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Summary

Summary

In everyday perception we automatically draw structure out of the continuous stream of
information that we encounter. Chunked into events, we can process these units of experience
offering the structure for memory and prediction. Event perception is a fundamental cognitive
process shaping our experience. The mechanisms underlying the detection of boundaries
between events continue to be a central focus in cognitive (neuro)science. While previous
studies mainly concentrated on participants’ behavioral event annotations, little is known about
the objective stimulus features driving the segmentation behavior. To address this, the current
thesis employed computer vision methods extracting stimulus characteristics to derive
objective event boundaries as well as action categories. The aim was to examine objective event
boundaries, their value for understanding subjective event boundaries and the neural
underpinnings of both. Object-related action associations were considered as a modulating
factor. In addition, the neural representation of objective and subjective action categories was

investigated.

For this purpose, two experiments, each consisting of three sessions, were conducted.
In the first session, participants passively observed short videos of object-directed actions
during the MRI scan, to segment these manually in the second and third experimental session
(test-retest). Subsequently, the participants performed a multi-arrangement task in which they
spatially organized actions according to their similarity. In the first experiment, the actions were
directed at commonplace items (e.g., a calculator, a cup, or a piggy bank) while in the second
experiment, formed pieces of dough were manipulated. The actions remained the same over
experiments, as well as the experimental tasks and procedures, but the manipulated items
varied in the strength of object-action associations. For the analyses, subjective event
boundaries were determined on group level based on consistent individual segmentations and

objective event boundaries were extracted by computer vision algorithms. To derive the latter,



Summary

relational changes between objects in the form of touchings and untouchings between hands,
objects, and the ground were determined and coded as a sequence to describe the
corresponding action category. These (un)touching sequences have proven highly useful for
robots to recognize human actions and execute these actions itself. Therefore, they were
considered relevant objective event boundary candidates, to which human event structure

processing could also relate.

Study | used the fMRI and behavioral segmentation data of the first experiment to
investigate whether (un)touchings are a meaningful supplement or reference point to subjective
event boundaries and how they contribute to understanding neural event structure processing in
object-directed action observation. Both subjective and objective event boundaries showed
definable underlying neural activation patterns, and the temporal co-occurrence of the

boundaries suggested a key role of objective boundaries for identifying events’ limits.

Based on the data of both experiments, Study Il investigated the modulating effect of
object-action associations on the segmentation behavior and the neural processing at
subjective and objective event boundaries. The results confirmed objective boundaries to be
meaningful anchor points for subjective boundaries with behavioral annotations being even
closer to objective boundaries when object-associated knowledge was limited. Furthermore,
they revealed a significant effect of association strength on underlying brain processing. At
untouchings, limited object-action associations were accompanied by increased biological
motion processing and strong associations, in contrast, by increased contextual information
processing. At the same time, activity in the anterior inferior parietal lobule (alPL) increased for
weak object-action associations which was interpreted as mirroring an unrestricted number of

candidate actions for predicting the unfolding action.

Finally, Study Il used a representational similarity analysis of the fMRI data from both

experiments to investigate whether objective action categories are represented in the neural
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processing patterns and whether they are related to subjective action spaces derived from the
multi-arrangement task. Subjective action categories were associated with a broad bilateral
network while objective action categories were selectively associated with the representational
profile of the alPL. A significant relationship between the two action spaces emerged only when

object information was limited.

Collectively, these findings indicate that objective event boundaries are a meaningful
addition to subjective boundaries in understanding the processing of object-directed actions.
They provide objective anchor points for segmenting actions behaviorally and aid in
disentangling the neural signatures of event structure. Concerning the neural profiles across
experiments, subjective event boundaries were mainly motion-driven and low-level visual
inspection of the scene intensified at points of touching. Remarkably, the points of untouching
were revealed to be important for attentional recalibration, memory encoding and predicting the
upcoming action step. Furthermore, it was at this exact point that the strength of object-action
associations became evident. Thus, the points of untouching appear to play a significant role.
The current work further elaborated on the role of the alPL in action observation. The alPL is
suggested to serve a critical function in predicting object-related actions based on object-

associated action knowledge and in representing objective action categories.

This thesis offers a new perspective on event structure perception through objective,
stimulus-derived event boundaries and action categories. The results suggest important
implications for neurorehabilitation settings as they could help optimize training protocols.
Similarly, the results could inform the development of robotic systems that support patients
with motor impairments and enhance human-robot cooperation. This thesis lays the
groundwork for more detailed investigations into neural event structure processing, with the aim

of ultimately understanding this core capacity that fundamentally shapes our experience.
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1 Theoretical and Empirical Background

1 Theoretical and Empirical Background

As we go about our daily lives, we constantly perceive the world through our senses, with
a continuous flow of information coming our way. Still, when we are asked to report what we
experienced on any given day, we usually report integrated and coherent but discrete episodes.
Thus, the continuous information has been chunked into meaningful units. These units of
experience (Yates et al., 2023), that have been termed “events”, caught a lot of scientific
attention during the last decades. The resulting field of event perception research has grown
significantly (e.g., Bailey & Smith, 2024; Dubrow, 2024; Radvansky & Zacks, 2011, 2017; Zacks,
2020). It investigates event perception over the lifespan (e.g., Zacks et al., 2006; Zheng et al.,
2020) and of various perceptual input formats (e.g., sequences of images: DuBrow & Davachi,
2016; story listening: Kumar et al., 2023; auditory event sounds: Ogg & Slevc, 2019; story
reading: Pettijohn & Radvansky, 2016; action videos: Pomp et al., 2021). The study of event
representation has typically addressed either the events’ properties or the characteristics of
their “boundaries” (i.e., the point when one event ends and the subsequent event begins; Yates
et al.,, 2023). Alongside various approaches, cognitive (neuro)scientists consult action

observation to understand event boundaries in detail.

When we observe someone performing an action, we perceive the action as a
continuous flow of movements. For instance, when someone prepares their breakfast, we see
an action unfolding and we can, when asked for, divide the continuous action into distinct
meaningful units (i.e., events) and identify these segments or action phases (e.g., preparing a
sandwich, making coffee, etc.). Naturally, we can even do this at different levels of coarseness.
For instance, we can recognize the steps of preparing a sandwich as: taking a loaf of bread,
buttering it, and placing a slice of cheese on it; or zoom in further describing the action steps on
a more detailed level (e.g., dividing only taking a loaf of bread into distinct segments). This

subjective segmentation of observed actions is one focus of action observation research and
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intends to understand the perception, processing and storage of sequences of events. One
approach to obtain subjective action segments is to ask action observers to indicate action
steps by button press during observation. This procedure revealed an intra-individually highly
consistent segmentation behavior (Newtson, 1973; Newtson & Engquist, 1976; Zacks, Tversky,
et al., 2001). In fact, event segmentation has been shown to be an automatic part of ongoing
perceptual processing (Yates et al., 2022; Zacks & Swallow, 2007) and splits continuous input

into distinct units or events that are separated by boundaries.

The traditional approach of asking action observers to indicate action steps requires
individuals to consciously decide on boundaries (i.e., when to press a button). Thus, this kind of
event boundary detection invariably includes an explicit filter. We know from other research
areas that we do not necessarily have access to the information that matters for the observer’s
brain to make sense of the world around it. For example, the phenomenon of implicit learning
shows that we extract regularities of the world without a clear awareness of what we know
(Perruchet & Pacton, 2006; Williams, 2020; for a review see Stadler & Frensch, 1998). Several
studies have shown that people are able to implicitly learn the statistical structure that
underlies incoming stimulus streams of observed actions (e.g., Ahlheim et al., 2014; Swallow &
Zacks, 2008). When explicitly asked about it, participants are unable to report the learned
structure. Hence, subjective report does not necessarily reveal underlying perceptual
processes. Derived from this, it can be assumed that there could be regularities in an observed
action that mark meaningful event boundaries to the observer’s brain but have no relevance on
the conscious level. Therefore, the current work distinguishes between observer-labeled event
boundaries and stimulus-derived event boundaries and considers both as worth investigating to

understand the perception of event structure and underlying neural processes.

Stimulus-based event boundaries can take various forms. Remarkably, regarding the

segmentation of narrative events, a computational approach using a large language model
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(GPT-3) was recently able to roughly reproduce human event annotations (Michelmann et al.,
2025). The model proved to be closer to average behavioral annotations than individual human
annotators were. The authors suggest GPT-3 to provide a reasonable solution for automated
event annotations. In an intriguing way, this specific case of event boundary detection is neither
what | consider observer-labeled nor what | consider stimulus-derived. The former is obvious,
whereas the latter requires further consideration. In fact, the model-detected event boundaries
are not inherent to the stimulus alone as the large language model is needed to evaluate the

narrative in the context of written human language.

In this work, the term “stimulus-derived event boundaries” is used in a specific sense,
referring to event boundaries that are independent of an observer’s decision or perception and
can be extracted from the stimulus per se. They are objective in nature. They allow, inter alia, a
high level of between-subject comparability for neuroscientific investigations as the perceptual
input at boundaries is constant across participants’. In addition, from a multidisciplinary
perspective, this kind of event boundary is of growing interest to computer vision and artificial
intelligence (Al) for visual event detection. The task of identifying events in visual data is used in
automated systems to analyze action sequences, such as in video surveillance systems (for a
review see Jebur et al., 2023), autonomous driving (for a review see Xiao et al., 2023), video
analytics (e.g., Canel et al., 2019) and sports broadcasting (e.g., Xu et al., 2006). The term
“observer-labeled event boundaries”, in contrast, refers to the subjective unit annotations made

by the participants during the observation of an action.

In cognitive neuroscience, event perception is not merely a perceptual function — it is the
core mechanism through which the brain constructs reality, providing the temporal scaffolding
for memory and prediction. This thesis seeks to advance our understanding of event perception

and to establish objective anchor points for the segmentation of events. To this end, the present

"If individual differences in attention processes are disregarded.
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1 Theoretical and Empirical Background

work focuses on subjective (i.e., observer-labeled) and objective (i.e., stimulus-derived) event
boundaries in action observation and their neural processing. Furthermore, the scope of this
work extends to the representation of the action categories that can be determined both
subjectively (i.e., based on participants’ ratings) and objectively (i.e., based on computer vision).
To complement these, object-action associations are examined as a modulating factor. This
factor is explained in more detail below. The following sections will provide an overview of visual
action perception, including events and predictive processing, and examine the underlying
neural processes. In addition, computational action representation in neuroscience will be

addressed.

1.1 Actions and Action Perception

Action observation research encompasses a broad spectrum of actions that are
investigated. Within the field, these actions can largely be divided into whole body movements
(e.g., swimming, walking) and hand movements, while some studies also show movements of
the feet or face (cf. Caspers et al.,, 2010). Dima et al. (2024) recently demonstrated that
partcipants’ similarity judgments reflected a shared organization of actions across videos and
sentences. This organization was mainly determined by the target of the action (i.e., whether the
action was directed towards an object, another person, or the self) which validates the
distinction between actions suggested by the field. In addition to the type of action, the context
in which an action is presented varies considerably across studies. It ranges from tightly
controlled, purpose-designed stimuli to more naturalistic cinematic content, and extending

further to immersive virtual environments (Pooja et al., 2024).



1.1 Actions and Action Perception

1.1.1 Object-directed Actions

Hand actions can be divided into transitive actions, which are directed towards objects
in the peripersonal space (e.g., grasping a cup), and intransitive actions, which do not involve an
object (e.g., waving a hand). Transitive actions are also termed “object-directed” (in contrast to
“object-unrelated”). They are the focus of this thesis. The most important (i.e., primary) sources
of information in object-directed actions are the movements and the objects involved (Wurm &
Schubotz, 2017). Concerning the latter, the familiarity of an object is a crucial factor. Everyday
objects that are familiar to us are strongly associated with actions that we typically perform with
them, and this knowledge modulates our expectations regarding the upcoming action (El-
Sourani et al., 2018, 2019; Hrkac et al., 2015; Kalénine et al., 2016; Schiffer et al., 2012;
Schubotz et al., 2014; Schubotz, 2015). In the same way, potential interactions between objects
(if multiple objects are present) shape action perception as they have been shown to be
extracted automatically and directly (S. Xu & Heinke, 2017). The effect of the implied actions
between objects can selectively be reduced using online repetitive transcranial magnetic
stimulation (rTMS; S. Xu et al., 2017). Consequently, it is likely that object-associated action
knowledge modulates event structure perception. Its modulating effect on action segmentation

and prediction is one of the main aspects investigated in this thesis.

1.1.2 Events and Their Boundaries

Observing behaviors that unfold over time and segmenting these actions into separate
events raises the question of how those events can be defined. An event may be thought of as a
distinct unit of individual experience, which organizes continuous perceptual input into mental
units that we can label, remember and search for in memory. Some authors suggest that events
are temporal building blocks used by our cognitive system, just as objects are spatial building
blocks (see e.g., Tversky et al.,, 2004). There is, however, no consensus in cognitive

(neuro)science or psychology on what events are and what they are not (Reilly et al., 2025; Yates
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et al., 2023). Nevertheless, event perception is the focus of various research fields and within
this research area, event segmentation drew attention to the boundaries between events (for a
review see Zacks, 2020) which are central to this work. Event segmentation paradigms serve the

purpose of finding these event boundaries in the continuous stream of sensory input.

