blocks with alternating face 
and place blocks. 

FMRI data acquisition 
Whole-brain MRI data were acquired using a 3 T Siemens 
Magnetom Prisma scanner (Siemens, Erlangen, Germany) using a 
20-channel head coil. A 3D-multiplanar rapidly acquired gradient-
echo (MPRAGE) sequence was employed to obtain high resolution 
T1-weighted images before functional scanning, with isotropic 
voxel size (1 × 1 × 1 mm) in a 256 mm field of view (FOV) 
(256 × 256 matrix, 196 slices, repetition time (TR) = 2,130 ms, 
echo time (TE) = 2.28, slice thickness of 1 mm and a flip angle 
of 8◦). Functional BOLD images were acquired parallel to the 
anterior commissure/posterior commissure line using a T2∗-
weighted gradient echo planar imaging sequence (64 × 64 matrix, 
192 mm FOV, 90◦ flip angle, TR = 2,000 ms, TE = 30 ms). Each 
volume consisted of 33 adjacent axial slices with 3 mm slice 
thickness and a gap of 1 mm, resulting in a voxel size of 3 × 3 
× 4 mm. All visual images were projected on a screen behind 
the scanner bore. Stimuli were presented in the center of the 
field of vision using a video projector. Participants were able to 
view the screen via a mirror that was fixated on top of the head 
coil and adjusted for each participant to provide a good view of 
the entire screen. To record behavioral responses, a response 
box was positioned on the right thigh of the participants so 
that they could place their right index and middle finger on two 
response buttons. To minimize motion artifacts, foam paddings 
were applied around the participants’ head; whereas earplugs 
as well as noise-canceling headphones were provided to reduce 
scanner noise. 

Data analysis 
Behavioral data analysis 
The behavioral data analysis was conducted using RStudio (2024 
September 1, R Core Team 2024).  The focus  of  the analysis was  
on response times and accuracy (percentage of CRs), which were 
measured to examine participants’ performance in the task. For 
the analysis, trials without a response and trials with incor-
rect responses were categorized as error trials. To establish a 
time frame for valid responses, a maximum response window of 
1,500 ms was defined, starting from trial onset. Any responses 
recorded after this phase were considered error trials as well. Task 
performance was determined by calculating the mean percentage 
of correctly answered trials of all correct and error trials per 
participant and condition. For the analysis of response times, 
we only considered correct responses according to the above-
described criteria and calculated mean response times (RTs) per 
participant and condition. We confirmed the normality of RTs 
using the Shapiro–Wilk test (P > 0.5). 

For each participant, RTs and CR were entered as dependent 
variable into two 2 × 3 repeated-measures ANOVA with the fac-
tors: Transition (equal, unequal) and Expectation (expected, neu-
tral, unexpected). We report P-values for the two main effects 
as well as their interaction. In the case of nonsphericity, we 
report Greenhouse–Geisser-corrected F- and  P-values. Afterward, 
planned one-tailed t-tests (Bonferroni–Holm-corrected) evaluate 
the expectation effect to assess whether participants possessed 
a robust knowledge of the contextual regularities of the task that 
would be evident in decreased RTs and increased CRs for expected 
as compared to unexpected and neutral trials. 

fMRI data analysis 
All preprocessing and statistical analyses were carried out with 
SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) and  
custom Matlab scripts (Version R2020b; The MathWorks Inc., 
Natick, MA, USA). All functional images were slice time–corrected
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Fig. 1. Task design. A) General hypothesis. When a neutral or expected stimulus is presented, the brain region that preferentially processes this type 
of stimulus (FFA for faces, PPA for places) will be active or even deactivated for expected stimuli. For unexpected stimuli of a specific type, the brain 
area that preferentially processes this stimulus type will be even more active due to the positive prediction error. At the same time, a different type 
of stimulus is unexpectedly omitted, leading to increased activation in the brain area that preferentially processes stimuli of the omitted category (ie  
the brain region that non-preferentially processes the presented stimulus) due to the negative prediction error. B) Diagram of the experimental task. 
Each image was presented for 350 ms, and the interstimulus interval (ITI) was jittered between 3 and 5 s. For each trial, participants had to indicate the 
stimulus category (face or place) via a button press (left or right) and C) an overview of the three block conditions with their corresponding transitional 
probabilities. The block order was counterbalanced across participants so that half of the participants started the experiment with B1 and the other 
half started with B2. B3 was always the third block. This resulted in two different block orders: B1, B2, B3, B1, B2 or B2, B1, B3, B2, B1. Please note that 
the eyes in the example stimuli were blurred here due to privacy reasons, but not in the original stimulus material. Face images were drawn from the 
Radboud Faces Database (Langner et al. 2010). 

and spatially realigned to the mean image. Structural images were 
coregistered to the mean functional image and then segmented 
into native space tissue components. Then, functional images 
(resampled at 3 mm3) were spatially normalized to the standard 
Montreal Neurological Institute template using tissue-segmented 
T1-weighted anatomical scans. Normalized functional images 
as well as those in individual subject space were spatially 

smoothed with a Gaussian kernel of full width half-maximum 
of 6 mm3. 