More than 50 years ago, using the unit-marking procedure (i.e., an event segmentation
paradigm) in several behavioral studies, Newtson and colleagues demonstrated that action
observers exhibit an inter-individually variable, but intra-individually highly consistent
segmentation behavior when asked to indicate action steps (Newtson, 1973; Newtson &
Engquist, 1976). The unit-marking procedure comprises that participants watch an action video
and press a button whenever they think one unit ends and another one begins. It is still today a
valuable tool to study how individuals perceive and segment actions into discrete units while
variants emerged that use not only videos and movies but also slideshows and reading of or
listening to stories (Sargent et al., 2015; for a review see Zacks, 2020). Subsequent research
revealed that marked action segments resist interruptions (Newtson & Engquist, 1976), missing
content (Kosie & Baldwin, 2019) and perspective shifts (Swallow et al., 2018). Furthermore,
action stream breakpoints or event boundaries receive increased attention (Hard et al., 2011),
are better recognized than other intervals (Pradhan & Kumar, 2022; Swallow et al., 2009), and at
boundaries observers are less likely to mind-wander (Faber et al., 2018). Action representations
are structured by event boundaries that drive also memory (Ezzyat & Davachi, 2011, 2021; Kurby
& Zacks, 2008; Pettijohn et al., 2016; Pradhan & Kumar, 2022; Swallow et al., 2009; Zacks, Speer,
et al., 2006) and planning (Zacks et al., 2011) while an attentional focus on individual situational
dimensions (as e.g., spatial information) can influence boundary marking (H. R. Bailey et al.,
2017; De Soares et al., 2024). A recent work by Sasmita and Swallow (2023) investigated the
stability of event boundary agreement within and across groups and demonstrated the reliability

of segmentation performance in different experimental setups and sample sizes.
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1.1 Actions and Action Perception

In addition to subjective, observer-labeled event boundaries, some approaches
determined objective, data-driven features that relate to event boundaries. For instance, event
structures were extracted from movement parameters (Zacks et al., 2009), and participant-
judged boundaries were associated with bursts of change in movement features (Hard et al.,
2006). Furthermore, stimulus characteristics as the statistical structure can play a role as an
objective reference in human action segmentation (Baldwin et al., 2008). These approaches
have in common that they aim to ground subjective boundary annotations in objective stimulus
features. Magliano and Zacks (2011), in contrast, used another method to study how people
perceive the structure of events and investigated the impact of continuity editing? in narrative
film’s segmentation. Watching narrative films is a special variant of action observation as
perspectives, locations and agents constantly change and thus the flow of information across
shots often shows little similarity to the perceptual input when we observe the real world
(Cutting, 2005). Nevertheless, it offers important insights as the study by Magliano and Zacks
(2011), for instance, clearly indicated that discontinuity of action was the strongest predictor for
a behavioral event boundary, compared to spatial-temporal changes. Brain activation patterns
at action discontinuities particularly showed decreased activity at posterior temporal, inferior
and superior parietal and dorsal premotor cortex along with increased activation in lateral
occipital regions. The reductions in activity were interpreted as attention-driven down-regulation
of processing to wait until the parameters of the new scene were established. Hence, Magliano
and Zacks (2011) investigated points of discontinuity as objective event boundary candidates.
However, this approach is not applicable to the segmentation of uncut video material that is

supposed to mimic real world action observation.

2 Continuity editing is used by filmmakers to evoke a sense of situational (dis)continuity at editing
boundaries.

11
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1.1.3 Predictive Action Processing

The framework of predictive coding suggests that the brain constantly generates
predictions about sensory input and updates those predictions based on the incoming sensory
information. While analogous concepts have been introduced earlier, the currently known
concept of predictive coding has been mainly shaped by a few influential works (Clark, 20183;
Friston, 2005, 2010; Hohwy, 2013; Rao & Ballard, 1999). Research from various fields continues
to expand the reach of this theoretical framework. In contrast to most preceding theories of
brain function, the idea is that the brain does not passively receive information but actively
predicts the sensory environment. When the incoming information does not match the
generated prediction, a prediction error arises, and the internal model gets updated to improve
future predictions. This process unfolds across multiple hierarchical levels, so that predictions
are passed on top-down and prediction errors are passed on bottom-up. Transmitting only the
unpredicted portion of a sensation is metabolically efficient. Importantly, grasping the brain as a
prediction machine is not only about perception but also about action as active inference
(Clark, 2013; Friston, 2010; Hohwy, 2013). This means that actions can be initiated to actively
generate the predicted sensations. Furthermore, Clark (2024) recently elaborated about hacking
our own predictive brain to better serve our needs, which shows that the framework of predictive

processing is consistently widening.

Regarding action prediction, the predictive coding framework suggests that the brain
anticipates the consequences of our own actions. Thus, the brain predicts the sensory input
that comes in when we act on the world. This includes proprioception as well as tactile
perception when we touch something, visual perception when we see our action, auditory
perception when our action produces a sound, olfactory perception when we expect to smell
something (e.g., because we grasp a fragrant flower and move it closer to our nose), or gustatory

perception. This is essential to plan and execute movements and informs online action

12



1.1 Actions and Action Perception

coordination. Kilner et al. (2007) combined the predictive coding account with action
observation research to explain the inference of intentions when making sense of others’
actions. He proposed that the ability to understand observed action at the abstract level of
intentions is encoded in middle temporal and inferior frontal brain regions that predict the most

probable intentions and goals of the observed action (Kilner, 2011).

Relating the predictive coding framework to event boundaries, Reynolds et al. (2007) ran
simulations to demonstrate that a system can accurately identify event boundaries based on
prediction error increases. Zacks (2020) elaborated the fact that there is a close temporal
relationship between event segmentations and moments of low predictability. Observers were
more likely to identify event boundaries as the course of an action became more unpredictable,
and those boundaries were related to enhanced memory and a reduced ability to predict the
upcoming event (Huff et al., 2014). Event boundaries corresponded to the point in time where it
was more difficult for participants to predict the near future (Zacks et al., 2011) so that
participants made better predictions within an event than across event boundaries.
Furthermore, predictive eye movements are less prevalent around event boundaries (Eisenberg
et al.,, 2018) suggesting that prediction is vague at this point. These findings suggest that
predictability is high during an event and low at event boundaries. Said differently, prediction
error is low during events and increases at event boundaries. The increased prediction error at
event boundaries then triggers internal model updates (Zacks, 2020). The fundamental
assumptions of this approach were formulated in the event segmentation theory (Zacks et al.,
2007). It assumes that people construct and maintain representations of the currently unfolding
action and predict what will happen next on basis of sensory cues and knowledge structures.
Transient errors in the predictions result in the perception of an event boundary. Applied to the
example from the beginning of someone preparing their breakfast: after placing a slice of cheese
on a loaf of bread to prepare the sandwich, it becomes less predictable what will happen next as

several upcoming action steps are possible; the person may take a bite or cut the sandwich in

13



1.2 Neural Action Processing

halves (or do something completely different). The incoming sensory information is used to
identify which of the typically expected actions will occur, and the internal model is updated
accordingly. There is abundant evidence of empirical findings that are compatible with
predictive approaches of action observation (e.g., Cerliani et al., 2022; Kemmerer, 2021; Keysers
et al., 2024; Urgen & Saygin, 2020; Zentgraf et al., 2011) and event boundary perception (e.g.,

Ezzyat & Davachi, 2021; Reagh et al., 2020; Schubotz et al., 2012).

At the same time, there are empirical findings regarding event boundaries that are
difficult to reconcile with the predictive coding framework (Yates et al., 2023) and likewise for
action observation (Kemmerer, 2021). Alternative theories of event segmentation rely on
inferences about what generates an experience so that an event boundary occurs when the
inference changes (e.g., Shin & DuBrow, 2021). This allows boundaries to occur independently
of perceptual change or low predictability. In addition, Franklin et al. (2020) designed a
probabilistic reasoning model to demonstrate that it can produce human-like segmentations of
naturalistic data and that its principles are sufficient to explain a wide range of empirical
findings. This is an example of computer science modeling human abilities to illustrate which
principles may be sufficient, bringing us closer to understanding how event structures could be
built and how boundaries could be perceived. However, it remains unresolved which theory

provides a more accurate representation of the mechanisms in the brain.

1.2 Neural Action Processing

Functional imaging studies revealed remarkable findings about the neural processing of
observed actions. This section describes the neural action observation network as well as the

neural signatures of event boundaries and action categories.

14



1.2 Neural Action Processing

1.2.1 The Action Observation Network

Over the last two decades, many neuroimaging studies have assessed the human brain
networks underlying action observation (for meta-analyses see Caspers et al., 2010; Hardwick
et al., 2018) and its development over the lifespan (Biagi et al., 2016; Lesourd et al., 2023;
Morales et al., 2019; Sacheli et al., 2023). The increasing interest in neuroscientific research on
action observation can largely be attributed to the discovery of mirror neurons in honhuman
primates. This unique class of neurons responds both during the execution of an action and the
observation of someone else performing this action. Mirror neurons were first discovered in
macaque area F5 (Di Pellegrino et al., 1992; Rizzolatti et al., 1996) which is the putative
homologue of the human premotor cortex. Thereafter, mirror neurons were also found in
macaque rostral inferior parietal lobule, which is the putative correspondence to the human

anterior inferior parietal lobule (Fogassi et al., 2005).

For ethical and practical reasons, single-cell recordings are not conducted in healthy
humans, so noninvasive brain imaging techniques were used to study human action
observation. The emerging human action observation network has been found to expand the
above-mentioned regions and includes the premotor, parietal and temporo-occipital cortex
(Caspers et al., 2010; Gazzola & Keysers, 2009; Hardwick et al., 2018; Kilner, 2011; Lesourd et
al., 2023). It has been investigated using various tasks and paradigms which differ, for instance,
in terms of the effectors (e.g., hand, foot, or face), instructions (e.g., passive observation or
observation to imitate) and the involvement of an object (transitive versus intransitive actions)
(Caspers et al., 2010; Hardwick et al., 2018). Given the thesis’s focus, the next sections review
neuroscientific paradigms of action observation that specifically address action segmentation

and categorization.
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1.2 Neural Action Processing

1.2.2 Neural Signatures of Event Boundaries

Neuroimaging studies employed functional magnetic resonance imaging (fMRI) to
investigate the neural signature of behaviorally determined event boundaries compared to non-
boundary points. Subcortically, increased activity was observed in the hippocampus (Ben-Yakov
& Henson, 2018; Reagh et al., 2020) as well as in the adjacent parahippocampal cortex (Ben-
Yakov & Henson, 2018; Reagh et al., 2020; Schubotz et al., 2012). On the cortical level, various
regions were also activated at event boundaries, such as the angular gyrus, the visual cortex, the
precuneus, the temporoparietal and the occipitotemporal junction, the superior temporal
sulcus, posterior medial regions and the superior frontal sulcus (Ben-Yakov & Henson, 2018;
Betti et al., 2013; Ezzyat & Davachi, 2011; Reagh et al., 2020; Schubotz et al., 2012; Speer et al.,
2003; Zacks et al., 2011; Zacks, Braver, et al., 2001). Evidence regarding the role of these regions

in event detection is mixed, with varying degrees of clarity.

Boundary-evoked hippocampal activation has been associated with memory
performance (Reagh et al., 2020) and it has been suggested that the increased hippocampal
activity could reflect the registration of the preceding event to long-term memory (Ben-Yakov &
Henson, 2018). This is in line with the idea that an event boundary segregates the immediate
present (that is active in working memory) from preceding events (that are registered in long-
term memory) so that the experience of event structure shapes the memory content (Ezzyat &
Davachi, 2011; Zacks, 2020). For the cortical activation pattern, the indications are less clear.
Angular gyrus activation and superior frontal sulcus activation have been functionally
interpreted as engaging spatial attention, and parahippocampal activation as being associated
with long-term memory retrieval (Schubotz et al., 2012). At the same time, cortical activation
patterns were frequently interpreted referring to their functional or structural affiliation to the
hippocampus (Reagh et al., 2020; Schubotz et al., 2012). Increased activation in the lateral

occipitotemporal region were mostly related to motion sensitive areas processing movement
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1.2 Neural Action Processing

features at event boundaries (Speer et al., 2003; Zacks, Braver, et al., 2001; Zacks, Swallow, et

al., 2006).

Furthermore, functional connectivity analyses revealed that the interactions between
the hippocampus and the posterior medial network (i.e., a default mode subnetwork consisting
of the posterior cingulate cortex, the retrosplenial cortex, and the angular gyrus) at event
boundary encoding was associated to subsequent successful event recall and the amount of
recalled detail after a delay (Barnett et al., 2024). A recent study showed that multivoxel patterns
of past events are reactivated at event boundaries modulated by the similarity of their semantic
content, which was demonstrated in the hippocampus, medial temporal lobes and posterior
medial cortex (Hahamy et al., 2023). Thinking one step ahead, a novel method modeled
neuroimaging data directly with a dynamic event segmentation model. In this data-driven
approach, Baldassano et al. (2017) discovered brain activation patterns that were associated
with the event structure in narrative stimuli and a nested hierarchy from short to long events.
Here again, the angular gyrus, the posterior medial cortex, the parahippocampal cortex and the
hippocampus played a crucial role. In a similar manner, Yates et al. (2022) applied a
computational model to brain activation patterns of infants to identify event signatures. They
revealed that infants, in contrast to adults, segment fewer, longer events across the cortical
hierarchy. In sum, an emerging body of imaging evidence starts to shed light on the neural

processing of event boundaries.

1.2.3 Neural Activation Patterns Associated with Action Categories

Understanding how the brain organizes and differentiates between various types of
knowledge is a key challenge in cognitive neuroscience. Prior studies have shown that different
semantic categories elicit distinct patterns of neural activation across cortical regions (see e.g.,
Binder et al., 2009; Malone et al., 2016). To investigate neural activation patterns underlying

action spaces, the way of categorization is central. Most studies from the last decade use pre-
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determined stimulus taxonomies and behaviorally determined similarity spaces to capture
different representational geometries that are compared to neural representational patterns
from multivoxel pattern analyses. In general, clear methodological parallels are recognizable
from the domain of object recognition (Lingnau & Downing, 2024). Prior to the widespread
adoption of multivoxel pattern analyses, imaging studies used univariate contrasts to explore
the representation of semantic spaces. For instance, the meta-analysis by Binder et al. (2009),
that reviewed the representation of semantic word processing, yielded distinct semantic
subsystems and localized action knowledge in left supramarginal gyrus (SMG) and posterior
middle temporal gyrus (pMTG). The stimulus format is critical here as Wurm and Caramazza
(2019) showed action representation to differ across vision and language. They revealed that
frontoparietal areas discriminated observed action scenes and corresponding written
sentences, but the decoded representations were overlapping and not generalized across
stimulus types. The left lateral posterior temporal cortex, in contrast, encoded generalized
action representations. Furthermore, Wurm et al. (2017) identified neural representations of
actions to be organized along sociality (i.e., nonsocial vs. social) and transitivity (i.e., object-
unrelated vs. object-related) in bilateral lateral occipitotemporal cortex (LOTC). Additionally,
they suggested a posterior-anterior gradient in LOTC from concrete to abstract action features.
Regarding different abstraction levels, another study by this workgroup demonstrated the
inferior parietal and occipitotemporal cortex to code actions at abstract levels and the premotor

cortex to code actions at the concrete level only (Wurm & Lingnau, 2015).

The functional role of the parietal cortex in action observation has further been
differentiated from the occipito-temporal and premotor cortex. The discriminability between
action classes was higher in the parietal cortex, suggesting that action identity is coded in this
region (Urgen & Orban, 2021). To summarize, the regions that are generally counted as part of
the action observation network are involved in the representation of action spaces to varying

degrees and various dimensions have been described to organize actions and their neural
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representation. Currently, many outstanding questions are actively addressed in the field to

broaden our understanding of neural action representation.

1.3 Computational Models of Action Representation in Neuroscience

Action recognition is important for computer vision since applications like visual
surveillance, autonomous driving, human-robot interaction, augmented entertainment and
video retrieval are of constantly growing interest and the availability of big data opens up new
opportunities. In computer science, action recognition has been extensively investigated in the
last decades such that great successes have been achieved in after-the-fact action recognition
(i.e., recognition after observing the entire action execution) and, recently, even action
prediction (i.e., recognition before action execution is completed) is being pursued (for a review
see Kong & Fu, 2022). There are two main challenges in vision-based action recognition, that is,
action representation and action classification (Kong & Fu, 2022). Remarkably, there is
significant potential for cooperation between computer vision and cognitive neuroscience,
making their integration highly valuable for advancing our understanding of visual processing.
Modeling brain activation data with objectively and automatically determined stimulus
characteristics is just one example illustrating the unique avenue that computer vision provides.
The following sections describe how this thesis employed computer vision methods to explore a

neuroscientific research question.

1.3.1 Actions Represented as Touching Relations Between Objects

One advantage of computer vision is that it can extract the static and dynamic
characteristics of stimuli objectively and automatically. To represent an action based on these,
very different approaches exist, and some approaches concentrate on objects and their
relationship. For instance, Ji et al. (2020) represent actions in spatio-temporal scene graphs that

code the objects and their relative spatial position (e.g., person - sitting on — sofa). This

19



1.3 Computational Models of Action Representation in Neuroscience

representation is substantially reduced, and further simplification is possible. The method
implemented in the present work represents object manipulations by coding the spatial contact
between surfaces (e.g., object one - touching — object two). It constructs a dynamic graph
sequence from continuously tracked RGB-D sensor data of action videos (Aksoy et al., 2011;
Worgotter et al., 2013). In these graphs, objects build the nodes, and a touching relation is
represented by an edge. Topological transitions of such a graph occur whenever objects touch or
un-touch and are stored in a transition matrix called the semantic event chain (SEC).
Remarkably, this account is model-free and strictly stimulus-driven: It does not distinguish
between hands, objects, or the ground, nor does it require any functional or semantic

knowledge about objects as it does not identify them.

Therefore, in the SEC approach, an action representation consists only of touchings (Ts)
and untouchings (Us) between objects which are numbered consecutively by appearance.
These points of touching and untouching (TUs, hereafter) were chosen as objective event
boundary candidates in the current thesis to investigate event structure perception. Worgotter et
al. (2013) showed that computer vision using the SEC approach was able to distinguish between
30 different one-handed object manipulations typical of everyday life. Thus, this approach can
represent object-directed actions, and we chose from these actions to build the stimulus
material for the current work. To be precise, the TU sequence representation of an action
provides its action category while the action kinematics further differentiate actions that share

the same TU sequence.

To give an example, turning an object and pushing an object on a table both share the
same TU sequence. Formulated in detail this is, the hand untouches the ground surface, the
hand touches the object, the object is either turned or pushed, the hand detaches from the
object and touches the ground surface to rest. The corresponding TU sequence reads U-T-U-T,

while we simplified the SEC matrix and did not give the corresponding objects here. Actions that

20



1.3 Computational Models of Action Representation in Neuroscience

can be represented by this specific TU sequence belong to the action category termed
“rearrange” and differ from other action categories like, for instance, “break” that in turn
includes actions like ripping-off and uncovering by picking and placing. Please note that the
terminology of the action categories was adopted interdisciplinarily from the robotics
perspective of Worgotter et al. (2013) and the everyday understanding of the terms may differ

from their use here.

For robots, this way of formalizing object-directed actions as sequences of relational
changes between objects, hands and the ground, has proven highly useful to recognize human
actions and to execute these actions itself (Aksoy et al., 2011). For cognitive neuroscience, the
use of objective event boundaries and sparsely coded action categories that can be extracted
directly from the stimuli offers promising opportunities to understand the neural processing

underlying ongoing action observation and segmentation in the human brain.

1.3.2 From Robots and Infants

As mentioned above, robots can recognize and execute object manipulations using the
SEC-based representation without prior object knowledge (Aksoy et al., 2011). For humans, TUs
are salient and easily recognizable incidents, since touching is mostly accompanied by
deceleration and untouching anticipates acceleration of our movements. They appear to be an
ideal starting point for learning about action segments and action categories even before critical
object expertise is built (for the early development of object knowledge see Hunnius &
Bekkering, 2010). In line with this idea, it has been proposed that object-action association may
develop earlier than object-word association (Eiteljoerge et al., 2019). Research points to the
importance of developing event segmentation skills in early infancy to make sense of the world
(Levine et al., 2019). Previous developmental work showed that infants at the age of two months
detect structures inherent in the environment through statistical learning (Kirkham et al., 2002)

and infants at the age of four months show a preference for biological motion patterns (Fox &
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McDaniel, 1982)%. Accordingly, preverbal infants might identify TUs and use TU sequences to
efficiently segment, encode and more easily recoghize and predict everyday object
manipulations they observe (cf. Worgotter et al., 2020; Ziaeetabar et al., 2020). When they
accrue greater experience with the world and access additional sources of information, they will
be in the position to utilize this knowledge and yet TUs could remain relevant for processing in
the brain. Although this remains purely speculative, it provides valuable new perspectives to

consider.

3 See Hunnius and Bekkering (2014) for a review of the development of action understanding abilities
during childhood.
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2 Research Questions and Objectives

As outlined in the preceding sections, there is a growing interest in understanding the
neural processes underlying event structure perception and representation in action. While
some light has already been shed, many questions remain unanswered. Furthermore, this field
may profit tremendously from multidisciplinary perspectives and computer vision methods are

well-suited to contribute.

The objective of this thesis was to investigate event structure perception and
representation through objective (i.e., stimulus-derived) and subjective (i.e., observer-labeled)
event boundaries as well as corresponding action categories. The employed object-directed
actions involved either commonplace or dough items to modulate object-action associations.
The neural responses of passive action observers were modeled with subjectively and
objectively derived event boundaries and the neural response patterns were related to
subjectively and objectively determined action categories. Based on the data obtained on
segmentation and categorization, as well as their neural processing, the following research

questions were addressed:

1. Are TUs as objective event boundaries a meaningful supplement or reference point to
subjective event boundaries and how do they contribute to understanding neural event

structure processing in object-directed action observation?

2. Do object-action associations, provided by the manipulated object, modulate action
segmentation behavior and the neural processing at subjective and objective event

boundaries?

3. Are TU action categories represented in neural processing patterns of object-directed

actions and are they related to behavioral action classifications?
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A series of two fMRI experiments with three tasks each was conducted to answer the
targeted research questions. The two experiments were set up completely identically except for
the stimulus material. Based on the SEC framework, short videos of simple object-directed
hand actions were created and the degree to which the manipulated objects were associated
with actions varied between experiments. The movements, in contrast, were kept constant,

which allowed us to disentangle the effect of these two primary dimensions.

In the first experimental task, participants passively observed object-directed action
videos during the MRI scan. The second task consisted of two behavioral sessions to determine
the subjective event boundaries, namely a test and a retest session, where participants
manually segmented the action videos by pressing a button whenever they thought an action
step ended and a new began (cf. Newtson, 1973). Finally, the third one was a multi-arrangement
task in which the participants spatially arranged the videos (represented by image triplets)
according to their similarity (cf. Kriegeskorte & Mur, 2012) to derive action categories. In
Experiment 1, the object-directed actions shown in the action videos were directed at
commonplace items (e.g., a calculator, a piggy bank, or a cup) whereas in Experiment 2,
manipulations of formed pieces of blue play dough were presented. Thus, as mentioned above,
the manipulation remained consistent, though the manipulated item varied between
experiments. Furthermore, the SEC algorithm was used to extract points of touching and
untouching in the action videos which were subsequently employed as objective event
boundaries. For clarity, “Experiment 1” and “Experiment 2” refer to the original empirical
investigations conducted as part of this research project. The results of these experiments were
subsequently published in three separate research articles, upon which this thesis is based,

and are referred to here as Study |, Study I, and Study Ill.

Study | (Pomp et al., 2021) based on the first and second task of the first experiment (i.e.,

involving commonplace items). It investigated the relation of observer-labeled event boundaries
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to stimulus-derived TUs in terms of temporal co-occurrence and neural processing. It was
reasoned that if TUs are critical reference points for subjective action segmentation, they then
show a systematic temporal relation to observer-labeled event boundaries or even match them.
If both types of event boundaries coincide, we expected to replicate previously found brain
activation patterns at event boundaries. In the case of the event boundaries being temporally

distinguishable, we expected time-locked brain responses to also differentiate.

Study Il (Pomp et al.,, 2024) used the data of the first and second task of both
experiments. The segmentation and neural processing of commonplace item’s manipulation
and dough item’s manipulation were compared elucidating the role of object-action
associations. It was hypothesized that if the strength of object-action associations modulates
subjective action segmentation, significant differences between segmentation behavior and
neural processing in Experiment 1 and Experiment 2 will be found. Based on previous work, we
hypothesized possible effects to be found in three regions of interest (ROIs): the anterior inferior
parietal lobule (alPL), the parahippocampal cortex (PHC), and a biological motion-sensitive area
in the lateral temporo-occipital cortex (gratefully adopted from Hodgson et al., 2023). We
assumed a knowledge-driven activation increase in the former two regions for commonplace

items and a sensory-driven increase in the latter region for dough items.

Finally, Study Il (Pomp et al., 2025) examined the neural representation of action
categories across experiments. The subjectively determined action categories from the third
task were used to model the participants’ brain activity, alongside action categories derived from
TU sequences and control models. We aimed to investigate which brain regions (if at all) reflect
action categories as predicted by their TU sequence and therefore used representational
similarity analyses (RSA; Kriegeskorte et al., 2008). In addition to brain-wide analyses, we closely

examined the action observation network and therein we specifically focused on the left alPL.