To identify FFA and PPA activity, we used anatomical masks 
of fusiform gyrus (FG) and parahippocampal gyrus (PHG) to 
restrict our analyses. These masks were created by extracting 
the respective regions from a probabilistic atlas (Amunts et al. 
2020; Caspers et al. 2012; Caspers et al. 2019; Lorenz et al. 2015;
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Lorenz et al. 2021; Stenger et al. 2022a, 2022b, 2022c, 2022d) 
and implementing a threshold of >0.2. As in our previous study 
(Schliephake et al. 2021), we decided to only include the right FFA 
and right PPA in our analyses since it has been shown that face 
images are dominantly processed by the right hemisphere (Bentin 
et al. 1996; Rossion 2014). 

To then obtain FFA and PPA regions of interest (ROIs) for the 
main task, we convolved the block regressors coding for onsets 
and durations of face and place blocks of the localizer task with 
the canonical hemodynamic response function (HRF). This model 
was computed both in individual subject space and normal-
ized space. For each participant, we contrasted face versus place 
blocks for FFA activation and place versus face blocks for PPA 
activation. As a first step, all participants’ faces > places and 
places > faces contrasts (in individual space) were inspected for 
significantly activated voxels within our predefined anatomical 
regions (FG and PHG, respectively), using a threshold of P < 0.05 
(uncorrected). One participant who did not show activation for 
place stimuli in the PHG was excluded from further analyses. 
Data from the remaining 29 participants were entered into a 
second-level one-sample t-test (normalized space) and faces > 
places and places > faces contrasts were obtained on group 
level. Significant activation for face and place stimuli within the 
predefined anatomical regions was determined using a threshold 
of P < 0.05 (uncorrected). Activation clusters were extracted and 
inverse-normalized to each subject’s individual space to serve as 
ROIs for the analysis of the main task. 

The statistical model of the main task (computed in individual 
subject space) included 12 regressors coding for onset time and 
duration (0 s) of each trial of each experimental condition in our 2 
(Transition: equal, unequal) × 3 (Expectation: expected, neutral, 
unexpected) repeated measures factorial design, separately for 
face and place stimuli. Additionally, six regressors of no interest 
for the motion parameters (three translations and three rotations) 
were entered to the model. As the first trial of each block was 
by definition neutral, ie no expectation could have been formed 
for this trial beforehand, we excluded these five trials from the 
analysis, as well as trials with incorrect or missing answers. The 
stimulus functions were then convolved with a canonical HRF and 
regressed against the observed fMRI data to form our condition 
regressors. 

Employing two different stimulus categories, we could investi-
gate positive and negative prediction errors within two different 
category-specific areas, FFA and PPA. For unexpected as com-
pared to neutral stimuli, we expected a positive prediction error 
that would be reflected in a BOLD activation increase in the 
brain region preferentially processing the stimulus category at 
hand. At the same time, we suggested that a negative prediction 
error would result in increased BOLD activation in the area that 
preferentially processed the omitted stimulus category (ie non-
preferentially processed the presented category). As such, activa-
tion elicited by a face stimulus represents “preferred” beta activity 
in the FFA, whereas activation in the PPA signifies “non-preferred” 
beta activity and vice versa. This coding was adapted from our 
previous study (Schliephake et al. 2021). 

The obtained ROIs were then used to extract data estimates 
(mean beta parameters) of the activity associated with each 
condition in the task from each individual subject. Subsequently, 
beta values of our two ROIs were subjected to a 2 × 3 × 2 
repeated-measures ANOVA with the factors: Transition (equal, 
unequal), Expectation (expected, neutral, unexpected), and 
Preference (preferred, non-preferred). We report P-values for 
the three main effects and their interactions. To assess whether 

unexpected stimuli modulated brain responses in the preferred 
and non-preferred trials, we implemented planned post hoc 
contrasts as Bonferroni–Holm-corrected paired one-sided t-tests 
of the conditions unexpected_preferred vs. neutral_preferred, 
unexpected_preferred vs. expected_preferred, unexpected_non-
preferred vs. neutral_non-preferred, and unexpected_non-
preferred vs. expected_non-preferred. 