25



2 Research Questions and Objectives

The guiding objective of the current thesis was to examine objective event boundaries
and the advantages they can offer for event perception research. Especially as objective event
boundaries can shift the focus from behavioral signatures of events and offer researchers an
alternative way to explore how event structure perception occurs in the human brain during
action observation. In addition, the value of the stimulus-driven action categorization for
understanding neural action representation was to be determined. These boundaries and
categories may be inherent to the stimulus, and the field would significantly benefit from

identifying and understanding them and their further implications.
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ARTICLE INFO ABSTRACT

Keywords:
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Recognizing the actions of others depends on segmentation into meaningful events. After decades of research in
this area, it remains still unclear how humans do this and which brain areas support underlying processes. Here
we show that a computer vision-based model of touching and untouching events can predict human behavior
in segmenting object manipulation actions with high accuracy. Using this computational model and functional
Magnetic Resonance Imaging (fMRI), we pinpoint the neural networks underlying this segmentation behavior
during an implicit action observation task. Segmentation was announced by a strong increase of visual activity

at touching events followed by the engagement of frontal, hippocampal and insula regions, signaling updating
expectation at subsequent untouching events. Brain activity and behavior show that touching-untouching motifs
are critical features for identifying the key elements of actions including object manipulations.

1. Introduction

Actions performed by others provide us with a continuous stream of
complex perceptual input. Still, this stimulus entails a smoothly joined
sequence of segments, which we can easily distinguish. Action observers
expose an intra-individually highly consistent segmentation behavior
when asked to indicate action steps by button presses (unit marking pro-
cedure; Newtson, 1973), suggesting that they perceive actions in sta-
ble units separated by breakpoints. These action segments have the ten-
dency to preserve their integrity for instance by resisting interruptions
(Newtson and Engquist, 1976) and missing content (Kosie and Bald-
win, 2019), and being robust to perspective shifts (Swallow et al., 2018).
Breakpoints systematically receive increased attention (Hard et al.,
2011) and recognition memory for breakpoints is superior to that
for other intervals (Swallow et al., 2009), probably because episodic
memories emerge from significant contextual changes (Clewett and
Davachi, 2017). This suggests that breakpoints contain more of the infor-
mation from the continuous sequence than non-breakpoints and lead to
the formation of new memory traces (Gershman et al., 2014). Moreover,
breakpoints indicate that a distinctive change has occurred, rather than
a distinctive state has been achieved (meaningful changes vs. meaning-

* Corresponding author.

ful states; Newtson et al., 1977). Event segmentation, applicable not only
to observed actions but also to speech (Aslin, 2017; Wu and Bulut, 2020)
or music (Sridharan et al., 2007), is suggested to efficiently improve pre-
dictions about the near future by integrating information over the recent
past (Kurby and Zacks, 2008), and indeed, evidence of predictive action
observation is abundant (e.g. Botvinick and Plaut, 2004; Colder, 2011;
Csibra and Gergely, 2007; Graf et al., 2007; Kilner et al., 2007, 2004;
Schiffer et al., 2013b; Stadler et al., 2011).

But what exactly determines how to segment an action into meaning-
ful chunks? Humans spontaneously learn and use statistical information
(Fiser et al., 2010; Perruchet and Pacton, 2006; Tobia et al., 2012), in-
cluding 1st and 2nd level statistical structure during action observation
(Ahlheim et al., 2014). A large repertoire of natural action segments
could emerge simply from repeated experience of these segments in dif-
ferent contexts (Avrahami and Kareev, 1994). Importantly, breakpoints
between action segments entail the most invariant stages of an action
that occur in each effective action sequence (Byrne and Russon, 1998).
Thus, breakpoints are reliable anchors in actions, but at the same time
they mark the transition into phases of highest uncertainty, because dif-
ferent subsequent segments can be linked to the end of an action seg-
ment. Because the predictability regarding the further course of action
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is lowest at breakpoints, updating processes of the internal event model
are presumably triggered exactly at this point in preparation for the
coming action step (Kurby and Zacks, 2008; Schubotz et al., 2012). Ac-
cording to a recent model, event segmentation is driven by changes in
inferences about what has generated them (Shin and DuBrow, 2021),
making volatility, i.e., the inferred rate of change of the environment,
a decisive factor regarding event segmentation (Hohwy et al., 2021).
Breakpoints hence seem to be “stop and see” moments, where the com-
pleted action segment connects to the upcoming segment, and typically,
there are several candidates for this upcoming segment, each having a
certain probability.

Corroborating this assumption, it was found that brain activity dur-
ing action observation varies as a function of the statistical structure pro-
vided by action segments (Schubotz et al., 2012). More specifically, the
BOLD response increase reflects the level of quantified surprise at each
breakpoint (Ahlheim et al., 2016; Ahlheim et al., 2014; Schiffer et al.,
2013b, 2013), which has also been found in other paradigms as natu-
ralistic movie perception (Brandman et al., 2021) and sports viewing
(Antony et al., 2020). However, a crucial remaining question is exactly
what kind of information drives human event segmentation. Functional
MRI research suggests that changes in motion may serve as a core marker
of breakpoints in actions, since brain areas specialized for motion pro-
cessing, especially human motion area hMT, are significantly activated
at breakpoints (Schubotz et al., 2012; Speer et al., 2003).

In the present fMRI study, we used a computer vision approach to di-
rectly test the assumption that human event segmentation relies on, and
hence is predicted by, dynamic changes of the spatial relations between
objects, hands and ground. Computer vision provides a unique avenue
to objectively determine dynamic stimulus properties by extracting so-
called touching and untouching events between objects (TUs, hereafter).
Based on earlier works, our present approach provides a generic encod-
ing scheme for object manipulations by constructing a dynamic graph
sequence from continuously tracked RGB-D sensor data of action videos
(Aksoy et al., 2011; Worgotter et al., 2013). Topological transitions of
these graphs occur whenever objects touch or untouch and are stored
in a transition matrix called the semantic event chain (SEC). Crucially,
this account is model-free and strictly stimulus-driven: It does not dif-
ferentiate between hands, objects, or ground, nor does it require any
functional or semantic knowledge about objects.

In a first step, a set of 48 object manipulations was recorded and
subjected to a stimulus-driven segmentation of SEC events based on the
extraction of TUs. In a second step, we presented 31 participants with
the same videos in an fMRI study while they performed a cover task
keeping their attention on the observed action. Subsequently, we con-
ducted a test-retest procedure where the same group of participants en-
gaged in a unit marking task, i.e. they indicated breakpoints in the action
videos by button presses. We extracted those unit marks (Ms) that were
consistently reported on group level (see Section 2.5.3 Determination of
group-consistent unit marks for details). Finally, brain activity measured
via fMRI was analyzed with regard to TUs and Ms. Using this approach,
we aimed to determine to what degree brain activity and segmentation
behavior in humans were linked to the event structure derived from
computer vision.

We reasoned that if TUs are critical time points for action segmen-
tation, then they should show a systematic relationship to Ms or even
account for human segmentation behavior. Such a systematic relation-
ship could mean that TUs and Ms temporally coincide or that we find
a systematic temporal delay between both types of events. In case of
coincidence, we expected to replicate previously found brain activation
patterns for behaviorally determined action breakpoints, including in-
creased engagement of motion sensitive area hMT, and in addition, also
angular gyrus, superior frontal sulcus (SFS), and parahippocampal gyrus
(PHG). While area hMT was found to increase at breakpoints also in co-
herent human motion in the form of Tai Chi videos, this fronto-parieto-
hippocampal network became specifically engaged for breakpoints in
goal-directed actions, presumably reflecting recall from semantic action
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knowledge (Schubotz et al., 2012). In the case that Ms and TUs do not
or do not always coincide in time, we expected brain responses to differ-
entiate between either type of event, allowing to dissociate the neural
processes associated with TU analysis and segmentation decisions.

2. Methods

2.1. Participants

Thirty-one participants (M., = 23.84 years, SD 3.01, age
range = 18 - 31 years, 25 women, 6 men) participated in the present
study. The data of one additional participant was excluded from
the analyses due to misunderstood instructions. All participants were
right-handed as determined by the Edinburgh Handedness Inventory
(Oldfield, 1971), had normal or corrected-to-normal vision, intact color
perception, had no history of neurological or psychiatric diseases and
met the criteria for MRI scanning. Twenty-nine of the participants were
students. The local ethics committee of the Faculty of Psychology (Uni-
versity of Muenster, Germany) approved that the current study followed
the principles set by the Declaration of Helsinki. The participants pro-
vided informed consent and either received course credits or were paid
for their participation.

2.2, Stimulus material

The manipulation actions for the video stimuli were chosen accord-
ing to the SEC framework (Worgotter et al., 2013). Twelve actions were
selected belonging to six action categories (see Supplementary Table
1 for a list of the individual object manipulations). Each action was
recorded using four different objects which resulted in 48 object ma-
nipulations. Action videos were recorded using an industrial camera
(BASLER acA 1300-75 gc) with a TV zoom lens (11.5 — 69 mm, 1:1.4)
as well as an ASUS Xtion Live RGB-D sensor (ASUS TeK Computer Inc.,
Taipeh, Taiwan) recording color as well as depth images. For the video
stimuli, the BASLER recordings were used, showing the actress from
the front up to the shoulders performing the action on a white table.
The ASUS Xtion Live recorded the actions from above and its record-
ings were utilized for TU time point extraction (see Section 2.3 Video
Segmentation and SEC Determination). For each object manipulation
six to seven unique video takes were chosen for the final stimulus set
meaning that no video was repeatedly presented. In total, 294 action
videos were shown to the participants. The videos had a frame rate of
23 fps. Each video started 10 frames before the hand lifts from the table
to act and finished 5 frames after the hand lies back on the table with
a video duration ranging from 72 frames to 185 frames (M = 114.79,
SD = 19.74), i.e. 3130 ms to 8044 ms (M = 4991, SD = 858). To in-
crease perceptual variability, the videos were mirrored so that actions
seemed to be performed by the left hand. Each participant saw half of
the actions mirrored.

The stimulus sequence was designed as a second-level counter-
balanced De Bruijn sequence with seven conditions (6 action cate-
gories + null condition). Using the De Bruijn cycle generator by Aguirre
and co-workers (Aguirre et al., 2011), 500,000 sequences were gener-
ated using NeuroDebian 8.0.0 (Halchenko and Hanke, 2012) and then
the starting point of each sequence was shifted 47 times (length of the
first run) resulting in 24,000,000 possible sequences of which the opti-
mal one was chosen using a custom-built MATLAB R2019a (The Math-
Works Inc., Natick, MA, USA) script. Subsequently, condition labels of
the six experimental conditions were permuted to create 20 different
stimulus lists. Per list, half of the stimuli were mirrored and a second
list contained the complement of these which gave 40 different stimu-
lus lists in total. For the second and third experimental session, the start
of the individual stimulus sequence was shifted by one third and two
third, respectively, to prevent recognition of the stimulus sequence as
well as time-dependent effects. For the fMRI session, the stimulus se-
quence was subdivided into seven runs and at the start of each run the
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Fig. 1. Schema of the procedure for extracting the time points for touching and untouching events from an exemplary action, here “turning calculator”. A) Point
cloud extraction and preprocessing of RGB images. B) Clustering point clouds and calculating silhouette values. C) Curve fitting using artificial neural network
(ANN): Raw silhouette values (black), smoothed silhouette values using median filter (red) and fitted silhouette curve using ANN (blue). D) Extraction of time events:
Derivative of the ANN fit (green) and obtained time points of TU events after thresholding: t1 — hand detaches from the table (i.e., first untouching), t2 — hand touches
calculator (i.e., first touching), t3 — hand detaches from the calculator (i.e., second untouching), and t4 — hand touches the table (i.e., second touching). Thus, in this
example a U-T-U-T sequence is extracted. A demo source code of automated extraction that corresponds to the shown example can be downloaded from the OSF
repository (accession code: https://osf.io/jbwkq/?view_only=e07e36461db248d281597d44c0f83cb9).

last two videos of the preceding run were repeated and then discarded
from analyses to presume a continuous stimulus sequence.

2.3. Video segmentation and SEC determination

We used an automated extraction of time points of TU events,
enabling a fast and accurate segmentation of action sequences based on
objective criteria. A schema for the automated extraction of time points
at which touching/untouching relations between object pairs change
is shown in Fig. 1 and a demo source code underlying the example in
Fig. 1 can be downloaded from the OSF repository (accession code:
https://osf.io/jbwkq/?view_only=e07e36461db248d281597d44c0f83
cb9). Here we used the frame number to define the time points. The
input to the algorithm is a sequence of RGB-D frames fi (i = 1...n, n
is the number of frames) and the output is a sequence of time events
ti (i = 1...m, m is the number of TU events which was predefined
manually). In the following subsections we provide details for the four
main steps of the algorithm.