Bayesian analysis 
In order to test whether nonsignificant results provided evidence 
for the corresponding null hypotheses, we conducted Bayesian 
analyses. In summary, the Jeffreys-Zellner-Siow (JZS) Bayes 
(Rouder et al. 2009) implemented in JASP 0.18.1 (Love et al. 2019) 
(www.jasp-stats.org; RRID:SCR_015823) with default parameters 
(Cauchy prior width of 0.707 for t-tests, uniform priors, and 
a random seed of 1 for ANOVAs) was employed for Bayesian 
tests. The interpretations of resultant Bayes factors, which 
quantify evidence supporting the null hypotheses (B01), adhered 
to established classification criteria (Lee and Wagenmakers 2013). 

Results 
Behavioral data 
In line with our hypotheses, the results showed a significant 
main effect of expectation [F(1.65,46.06) = 6.53, P = 0.005] and no 
significant interaction effect between expectation and tran-
sition [F(1.46,40.83) = 1.13, P = 0.318, BF01 = 3.592] for the RT data. 
The main effect of transition was nonsignificant [F(1,28) = 3.2, 
P = 0.084, BF01 = 1.671]. The same pattern was observed for the 
CR data that revealed a main effect of expectation [F(2,56) = 20.51, 
P < 0.001] as well as a nonsignificant interaction [F(2,56) = 1.85, 
P = 0.167, BF01 = 1.608] and a nonsignificant transition main effect 
[F(1,28) = 3.32, P = 0.079, BF01 = 1.471]. 

To further examine whether participants implicitly learned the 
transitional probabilities within and between stimulus categories, 
we employed paired-sample t-tests for expected category stimuli 
as compared to neutral and unexpected ones. Indeed, as for the 
RT data, participants were significantly faster for expected events 
when compared to unexpected events [t(28) = −4.23, P < 0.001] and 
neutral events [t(28) = −2.87, P = 0.008]. Regarding CR, participants 
showed elevated accuracy levels for expected as compared to 
unexpected [t(29) = 6.14, P < 0.001] and neutral events [t(28) = 3.19, 
P = 0.004)](see Fig. 2). 

fMRI data 
The aggregated FFA and PPA BOLD responses revealed no 
significant main effects of transition [F(1,28) = 0.28, P = 0.604, 
BF01 = 3.752] or expectation [F(1.05, 29.35) = 0.26, P = 0.624, BF01 > 999] 
but a significant main effect of preference [F(1,28) = 235.84, 
P < 0.001]. As hypothesized, the results provided evidence for the 
null hypothesis that there is no interaction between transition 
and expectation [F(1.11, 31) = 0.59, P = 0.466, BF01 = 106.425]. In 
contrast, the effect of transition was dependent on whether 
the presented stimulus was a region’s preferred or nonpreferred 
stimulus as revealed by a significant two-way interaction between 
transition and preference [F(1,28) = 61.80, P < 0.001]. Post hoc paired 
t-test revealed significantly higher beta values for preferred com-
pared to non-preferred stimuli for equal [t(28) = 13.34, P < 0.001] 
and unequal [t(28) = 14.52, P < 0.001] transitions. However, for 
preferred stimuli, beta values were higher for unequal vs. equal 
transitions [t(28) = −4.15, P < 0.001] and the other way around for 
non-preferred ones [t(28) = 3.94, P < 0.001].
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Fig. 2. Behavioral data. Mean response times and mean percentage of correct responses for all experimental conditions. Error bars show standard errors 
of the means. ∗∗ = P < 0.01; ∗∗∗ = P < 0.001. 

There was no significant interaction between expectation and 
preference [F(2,56) = 2.35, P = 0.105, BF01 = 11.780]. Additionally, the 
frequentist calculation of the three-way interaction among expec-
tation, transition, and preference was found to be nonsignificant 
[F(1,29) = 1.77, P = 0.188]. The Bayesian equivalent to the ANOVA 
that was used to better understand nonsignificant effects (see 
Bayesian Analysis), however, revealed positive evidence in favor 
of the alternative hypothesis that there is a three-way interaction 
between the three factors (BF01 < 0.001). Taken together, it remains 
unclear whether the combined effect of these factors deviates sig-
nificantly from what might be predicted based on their individual 
two-way interactive effects. 

To see whether the presence of an unexpected image would 
robustly increase activation in our ROIs when compared to neu-
tral or expected images, we conducted planned paired-sample t-
tests. Regarding a positive prediction error, we expected increased 
beta values for unexpected events within a stimulus’ preferred 
region when compared to either neutral or expected events. A 
negative prediction error should be represented by increased 
activation for unexpected events in the region non-preferentially 
processing a presented stimulus as compared to expected and 
neutral events. Indeed, the results showed a significant difference 
between expected and unexpected events for both preferred 
[t(28) = 2.33, P = 0.041] and non-preferred [t(28) = 2.48, P = 0.038] 
stimuli. 

The frequentist t-tests comparing the unexpected and neutral 
conditions did not reach significance for the preferred [t(28) = 0.27, 
P = 0.40] as well as the non-preferred condition [t(28) = 0.77, 
P = 0.45]. To further examine the evidence, a Bayesian t-test was 
conducted, revealing a Bayes factor BF10 = 0.245 for the preferred 
and BF10 = 0.396 for the non-preferred condition, suggesting 
positive evidence for the null hypothesis of no difference between 
unexpected and neutral trials (see Fig. 3). 

Discussion 
To investigate co-occurring positive and negative prediction error 
signals, we employed an experimental paradigm that was able to 
dissociate between the BOLD response of unexpectedly appearing 
stimuli from one category (eg a face) and unexpected omissions 
from another category (eg a place). Participants implicitly learned 
the varying probability of stimulus category transitions that were 
either equal (eg face–face) or unequal (eg face–place). We ensured 
that the stimulus category transitions were counterbalanced 
throughout the experiment to distinguish between increases in 
brain activations due to unequal stimulus category transitions 
and violated expectations, ie prediction errors. 

The behavioral results underline that participants developed 
implicit predictions that were dependent on whether it was more 
likely that equal or unequal stimulus categories were following 
each other. We found faster responses to expected as compared 
to unexpected and neutral stimuli as well as higher accuracy 
levels for predicted stimuli suggesting that participants implicitly 
learned the statistical regularities inherent in the task to optimize 
performance (Esterman and Yantis 2010; Turk-Browne et al. 2010). 

This finding was accompanied by increased BOLD responses 
for unexpected compared to expected stimuli. Importantly, we 
found evidence that these effects were independent of the effect 
of the stimulus repetitions. In most previous studies, stimulus 
repetitions and stimulus expectation were not independent given 
that repetitions tended to occur more frequently when they were 
expected and less frequently when they were unexpected (Sum-
merfield et al. 2008; Summerfeld et al. 2011; Kovács et al. 2012). 
Even though these studies found significant increases for unex-
pected trials (ie decreases for expected trials), they could not 
show that these effects were independent of the stimulus repe-
titions and alternations. In other studies using associative cues 
to investigate prediction errors, the stimulus order was often 
completely random (eg Alilovic et al. 2019) or balanced (eg Kok 
and Turk-Browne 2018) and irrelevant for analyses, so concrete 
conclusions about the interplay of stimulus expectation and rep-
etition are often not available. However, this distinction is impor-
tant since both factors have been shown to have similar neuronal 
consequences (Henson 2003; Todorovic and de Lange 2012). The 
current study addressed this issue by presenting two different 
stimulus categories that either repeated or alternated while war-
ranting an equal repetition and alternation probability of 50% 
each. Importantly, we found that the effects of repetition and 
expectation were consistently additive rather than interactive in 
our ROIs. This suggests that the impact of stimulus alternation 
and violated expectations can be differentiated from each other 
in terms of their effects on the neural responses (Tang et al. 2018). 

Moreover, the results are compatible with predictive coding 
models that suggest that predictive processes are organized in 
multiple hierarchical stages. A study by Wacongne et al (2011), 
for example, introduced an auditory novelty paradigm showing 
(i) low-level expectations that were based on local transitions and 
(ii) higher-level expectation processes based on the overall prob-
ability of the stimulation. Hence, a two-stage model of neuronal 
response on expectation and expectation violation has been sug-
gested by Grotheer and Kovács (2015). On the one hand, low-level 
mechanisms in posterior cortical areas compute early prediction 
errors, leading to increases in neuronal responses for alternated 
stimuli as compared to repeating stimuli. On the other hand,
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Fig. 3. ROI fMRI data. A) Right FFA and PPA ROIs used for beta value extraction. Depicted are the active clusters from the localizer task that responded to 
face and place stimuli, within predefined anatomical masks of fusiform and parahippocampal gyrus at P < 0.05 (uncorrected). Please note that for beta 
extraction, ROIs were reverse-normalized to each subject’s individual space. B) Mean individual activation estimates (beta parameters +/− standard 
error of the mean) for each condition of the experiment. Please note that for completeness, we show beta values for FFA (top) and PPA (bottom) separately, 
while they were aggregated for the statistical analysis. 