2.3.1. Point cloud extraction and preprocessing

Point clouds for each frame fi were generated from depth images
which were acquired using ASUS Xtion Live sensor. Region of interest
on the left side of the frame was cut as shown in Fig. 1, since always
only one hand was involved in the analyzed actions. Furthermore, point
clouds were subsampled by a factor of four in order to reduce the amount
of points this way speeding up the clustering procedure. Before clus-
tering, plane subtraction was performed. In most of the cases, ground
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plane subtraction (i.e., points corresponding to the table) was done by
fitting flat 2D surface and then removing all points from the 3D point
cloud data which were below the fitted ground plane (see black points
in Fig. 1B). To be more specific, we removed points p; = {x;,y;, 2}, if 2; -
Z; < th, were Z; = P(x;,y;) are corresponding points of the fitted plane P,
and th=0.015 is the ground plane threshold. The removed points p; were
not included to further cluster analysis. In some cases where very flat
objects were present in the scene (e.g. a newspaper, playing card, etc.),
we used color-based ground plane subtraction instead of the plane fit-
ting procedure. Thus, for the clustering step, we only used point clouds
of the hand and objects.

2.3.2. Clustering and calculation of Silhouette scores

Clustering of points (objects) was performed based on 3D point co-
ordinates p; = {x;,y;,%;} by using hierarchical clustering with Euclidean
distance as a similarity measure and Ward’s method as a linkage method.
The clustering procedure was repeated K-1 times for each frame f;
(i = 1...n) with a predefined number of clusters k = 2...K, where K is
the number of objects including the hand (but excluding the table). For
each frame f; we computed an average Silhouette score as follows:

S(f;) = sum (S,) /(K — 1), with @
Sk(’l) = Sum[(”'in(Dbelu!een(ifl)) e Durilhin(i))/ maX(DurﬂhinU),
min(Dbemreen(i, l)))]/N. (2)

where D,;;:,() is the average distance from the j-th point to the other
points in its own cluster, and Dp,y,e0, (D) is the average distance from



3.1 Touchings Predict Human Action Segmentation

J. Pomp, N. Heins, I. Trempler et al.

the j-th point to points in another cluster I. Here N is the total num-
ber of points. The Silhouette score for each point j measures how sim-
ilar that point is to points in its own cluster in comparison to points in
other clusters. The values of the Silhouette score are between —1 and
1. Thus, when two clusters are getting closer, then the average score
S(f;) decreases, while it increases when clusters are getting apart (see
Fig. 1C). In this way, we used Silhouette values to find TU events. Note
that the average silhouette value was less susceptible to noise in the
point cloud data than the maximum value, resulting in a more accurate
estimate of TU events. See the OSF repository (accession code: https://
osf.io/jbwkg/?view_only=e07e36461db248d281597d44c0{83ch9) for
a simulation of the differences between mean and maximum silhouette
scores.

2.3.3. Fitting of Silhouette curve using ANN

The time points of TU events can be extracted from the Silhouette
curve; however, Silhouette scores are noisy due to noise present in the
point cloud data obtained from the RGB-D sensor. Thus, we first filtered
the Silhouette scores S(f;) using a median filter with a time window of
20 frames and then fitted filtered scores with an artificial neural network
(ANN). This leads to a smooth curve with descending and raising slopes
which allows extracting of time points in the next step. For fitting S(f;),
we used a fully connected feed-forward network with one hidden layer
where in the hidden layer we used a tansig transfer function and in the
output layer a linear transfer function was used. The number of neurons
in the hidden layer corresponded to the number of sigmoid functions
needed to fit the Silhouette value function S (see Fig. 1C,D), which cor-
responded to changes in cluster configuration, i.e., if two clusters are
merging then objects are touching each other (T) and if two clusters
are getting apart then objects are detaching from each other (U). In the
given example in Fig. 1 for a “turn calculator” action, we have four TU
events (hand lifts up from the table, hand touches the calculator, hand
leaves the calculator, and hand touches the table). Thus, the TU events
follow an irregular pattern of Ts and Us, and to represent two TU events
one sigmoid function is needed as demonstrated by an example shown
in Fig. 1D (see t1, t2 and t3, t4). The number of neurons h in the hidden
layer was set based on the number of TU events m, i.e., h = round(m/2).
In this case we used two neurons in the hidden layer. The network was
fitted ten times and then the best outcome with respect to the minimal
mean squared error between S(f;) and network’s prediction S,y (f;) was
used for the next step.

2.3.4. Extraction of time points

Finally, time points of TU events were extracted by applying dy-
namic thresholding to the derivative of the Sy (f;). We start with some
initial threshold value TH;,; = 0.01 and increase it by 0.005 until the
predefined number of TU time points is obtained. The time points are
extracted at the frame numbers where derivative of the S,yn(f;) crosses
the threshold value TH (see Fig. 1D). The extracted time points were
checked against manual segmentation results and time points when-
ever the algorithm misinterpreted the scene which gave an error mes-
sage. Deviation from human segmentation on average was 3.49 frames
(SD = 3.39), and in 94.45% of the cases deviation was less than ten
frames (i.e., mean value + 2*SD). Thus, we corrected outliers in 5.55%
of the cases, where event segmentation differences were larger than 9
frames by setting values of automated segmentation to corresponding
values of human segmentation. The framework was implemented using
MATLAB where standard MATLAB functions for clustering and ANN fit-
ting were used. Extracted TU events were taken as machine-determined
objective events (TUs) and the middle frames between two TU events
were taken as non-events (nTU) to be maximally far away from an event.

2.4. Experimental procedure

Participants completed three sessions. The MRI session was on av-
erage 4 days (range = 3 - 7) before the behavioral test-retest sessions
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which were on average 14 days apart from one another (range = 14 -
17). During the first session, participants saw the action videos while be-
ing in the MR scanner. Action videos were back-projected onto a screen
and presented centrally with a screen resolution of 640 x 512 pixels.
Participants viewed the screen binocularly through a mirror above the
head coil. Attention capturing questions regularly followed the videos
asking whether an action description is appropriate for the just seen ac-
tion video. Participants responded by pressing one of two response keys
with their right index and middle finger. See Fig. 2A for the experimen-
tal trial design. Including anatomical scans and six short breaks during
the task, the scanning time amounted to approximately 60 min. The
overall duration of the first session was between 90 - 120 min including
consent forms, instructions, preparation, scanning and a short survey at
the end.

The second session comprised the unit marking task (Newtson,
1973). Participants saw the same videos as in the first session. Stimuli
were presented on a 23” monitor by Presentation 18.1 (Neurobehav-
ioral Systems Inc., Berkley, CA, USA) and participants were instructed
to press a button with their right index finger whenever they think an
action step is finished, that is, a breakpoint occurred (cf. Schubotz et al.,
2012). Training trials were offered at the beginning and two breaks were
provided after one respectively two thirds of the trials. This task took
approximately 45 min. See Fig. 2B for the experimental trial design.
In the third session, this task was repeated to retest the unit marking
behavior.

2.5. Behavioral data analysis

2.5.1. Intra-individual retest reliability of unit marking responses

The unit marking procedure is a subjective judgment task, so re-
sponses cannot be right or wrong. Therefore, retest reliability was as-
sessed on single subject as well as on group level to ensure that responses
were consistent and meaningful. In a first step, responses were converted
from milliseconds to frames (one frame amounting to a 1000/23 ms seg-
ment) to allocate each button press to the correspondingly presented
frame of the video. We did not subtract a hypothetical motor response
time as participants were highly familiar with the kind of simple every-
day actions that we employed, and this familiarity was even stronger in
the behavioral sessions when participants saw the videos for the second
respectively third time. Hence, we adopted the premise that responses
were delivered in anticipation of critical events in the videos, not in a
reactive manner.

On single subject level, we examined whether test responses matched
retest responses consistently. To this end, trials in which the number of
responses in the test session equaled the number of responses in the
retest session were used to define an individual consistency criterion c;,
which was then applied to all trials independent of the number of re-
sponses. For each response in each of these same-number-of-responses-
trials, the absolute difference d|.¢| in frames between test button press
t and retest button press t’ was determined, and then averaged over all
responses per participant. The upper bound of the 95% confidence in-
terval (CI) of this mean difference score per participant was taken as
individual criterion ¢; for consistent button presses in the test and retest
session. Thus, the individual criteria considered the individual variabil-
ity in reaction times. To prevent too large cut-off values, we additionally
calculated a global criterion c, by averaging the individual criteria of
our participants. The upper bound of the 95% CI of this average was
used as global criterion c to threshold the individual consistency crite-
ria ¢;. If, for example, the individual criterion c; of a participant was 14.5
frames but the global criterion ¢, was 12.4 frames, the global criterion
was applied for this participant. In sum, for each retest response t, it
was determined whether a test response t appeared within the individ-
ual time window around the retest response (' + c). If this was the case,
it was considered a consistent unit marking response. Subsequently, as a
measure of single subject retest reliability, the percentage of consistent
responses per participant was identified.
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Fig. 2. Experimental design. (A) In the fMRI session, action trials and null trials were passively observed and question trials required participants to confirm or
reject an action description with regard to the preceding action video. The question disappeared after button press. (B) In the two behavioral sessions (test-retest),
participants saw the same videos as during fMRI and indicated by button press when they thought an action step had finished. In case no response was given, the
video was repeated. Example videos are provided in an OSF repository (see https://osf.io/jbwkq/?view_only=e07e36461db248d281597d44c0f83cb9). The entire
stimulus material is available via the Action Video Corpus Muenster (AVICOM, https://www.uni-muenster.de/[VV5PSY/AvicomSrv/).

To compare these results with random button presses, we in a first
step shuffled the button press intervals. To this end, we extracted the
time intervals between button presses (for the first button press in a
video, we used the interval between this response and the video onset)
in the test session per participant. From this distribution, we randomly
drew and cumulated intervals to simulate random test session button
presses while preserving the stochastic characteristics of the behavior.
Using this procedure, we generated ten simulated test session data sets,
calculated the percentage of consistent responses per participant (just
like we did for the actual behavior) and averaged this percentage per
participant over the ten simulations. To test whether participants per-
formed more reliably than randomly, we calculated a paired-sample t-
test between the actual percentage of consistent responses per partici-
pant and the percentages based on the simulated data.

2.5.2. Retest reliability of unit marking responses at the group level

To examine the unit marking responses at the group level, we
smoothed the frame-by-frame data with a rectangular kernel with a
width of three frames (3*(1000/23) = 130.4 ms, referred to as bin here-
after). This means, for each video we aggregated the number of re-
sponses for each frame f; plus those from adjacent frames f; and f,.
Thereby we pooled the data of all participants. A maximum of one re-
sponse per participant was included in a bin of three frames, so that
the maximum value a bin could reach was equal to the total number of
participants (n = 31). The bin value was then allocated to the middle
frame f; of the bin and will be referred to as frame value hereafter. Con-
sequently, the frame value was set to zero if no response had occurred
within the bin.

To determine the group level retest reliability, we correlated the time
series of frame values per video between the test and the retest sessions
(Pearson’s r). The r-values per video were then Fisher z-transformed,
averaged and retransformed to r to give a mean correlation.

2.5.3. Determination of group-consistent unit marks
The maximum frame value of an action video was taken to indicate
group-consistent unit marks (M). Fig. 3 shows the time series of frame
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values based on individual unit markings for two example videos with
corresponding group-consistent Ms at maximum frame values as well as
objective TU events to illustrate their temporal distribution. In order to
objectify the maximum frame values, we utilized the ten simulated test
session data sets that were generated to evaluate single subject retest re-
liability (cf. Section 2.5.1 Intra-individual retest reliability of unit mark-
ing responses). We applied the same protocol to these ten simulated data
sets as we did to the original data to determine group-consistent unit
marks and compared the resulting maximum frame values to the actual
ones. To determine the non-unit-mark (nM) for the fMRI analyses, one
of the frames with the minimum frame value of zero was randomly cho-
sen excluding the first 12 and last 12 frames of each video. Ms and nMs
were then used to model brain responses.

2.5.4. Convergence of human-determined unit marks (M) and objective
events (TU)

The hypothesis of dependence of human action segmentation (M) on
objective touching and untouching events (TU) was tested by analyzing
the relationship between human-determined unit markers and objective
events in several steps. To evaluate whether the majority of Ms coincides
with TUs, we examined how often a TU was not further than two frames
(i.e. maximally ~130 ms) away from an M. Subsequently, we compared
this result to randomly distributed unit marks. As with the test-retest
performance of individual subjects, we shuffled the time intervals gen-
erated by the unit marks and randomly drew from this shuffled distri-
bution to simulate random unit marks while preserving the stochastic
characteristics of the group behavior. We generated ten simulated data
sets containing unit marks, examined individually how often a TU was
no more than two frames away from a simulated M, and then calculated
a one-sample t-test to compare the resulting coincidence rates with the
coincidence rate of the actual unit mark distribution. In addition, we ex-
amined whether the TU closest to an M in each case precedes ("pre-M")
or follows ("post-M") this M, provided that the M and TU events did not
fall at exactly the same time.