feedback connections from higher-level areas are responsible for 
computations of violated expectations which take more time, 
occur later in time, and are thought to originate in prefrontal 
( Summerfield et al. 2006) and inferior frontal brain regions (Wig 
et al. 2005; Horner and Henson 2012; Ferrari et al. 2022) and  
the hippocampus (Hindy et al. 2016; Kok and Turk-Browne 2018). 
Please note, however, that the present study cannot make con-
clusions about the precise timing of prediction error processing, 
for which a modality with higher time resolution, like electroen-
cephalography (EEG), would be required. 

With regard to our hypothesis on co-occurring positive and 
negative prediction errors, the results of our fMRI analyses repli-
cate the findings from our previous study (Schliephake et al. 
2021). Moreover, we provide evidence for positive prediction errors, 
represented by increases in brain activation (eg in the FFA) for 
unexpectedly appearing stimuli as compared to expected stimuli, 
and negative prediction errors, represented by elevated activation 
levels (eg in the PPA) for unexpectedly omitted stimuli as com-
pared to expected stimuli. The positive prediction error effects in 
the current study are especially interesting as previous research 
in this field consistently implemented paradigms during which 
expected stimuli were withheld and robust cortical responses to 
such surprising stimulus omissions were found in the relevant 
cortical area (Den Ouden et al. 2009; Todorovic and de Lange 
2012; Wacongne et al. 2012). In the current study, however, there 
was no blank period but the unexpectedly omitted stimulus was 
replaced by another unexpected stimulus. Yet, we found similar 
cortical responses representing the omitted stimulus as studies 
employing real omissions. This finding supports the idea that 
increased activation in the area processing the omitted stimulus 
category does not depend on a stimulus-free time window during 
which the stimulus was expected but rather on the experience 

that the expected stimulus category did not appear. In our pre-
vious study (Schliephake et al. 2021), we only found the positive 
prediction error effect in a PPI analysis but not a basic ROI analysis 
in FFA and PPA. The difference between our two studies could 
be driven by the fact that in the previous study, the most likely 
stimulus transition was a change in stimulus category, which we 
explicitly controlled in the present work as it was central to our 
research question. 

Another important factor that has been considered in the 
current study is the introduction of a neutral stimulus cate-
gory in which the probability of equal and unequal stimulus 
category transitions was 50% each and participants could not 
form strong expectations about which stimulus category would 
appear next (Grotheer and Kovács 2015; Den Ouden et al. 2023). 
In the past, studies compared brain activation between unex-
pected and expected events to assess elevated activation levels 
attributed to unexpected events. However, a limitation inherent 
in the comparison of unexpected and expected events lies in its 
inability to differentiate whether the observed effect signifies an 
increase in activation for unexpected stimuli or a decrease for 
expected ones. The finding that activation in the neutral condition 
was not significantly different from activation in the unexpected 
condition, and instead situated in between activation for expected 
and unexpected stimuli, hints at both a decrease in activation for 
expected events and an increase for unexpected ones. 

We expected to show that prediction error signals represented 
by activation increases would still be evident when comparing 
unexpected to neutral trials. However, this contrast did not reach 
significance for both unexpected omissions and unexpected 
presentations of stimuli. It is plausible that the difference between 
the neutral and unexpected condition that can be observed 
descriptively in our results was too small to induce significant
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activation differences. This is because the probability of a specific 
stimulus category transition was 50% in the neutral condition 
and 30% in the unexpected condition. In order to strengthen the 
evidence, more data are needed in the future. 

To further advance our understanding of the interplay between 
positive and negative prediction error signals, future studies could 
employ advanced neuroimaging techniques, such as high-density 
EEG or multimodal imaging approaches. These methods can cap-
ture the temporal dynamics and network-level interactions asso-
ciated with these prediction error signals. 

In conclusion, the investigation of co-occurring positive 
and negative prediction errors is essential for advancing our 
understanding of sensory processing, perception, and learning. By 
studying these prediction errors simultaneously, we gain valuable 
insights into the dynamic interplay between expectations and 
sensory input, enriching our knowledge of the underlying 
mechanisms. Our study showed for the first time how to 
disentangle simultaneous positive and negative visual prediction 
errors and future research will extend this differentiation for 
other domains. 
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