Based on the outcome of this analysis (as described in the Results sec-
tion), we examined the temporal relationship between M and TU events



3.1 Touchings Predict Human Action Segmentation

J. Pomp, N. Heins, I. Trempler et al.

A

Frame value

NeuroImage 243 (2021) 118534

Fig. 3. Pooled unit marking responses of the
group (n = 31) for two exemplary object ma-
nipulation videos: turning a bottle (A), putting a
cup on top of a saucer (B). Maximum frame val-
ues were taken as group-consistent unit marks
(Ms), as indicated in red on the lower x-axis.
Respective touching (T) and untouching (U)
events are given in blue and green.
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in more detail in the following way. Firstly, for the closest TU of each M,
we determined: (a) the direction of time lag (pre-M; post-M), and (b) the
type of TU (touching, T; untouching, U). Secondly, we determined the
temporal distance between Ms and the TUs events preceding and follow-
ing it. Thirdly, to test whether Ms have a systematic temporal relation-
ship only to Ts but not Us, or vice versa, we determined separately for
each M the temporally closest touching respectively untouching event
and inspected their temporal distribution.

2.5.5. Identification of sequential TU motifs embedding unit markings
Finally, the same close-M touching and untouching events were
examined with regard to typical sequential motifs embedding Ms us-
ing RStudio (Version 1.3.959, RStudio, PBC, Boston, MA) to identify
stimulus-based (objective) reasons for reporting an event boundary. We
introduce the term "motif" for a sequence of T and U events that em-
bed M events more than randomly often. For this purpose, the two TUs
preceding an M and one TU following an M were taken into account
yielding a TU-TU-M-TU event scheme (e.g., T-U-M-T, T-T-M-U or U-T-
M-U). This event scheme was chosen for several reasons. First, M events
were preceded by at least one and at most two events in most videos
(see the plot in Fig. 5 and see also Table 2 in the Supplementary Mate-
rial for a list of all possible triplets and their probability of embedding
an M). We therefore included two TU events before Ms in the analysis.
The event scheme was then analyzed to clarify whether the occurrence
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of Ms systematically depended on one or two preceding TU events, as
formulated in the hypotheses. In addition, one TU event after M was
considered in each case to distinguish whether Ms occurred only in re-
sponse to TU events or whether they also indicated (predictively) the
occurrence of an upcoming TU event.

Considering the general likelihood of occurrence of such TU-TU-TU
sequential triplets, we now explored whether any of these triplets was
more likely to embed an M than could be expected from its general
(stochastic) likelihood. To this end, we performed a chi-square test using
SPSS 26 (IBM, New York, USA) to determine whether the proportions of
TU-TU-TU triplets embedding an M differ from the general likelihood of
occurrence of these triplets. Subsequently, we ran post hoc chi-square
tests on single cells adjusting the significance values by multiplying by
the original number of cells to account for multiple comparisons. This
analysis identified sequential motifs that significantly co-occured with
Ms.

2.5.6. Manual video content analysis of sequential triplets

For descriptive reasons, we also examined the content of the most
frequently occurring M-embedding motifs. Since object identity was rel-
evant for this, this mapping had to be done manually, as the algorithm
does not distinguish between objects. For this video content analysis, we
first defined the phases of transport and manipulation as ‘hand transport’
(from untouching of the hand until it touches again), ‘object transport’
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(from untouching of the object until it touches again), ‘object manipula-
tion’ (from hand touching the object until it untouches after manipula-
tion), and ‘tool transport’ (hand with tool untouches until tool touches
object); then we defined the phases where the hand or the tool is in
contact with the object without moving (transporting or manipulating)
as ‘start of object transport’ (from hand touching object until object un-
touching to be transported), ‘end of object transport’ (from object touch-
ing at the end of transport until hand untouching the object), and ‘end
of manipulation with a tool’ (from untouching of a part of the object to
untouching of the tool and the object). For the Ms embedded in T-U-X
sequences (i.e., sequences of three events which start with a T followed
by a U and then X stands for either T, U or the end of the video), ei-
ther in the first or in the second phase, we extracted the corresponding
action phase and compared the occurrence rates with the general likeli-
hood of occurrence of these phases using Pearson’s chi-squared test and
post hoc chi-square tests on single cells adjusting the significance values
by multiplying by the original number of cells to account for multiple
comparisons.

2.6. fMRI data analysis

2.6.1. fMRI data acquisition and preprocessing

Functional MRI data were acquired using a 3-Tesla Siemens Mag-
netom Prisma MR tomograph (Siemens, Erlangen, Germany) with a
20-channel head coil. Prior to functional imaging, a 3D-multiplanar
rapidly acquired gradient-echo (MPRAGE) sequence was run to obtain
high resolution T1-weighted images (scanning parameters: 192 slices,
TR = 2130 ms, TE = 2.28 ms, slice thickness = 1 mm, FoV = 256 x 256
mm?, flip angle = 8°). Blood-oxygen-level-dependent (BOLD) contrast
was measured by gradient-echo echoplanar imaging (EPI). Seven EPI se-
quences were used to measure the seven experimental blocks (scanning
parameters: 33 slices, TR = 2000 ms, TE = 30 ms, slice thickness = 3 mm,
FoV = 192 x 192 mm?, flip angle = 90°).

Anatomical and functional images were preprocessed using the Sta-
tistical Parametric Mapping software (SPM12; The Wellcome centre for
Human Neuroimaging, London, UK) implemented in MATLAB R2019a.
Preprocessing included slice time correction to the first slice, realign-
ment to the mean image, co-registration of the functional images to the
individual structural scan, normalization into the standard anatomical
MNI space (Montreal Neurological Institute, Montreal, QC, Canada) on
the basis of segmentation parameters, as well as spatial smoothing using
an isotropic 8 mm full-width at half maximum (FWHM) Gaussian ker-
nel. To remove low-frequency noise, a 128 s temporal high-pass filter
was applied to the time-series of functional images.

2.6.2. fMRI design specification

Statistical analyses of functional images were done using SPM12 im-
plementing a general linear model (GLM) for serially autocorrelated ob-
servations (Friston et al., 1994; Worsley and Friston, 1995) and a con-
volution with the canonical hemodynamic response function (HRF). In
each GLM, the six subject-specific rigid-body transformations obtained
from realignment were utilized as regressors of no interest. The volumes
of the first two video presentations of each EPI were discarded to allow
for T1-equilibrium effects.

To investigate functional areas specialized in the processing of action
boundaries, a GLM was constructed including eight regressors of inter-
est coding for onsets and durations of the specific event types: video,
group-consistent unit mark in the test-retest session (M), no unit mark
in the test-retest session (nM), objective touching event (T), objective
untouching event (U), non-TU (nTU), null event and question. For each
of the 350 Ms, a nM was determined (n = 350) (see Section 2.5.3 De-
termination of group-consistent unit marks) and included in the design.
Likewise, all 814 touching and all 772 untouching events were included
and correspondingly 772 nTUs (see Section 2.3 Video segmentation and
SEC determination). Both types of non-critical events (n'TU and nM) ap-
peared distributed over the video duration (Supplementary Figure 1)
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and were chosen to be maximally far away from their corresponding
events (i.e., as nTUs, the frame in the mid between two TU events were
chosen and as nMs, frames where no participant marked a unit). Group-
consistent unit marks instead of individual unit marking responses were
chosen to model the data to obtain a more stable model.

To prevent basic and object motion as well as effects of the mere
time point in the video from confounding our analyses, we considered
several factors in the choice of non-critical events and benefitted from
the natural structure of our events. First, h(MT was among the regions we
expected to show increased activity at action boundaries. Previous stud-
ies reported that activity in hMT increases at event-segment boundaries,
suggesting that motion information is processed particularly intensively
here (Schubotz et al., 2012; Speer et al., 2003; Zacks et al., 2006). How-
ever, to interpret the increased activity in hMT at action boundaries in
this sense, it must be ruled out that this effect is merely due to an in-
crease in motion in the stimulus. This can already be assumed theoreti-
cally, since TU events are accompanied by a sharp slowdown or even a
complete stop of the movement. However, to show this empirically, we
performed a dense optical flow analysis for each video and tested the
correlation between the optical flow values and the binary vectors of
touching events and untouching events (1 = T/U, 0 = nT/nU). We then
calculated t tests on r-values across all videos. As a result, we found
a weak but highly significant negative correlation of optical flow with
touching events (t(293) = —5.7, p < .001, mean r = —0.02) and no signif-
icant correlation of optical flow with untouching events (1(293) = —1.4,
p =.174, mean r = —0.006). In addition, we tested for the same correla-
tion effects based on the concatenated vectors of all videos, which also
revealed a weak but significant correlation of optical flow with concate-
nated touching events (r(33,748) = —0.02, p < .001) and no such ef-
fect for concatenated untouching events (r(33748) = —0.005, p = .361).
Thus, as suspected, a weak but clearly significant negative correlation
of motion and T events was found. Although such a weak correlation
should be interpreted with caution, it allows us to rule out the possi-
bility that T events were associated with an increase in motion in the
stimulus.

Secondly, neither TU events nor M, nTU or nM events did system-
atically occur only at the beginning or the end of the videos, but were
distributed across the entire video duration (Fig. 5, Supplementary Fig-
ure 1). Relative to the length of the video, the earliest M appeared after
19% of the video and the latest M at the end of the video (M = 50%,
SD = 23). The earliest nM appeared after 11% and the latest after 90%
(M = 45%, SD = 23). Analogously, the earliest TU event appeared after
2% and the latest at the end of the video (M = 50%, SD = 30) and the
earliest n'TU event appeared after 7% and the latest after 94% (M = 50%,
SD = 25).

On the first level, t-contrasts for Ms versus nMs were calculated and
submitted to a second-level t-test to detect functional areas specialized
in the processing of action boundaries on group level. Analogously, t
contrasts for T versus nTU and U versus nTU were conducted. Further-
more, we contrasted all TUs (T + U) versus nTUs to detect areas spe-
cialized for both touching and untouching. To assure the specificity of
these results, we calculated t-contrasts for the direct comparison be-
tween human-determined and objective events which means the con-
junction of M versus T and M versus U (M>T n M>U), the direct contrast
of T versus M (T>M) and the direct contrast of U versus M (U>M).

Because the fMRI design described above considered only M events
that occurred consistently across the whole group (cf. Section 2.5.3 De-
termination of group-consistent unit marks), one could argue that our
analysis did not consider local peaks that could well indicate equally
significant agreement between subjects. For this reason, we created an-
other design as a control, an additional GLM including a regressor for
video frame onset with a parametric modulator considering all individ-
ual unit marks Mp (parametric unit mark). This parametric modulator
indicated the continuous moment-by-moment fluctuation of unit mark-
ing responses of all subjects (number of unit marking responses relative
to number of participants, e.g. 5/31, 2/31 and so forth) instead of bina-
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rized Ms and nMs, and replaced the regressors video, group-consistent
unit mark in the test-retest session (M) and no unit mark in the test-
retest session (nM). We then generated t-contrasts for Mp, as well as for
the other contrasts of interest to control for the impact of modeling Ms
parametrically, including T versus nTU, U versus nTU and TU versus
nTU.

For all contrasts, we applied explicit gray matter masking on the
first level. Therefore, we smoothed the individual normalized gray
matter image at 8 mm FWHM and created a binary mask with a
threshold of 0.2 using SPM12, as proposed by Jonathan Erik Peelle
(http://jpeelle.net/mri/misc/creating_explicit_ mask.html). For second-
level whole-brain analyses, false discovery rate (FDR) correction at p
< .005 peak level and a cluster extent threshold of 15 voxels was
applied. Activity patterns were visualized using MRIcroGL 3D visual-
ization software (McCausland Center for Brain Imaging, University of
South Carolina, USA). Unthresholded statistical maps have been up-
loaded to NeuroVault.org (Gorgolewski et al., 2015) and are available
at https://neurovault.org/collections/8736.

3. Results
3.1. Behavioral results

3.1.1. Intra-individual retest reliability of unit marking responses

Regarding single-subject level retest reliability, on average 62.99%
were consistent responses (i.e., the test response matched the retest
response in time) ranging between the participants from minimally
33.73% to maximally 87.56% (SD = 9.13). The individual consistency
criterion c; that defined the width of the time window around the retest
response individually for each participant was minimum 4.6 frames (i.e.,
~200 ms), median 8.5 frames (i.e., ~370 ms) and set to a global maxi-
mum c, of 13 frames (i.e., ~565 ms), i.e., the rounded up upper bound
of the 95% CI of the individual criteria (95% CI [7.98, 12.36]). Impor-
tantly, the consistency of the participants’ unit marking behavior was
significantly better than random button presses (£(30) = 10.6, 95%-CI
[17.11,25.24], p < .001, d = 1.91, two-sided). In sum, human unit mark-
ing was intra-individually consistent across the test-retest sessions.

3.1.2. Retest reliability of unit marking responses at the group level

Correspondingly, between-subjects unit marking behavior was con-
sistent, as revealed by a significant correlation between group-based
test-retest segmentation performance. Correlations testing the group
level retest reliability yielded a mean correlation of test and retest
smoothed time series of frame values per video of r,(292) = 0.55
(Fmin = 0.19, rpa, = 0.86; each individual correlation per video being
significant, all p <= 0.04).

3.1.3. Determination of group-consistent unit marks

The frame with the maximum frame value in a video that rep-
resents the maximum agreement between participants was taken as
group-consistent M. On average this maximum frame value was 8.05
(SD = 1.82) ranging from 5 to 14. All maximum frame values were at
least two standard deviations above the mean frame value of the respec-
tive video, which is in line with previous approaches (Schubotz et al.,
2012). The maximum frame values resulting from simulated random
unit markings ranged on average from 5.70 to 5.87 which was clearly
below 8.04. In none of the simulated data sets were the maximum
frame values two standard deviations above the respective video mean.
This suggests that the subjects did not segment the videos randomly.
The number of Ms per video on group level ranged from 1.0 to 4.0
with a mean of 1.2 (§D = 0.45, n = 294) and was significantly lower
(1(586) = 67.2, 95%-CI [-4.33,—4.08], p < .001, d = 5.55, two-sided)
than the number of TUs per video that ranged from three to seven
(M = 5.4, SD = 0.97, n = 294). On single-subject level, the average num-
ber of individual test-retest consistent unit marking responses per video
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ranged from 0.7 to 1.8 with a mean of 1.3 (SD = 0.21, n = 294). Im-
portantly, the number of individually consistent unit marking responses
per action significantly correlated with the number of TUs per action
(r(292) = 0.52, p < .001), pointing to a systematic relationship between
the number of Ms and TUs.

3.1.4. Temporal relationship between Ms and TUs

With regard to the temporal relation between Ms and TUs, for about
one third (28.3%) of the Ms, the time lag to the next TU was maximally
two frames, i.e., up to +130 ms. This coincidence rate was higher than
the coincidence rate generated by random unit marks (t(9) = —4.0, 95%-
CI [23.23,26.88], p = .003, d = 1.27, two-sided). Accordingly, Ms were
systematically delivered in relation to TUs which was in line with our
expectation,

Regarding the temporal relationship of Ms and their closest TUs on
macroscopic level, we found that Ms followed TUs with a mean latency
of 6.2 frames (SD = 4.5; i.e., 268 + 195 ms) and preceded TUs with
a mean latency of 4.5 frames (SD = 3.4; i.e.,, 196 + 147 ms). More-
over, we found the majority (73%) of Ms to follow a TU; among these
cases, there was a bias towards following a touching event (45%) vs.
following an untouching event (28%). Ms that preceded the closest TU
(22%) mostly did so for untouching events (17%) but rarely for touch-
ing (5%). The exact temporal distribution of pre-M and post-M objec-
tive events differentiated for touching and untouching revealed that if
the closest TU to an M was a touching event, it mostly preceded the M
(Median = -5 frames or ~217 ms). In cases where the closest TU to an
M was an untouching event, its likelihood of occurrence peaked closer
to the M (Median = -2 frames or ~87 ms). Furthermore, the disper-
sion for touching events (SD = 5.5) was descriptively smaller than for
untouching events (SD = 6.0). Examining the likelihood of occurrence
of close-M touching and close-M untouching events separately (Fig. 4),
this pattern became even clearer. Close-M touching events more sharply
preceded the M (Median = —6, SD = 13.3) whereas close-M untouching
events more widely scattered around Ms with a slight precedence bias
(Median = -2, SD = 17.3). These findings suggest that Ms often followed
a T or scattered around a U event.

3.1.5. Sequential TU motifs typically embedding Ms

A major goal of our study was to identify stimulus-based (objective)
reasons for reporting an event boundary. Thus, our approach was to
examine the systematic relationship between touching and untouching
on the one hand and Ms on the other. To test that this relationship
was not random, we tested whether the frequency of an M-embedding
TU scheme (TU-TU-M-TU) was significantly different from its purely
stochastic occurrence probability (independent of its cooccurrence with
an M) in the experiment. The analysis of the TU-TU-TU sequential
triplets with regard to their embedding Ms revealed that of all possi-
ble TU-TU-M-TU event schemes, some were more likely to embed an M
than others, and these were T-U-M-TU (i.e., first a T, then a U, then an
M, and then either a T or a U) and TU-T-M-U (i.e., either a T or U at
the beginning and then a T, an M and a U) sequences. Thus, most of
the Ms (80%) coincided with a touching-untouching (T-U) motif (either
T-U-M or T-M-U) within these triplets. This highlights the relevance of
T-U motifs, where Ms occur either between T and U (T-M-U) or after
T-U (T-U-M). Importantly, the proportion of triplets embedding an M
significantly differed from the general likelihood of occurrence of these
triplets (12{6) = 67.03, p < .001, Cramer’s V = 0.46, n = 314). Post
hoc single cell tests showed that the triplets U-T-U (y2(1) = 28.55, p <
.001, Cramer’s V = 0.30, n = 314) and T-U-U (y2(1) = 12.32, p = .003,
Cramer’s V = 0.20, n = 314) embedded Ms more frequently than ex-
pected and the triplet T-U-T (¥2(1) = 38.17, p < .001, Cramer’s V= 0.35,
n = 314) less frequently than expected, based on the general likelihood
of occurrence of these triplets. See Supplementary Table 2 for the ob-
served and expected numbers. Thirty-six Ms did not have two TU events
before and one TU event after it such that they were not included in the
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Fig. 4. Likelihood of occurrence of M-close touching events and M-close untouching events; the solid red line indicates the point in time where participants delivered
a response for unit markings in the test-retest sessions (M), the lower x-axis shows the temporal distance of the events to M in frames and the upper x-axis additionally
gives milliseconds for orientation.
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Fig. 5. Touching (T) and untouching (U) events as determined by computer vision for two plary object ipulation videos, and corresponding unit marks (M)

delivered by participants. Single frame images are shown for all identified T and U events, with frame numbers given in the downright corner of the respective image.
X-axes show Ms delivered relative to TU events (i.e., distances between TU events are warped and Ms are plotted according to their proportional timing between
two events); S = Start, U = Untouching, T = Touching, E = End. A) “Turning calculator” action with Ms on the upper x-axis in red and Ms for the other three objects
(i.e., an egg timer, a mug, a bottle) being turned on the lower three x-axes in gray. The horizontal bar above the single frame images shows the actual temporal
distribution of the TU events across the action video in milliseconds as also given in the frame numbers (1 frame lasted approximately 43.5 ms). B) Correspondingly,
“putting cup on top” action showing the Ms for the cup-using action on the upper x-axis in red and the Ms for the other three objects being put on top (i.e., two
packs of playing cards, the lid of a tea tin, the lid of a container) on the lower three x-axes in gray.
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Fig. 6. Functional MRI activation at p < .005, peak-level FDR-corrected, for the main contrasts of post-fMRI human-determined unit marks (M>nM, red), objec-
tive touching events (T>nTU, blue) and objective untouching events (U>nTU, green). The overlap of the activation of touching and untouching in the LG/CUN
region is shown additively in cyan. PMd = dorsal premotor cortex, dAl = dorsal anterior insula, PHG = parahippocampal gyrus, I[FJ = inferior frontal junc-
tion, SPL = superior parietal lobule, LG = lingual gyrus, CUN = cuneus, LOC = lateral occipital cortex, hMT = motion area, ACC = anterior cingulate cortex,
alPS = anterior inferior parietal sulcus, SMG = supramarginal gyrus. Unthresholded statistical maps have been uploaded to NeuroVault.org and are available at

https://neurovault.org/collections/8736.

analysis of sequential motifs. Fig. 5 shows the distribution of Ms rela-
tive to TU events exemplified by two object manipulations. Please note
that the delay between events is displayed in a warped fashion and does
not show the temporal distribution of the TU events in the course of the
action video. In sum, our results showed that Ms coincided with a T-U
motif disproportionately often, i.e., significantly more often than would
have been expected based on their frequency of occurrence. We can
conclude from these findings that people usually locate action bound-
aries exactly where a touching-untouching motif occurs in contrast to,
for instance, untouching-untouching sequences.

3.1.6. Action phases typically embedding Ms

As 80% of the Ms appeared in either T-U-M or T-M-U, we had a closer
look at T-U-X sequences (where X stands for either T, U or the end of
the video) embedding an M either in the first or in the second phase.
The respective video content analysis of the time between T-U and U-X
revealed that the observed action phases embedding an M significantly
differed from the general likelihood of occurrence of these action phases
(72(6) = 89.16, p < .001, Cramer’s V = 0.57, n = 279) (Supplementary
Table 3). Post hoc single cell tests showed that Ms were more frequently
than expected placed in phases of object manipulation (y2(1) = 34.72,
p < .001, Cramer’s V = 0.35, n = 279) and at the start of object trans-
port (y2(1) = 34.16, p < .001, Cramer’s V = 0.35, n = 279) while be-
ing less frequently than expected placed in phases of hand transport
(72(1) = 14.81, p < .001, Cramer’s V = 0.23, n = 279), object transport
(72(1) = 9.91, p = .012, Cramer’s V = 0.19, n = 279) and at the end of
object transport (2(1) = 13.60, p = .002, Cramer’s V = 0.22, n = 279).
Overall, the only action phases in which subjects emitted significantly
more Ms than statistically expected were during object manipulation
and at the beginning of object transport.

Together, this pattern of results clearly shows a systematic temporal
relationship between TUs and M. It suggests that participants pressed
the button for action segmentation in response to sequential T-U motifs
that indicate object manipulation or the start of object transport. Still,
there were many more TUs than Ms, and consequently, the majority of
TUs did not relate to an M. This allowed a clear dissociation of the neural
processes associated with TU analysis and segmentation decisions.
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3.2. fMRI results

In order to neither over- nor underestimate differences between T, U
and M events, we considered each event in contrast to unspecific points
in time between them (nTU and nM) as well as the conjunctions of direct
contrasts for M (M>T n M>U) and direct contrasts for T (T>M) and U
(U>M). Hence, our discussion is restricted to brain activity uniquely
observed for each of these three event classes.

To identify the network associated with unit marking in post-fMRI
test-retesting, we ran a whole-brain analysis of the contrast M>nM
(Fig. 6) which revealed significant bilateral activation in the lateral oc-
cipital cortex (LOC) comprising hMT (see e.g. Tootell et al., 1995, report-
ing similar peak coordinates; Table 2), the superior parietal lobule (SPL)
and significant unilateral activation in the left fusiform gyrus (FG), right
anterior inferior parietal sulcus (aIPS) and right supramarginal gyrus
(SMG).

To address the brain response to the objective touching and untouch-
ing events, we calculated the contrast TU>nTU that yielded a bilateral
activation cluster including the cuneus, lingual gyri and right parahip-
pocampal gyrus. This cluster had no overlap with the pattern found for
unit marks (M>nM).

Examining TU events in more detail, we separately computed T>nTU
and U>nTU. The brain response to touching events (T>nTU; Fig. 6)
showed a bilateral activity pattern in secondary visual areas span-
ning lingual gyri and cuneus. The brain response to untouching events
(U>nTU; Fig. 6) showed a more extended network going beyond the
cluster of lingual gyrus and cuneus also identified for T>nTU. This un-
touching specific activity comprised parahippocampal gyrus (PHG), the
parieto-occipital fissure, dorsal premotor cortex (PMd), right anterior
SFS (aSFS), left inferior frontal junction (IFJ), the right dorsal anterior
cingulate cortex (dACC), and dorsal anterior insula (aAl). See Table 1
for the peak maxima of the described main contrasts.

The additionally calculated direct contrasts between human-
determined and objective events validated the specificity of the above
findings (Supplementary Figure 2). The conjunction of M>T n M>U
largely yielded the same pattern as M>nM with LOC/hMT, SPL,
FG, alPS/SMG, and furthermore found the ventral premotor cortex
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Table 1
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Maxima of activation from the main contrasts of the second-level whole-brain analyses at

p <0.005 peak-level FDR-corrected.

Macroanatomical H Cluster t-value MNI Coordinates
R Extent

Location X y z

M > nM

Lateral occipital cortex / human motion area L 335 9.30 —48 -73 -4
R 452 9.25 51 —64 -7

Fusiform gyrus L 40 6.63 —48 -52 -19

Superior parietal lobule L 126 6.84 —24 -52 68
R 102 7.02 18 -55 68

Anterior inferior parietal sulcus R 27 5.24 54 -25 50

Supramarginal gyrus R 44 4.74 57 —-25 20

TU > nTU

Cuneus L 1491 8.56 -9 -97 17
R 8.45 15 —94 29

Lingual gyrus L 7.58 -6 -79 -1
R 5.80 12 -79 —4

Parahippocampal gyrus R 4.88 30 -37 -16

T > nTU

Lingual gyrus L 577 7.82 -9 —76 -1
R 6.43 12 -76 -4

Cuneus L 6.97 -9 —88 23
R 6.50 9 -76 26

U >nTU

Lingual gyrus L 1522 9.82 —24 —73 —4
R 8.90 33 -52 -7

Cuneus L 8.74 -9 -100 17
R 8.38 15 —94 29

Parieto-occipital fissure L 68 5.15 =21 -58 14

Parahippocampal gyrus L 6.23 -30 -34 -16
R 5.66 30 -31 -16

Dorsal premotor cortex L 204 7.39 —24 2 53
R 174 6.54 24 2 50

Anterior superior frontal sulcus R 20 5.07 27 35 29

Inferior frontal junction L 27 5.22 -36 5 29

Dorsal anterior insula L 31 6.03 -27 23 -1
R 74 6.22 30 23 5

Dorsal anterior cingulate cortex R 38 5.73 12 20 32

Note. H = Hemisphere, MNI = Montreal Neurological Institute, L. = Left, R = Right, M = Unit
mark, nM = non-unit mark, T = touching event, U = untouching event, nTU = non-

touching/untouching event.

(PMv) / inferior frontal gyrus (IFG) and mid-insula to be activated.
The direct contrast of T>M revealed the same pattern as T>nTU includ-
ing bilateral lingual gyrus and cuneus. Finally, the direct contrast of
U>M largely reflected the above referred findings for U>nTU yielding
cuneus activation, the parieto-occipital fissure, PHG, PMd, aSFS, dAl,
and ACC. See Supplementary Table 4 for the peak maxima of these direct
contrasts.

The additionally calculated parametric GLM, considering all indi-
vidual unit marking responses as a cumulative parametric regressor Mp,
replicated and validated the specificity of the above findings. Investigat-
ing unit marks as parametric modulator based on the time series of the
pooled unit marking responses revealed the same pattern as M>nM with
LOC/hMT, FG, SPL, SMG, and furthermore yielded additional activity in
angular gyrus, dorsal premotor cortex, and left IFG. All other contrasts
(TU>nTU, T>nTU, and U>nTU) remained unchanged (see Supplemen-
tary Table 5 for the peak maxima of all contrasts from this GLM).

To summarize the fMRI results, we found distinct activity patterns
for touching and untouching events which both clearly deviated from
the network activated by the (independently tested) unit mark process-
ing. Touching events’ activity pattern comprised secondary visual acti-
vation and untouching events’ activity pattern extended this network to
parahippocampal, dorsal prefrontal, medial frontal and insular regions.
In contrast, unit marks (as determined in the post-fMRI test-retest ses-
sions) revealed increased activity of LOC, FG and parietal regions. The
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direct contrasts between Ms, Ts and Us corroborated differentiability of
these events.

4. Discussion

The present study used computer vision methods to investigate
whether human action segmentation behavior can be traced to objec-
tifiable events of touching and untouching and fMRI to investigate the
neural basis for processing these events. Participants watched videos of
object-directed actions in an fMRI session, and subsequently two more
times in a behavioral test-retest regime to ensure reliability of the de-
termined Ms and to model brain activity at M. In the same set of action
videos, the occurrences of touching and untouching events were deter-
mined based on a computer vision algorithm. Our results indicate that
touching-untouching motifs can predict human action segmentation and
are processed in distinct networks. Both behavioral effects as well as
BOLD responses were highly informative with regard to the question
whether touching and untouching events can help to objectify human
action segmentation, as will be discussed in the following.

Considering first the behavioral results, the test-retest procedure fol-
lowing the fMRI session revealed that humans’ action segmentations
were relatively consistent both on the individual as on the group level
(cf. Schubotz et al., 2012). Moreover, considering the points in time
where participants agreed on unit marks, we found a consistent relation-
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ship to computer vision-based touching and untouching events. Specifi-
cally, the majority of Ms systematically coincided with a T-U metif, such
that Ms followed a touching event and largely co-occurred with a sub-
sequent untouching event. Thus, the most frequently observed motifs
were T-U-M (about 27% of the Ms) and T-M-U (about 53% of the Ms).
The temporal dispersion of these events in relation to Ms suggested that
Ms appeared to be often triggered by a touching event. Thus, the touch-
ing events’ frequency distribution peaked rather sharply about 260 ms
before the M; the untouching events’ frequency distribution showed a
broader dispersion in time, scattering around the Ms with a mild peak
around 90 ms before the M.

It is important to note that T-U sequences were a necessary but not
a sufficient condition to bring about an M. That is, if we observed an M,
it coincided in most cases (80%) with a T-U motif; but for most (69%)
of the T-U motifs, no M was recorded (see Supplementary Table 2). The
overall base rate of triplets containing the T-U motif was the highest
among all existing triplets, with UTU (41.2%) and TUT (42.4%) being
especially frequent. Thus, if participants set a unit mark, they mostly
did so in response to a touching event announcing an untouching event,
but in many other cases, touching events preceding an untouching event
did not trigger a unit marking response. Hence, we can explain the cause
for action segmentation in most cases, but also found that humans select
one third of these triggering events and disregarded the rest. Note, that
Ms could be driven only by T and the relation to U could result from the
intervals between T and U. To further investigate this possibility, our
explorative findings need to be explicitly tested in future research.

The video content analysis of action phases further elucidated the
difference between T-U motifs triggering an M and those that did not. It
revealed that, in the first place, Ms announced the object manipulation
and the start of the object transport. Less frequently, Ms were placed
during the hand transport, during the object transport, and at the end of
the object transport. Thus, participants segmented actions particularly
during an object manipulation and at the onset of an object transport.
These two phases of the observed actions were the only ones that were
marked more frequently, almost twice as often, than would have been
statistically likely based on the general frequency of occurrence. No-
tably, object-directed manipulation actions always - and only - consist
of two types of phases in variable number and order, i.e., transport and
manipulation. Our findings show that at least 80% of human action seg-
mentations can be directly related to the beginning of a transport or the
manipulation. Against the backdrop of these novel behavioral findings,
we investigated the neural networks associated with the processing of
touching and untouching events and their relation to human-determined
action segmentation.

Our behavioral findings suggested that touching events are impor-
tant anchor points of action segmentation, resulting in unit marks dis-
tributed around the subsequent untouching event. Touching events
themselves, unless they involve grabbing very specific tools in clearly
defined contexts, are hardly informative in terms of updating current
expectations. Rather, they are mostly points of least predictability of
action, as movement comes to a brief halt. Relative to the transport
and relative to the phase of manipulation, touchings are therefore more
uncertain as the end point of a movement. In our videos, at the time
of touching, the now expected manipulation was relatively clearly pre-
dictable only in some videos (put cup on saucer), in others not (turn cal-
culator). Such points of lowest predictability were proposed to trigger
a visual error signal, initiating upstream areas’ updating of the predic-
tive model (Zacks et al., 2011). Fitting this notion, we found increased
secondary visual cortex activation comprising cuneus and lingual
gyrus pointing to increased exploratory vision and visual gain (Shipp,
2016).

As a counterpart to touching, untouching events terminated the
halted movement at touching events and signaled the beginning of
the next goal-directed movement. Here, theoretically, competing pre-
dictions about potentially upcoming options are retrieved, compared
with the actually observed movement at untouching events, and finally
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disambiguate the observer’s expectations. Brain activity at untouching
events appeared to reflect these potential processes. On the one hand,
activity increased in the anterior dorsal insula (dAI) alerting to a be-
haviorally important event (Han et al., 2019; Tamber-Rosenau et al.,
2018), dorsal anterior cingulate cortex (dACC), which is engaged in
saliency detection and attention switching (Han et al., 2019), and fi-
nally the inferior frontal junction (IFJ) proposed to subserve transient,
dynamic attentional reconfiguration (Sundermann and Pfleiderer, 2012;
Xu, 2014). On the other hand, two components that we formerly iden-
tified for action segmentation (Schubotz et al., 2012), superior frontal
sulcus (SFS) and parahippocampal gyrus (PHG), could now be objec-
tively attributed to the processing of untouching. SFS/PMd serve the se-
lection between alternative competing motor acts based on conditional
operations (Petrides, 2005; Tamber-Rosenau et al., 2011). In support
of this view, PHG engagement is reliably seen in tasks where contex-
tual associative information is encoded in or retrieved from memory
(Aminoff et al., 2013) and is sensitive to stochastic structure of observed
events (Amso et al., 2005; Schiffer et al., 2013a; Turk-Browne et al.,
2010). Parahippocampal activity extended along the anterior-posterior
axis, comprising both posterior and anterior segments which have been
related to visuospatial perception and contextual mnemonic processes,
respectively (Baumann and Mattingley, 2016). The concurrent engage-
ment of SFS and PHG at untouching events could reflect a comparison
between internal model based predicted and actually perceived state
changes (Beudel et al., 2016). Summarizing these findings, alertness sig-
nificantly increases at untouching events, initiating the attentive inspec-
tion of the precise hand movement to update expectations and re-focus
attention for the upcoming action step.

Object manipulation and object transport unfolding after touching
signified a new action segment, and were mostly assigned a unit marker
response. Considering brain activity arising at the moment in which par-
ticipants — in the test/retest sessions following the fMRI experiment —
would press the response button to indicate a meaningful action seg-
ment, we found strong activation restricted to three areas compris-
ing SPL, IPL, and lateral occipitotemporal cortex. The latter two ar-
eas indicate processing of objects, especially in the visuotactile domain,
and their manipulation (Creem-Regehr, 2009; Grill-Spector et al., 2001;
Lingnau and Downing, 2015), while SPL is involved in vision for ac-
tion (Gamberini et al., 2020) and, particularly relevant for the present
findings, in controlling of all phases of prehension during reach-to-grasp
actions (Fattori et al., 2017) as well as observation of reaching/grasping
during object manipulation (Wurm et al., 2017). Against the backdrop
of the functional profiles of IPL, SPL and LOC, it shows that post-fMRI
unit marking coincides with the posterior brain being massively tuned
to the analysis of the unfolding step in object manipulation.

Using fMRI and computer vision to investigate human action seg-
mentation was motivated by the suggestion that relying solely on the
traditional approach of unit marking behavior does not necessarily
tell us which segmental structure the brain processes when we ob-
served actions. Obviously, the brain’s ability to recognize and learn
statistical structures in stimuli need not be accompanied by our abil-
ity to report these structures explicitly (Fiser et al., 2010; Perruchet and
Pacton, 2006). The present findings corroborate our assumption, show-
ing that individuals’ unit marker responses were tightly bound to T-U
motifs, whereas only one third of all T-U motifs triggered a unit marking
response. These T-U motifs predominantly indicated object manipula-
tion and the start of object transport. Brain responses for objective and
subjective events were clearly distinguishable, and the functional pro-
files of the activated areas suggested that these events were meaningful
and can be interpreted in the context of model updating. Untouching
events, and not only those which specifically follow a touching event in
a T-U motif, denote action segments as processed by the brain more ob-
jectively than human unit marking behavior can do. While to the brain,
untouching is informative with regard to the unfolding movement in ei-
ther case, individuals focused on the moment in which the hand grasped
the object to initiate the object manipulation or transport, while occa-
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sions for untouching, such as hand-to-object transport, were not consid-
ered.

Touching and untouching relations can be reliably detected by com-
puter vision without any need to (train to) identify specific objects (e.g.,
a pencil) and relate them to typical kinds of manipulation (e.g., writ-
ing, drawing). Event segmentation has been shown to be fundamen-
tal to how children make sense of the world (Levine et al., 2019) and,
speculatively, detecting touching relations could be a very simple way
for the baby brain to analyze structure in actions, and learn to rec-
ognize recurrent meaningful units way before knowing what we typ-
ically do with objects. However, we also know that everyday objects
that are familiar to us are strongly associated with certain actions, and
this knowledge efficiently modulates the observer’s expectation of an
action (El-Sourani et al., 2019, 2018; Gupta et al., 2007; Hrka¢ et al.,
2015; Schubotz et al., 2014). Therefore, it would be very important and
exciting to investigate what influence this object knowledge has on the
segmentation of observed actions.

An important limitation to the generalizability of our results and in-
terpretation concerns the nature of the stimuli used. Our videos were
short, discrete, and consisted only of an actress at a table manipulating
an object. In contrast, action perception in real life occurs in continu-
ous and more complex contexts. We know from previous studies that
the space in which an action is observed (Wurm et al., 2012; Wurm and
Schubotz, 2012), the identity of the actor (Hrka¢ et al., 2013), and con-
textual objects (El-Sourani et al., 2019, 2018) all have an impact on the
brain activity of the action observer. Whether our results are transfer-
able to realistic situations therefore needs to be tested in further studies
with more realistic, ecologically valid stimuli.

4.1. Conclusion

Whether we observe actions, listen to music, or hear speech, we
easily recognize structure in continuous stimuli. In the present study,
using behavioral measures and brain activity, we identified sequential
touching relations as a reliable and objective basis for segmenting ob-
served object manipulation. Our findings offer interesting potential ap-
plications, for instance, in human-machine interaction, by allowing the
machine to make reliable predictions about the way people understand
action structures. This information can also help optimizing training
protocols used to restore function in stroke patients.
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Table 1. List of individual object manipulations

Manipulation Objects
. Bottle of plant
Turn Calculator Egg timer Cup
food
Pull Notebook Letter Playing card Flyer
Rip off Garbage sack Croissant Masking tape Notepad
. . Flowerpot, Newspaper,
Uncover Dice cup, dice Postcards
key cellphone
Two toy
Take down Two notepads Two bowls Two cups
blocks
Two Two packets
Take away Two shower gels . Two marker pens
mandarins of tea
Two packs of playing L . .
Put on top Tea tin, lid Container, lid Saucer, cup
cards
. Two remote Piece of a
Put together Two spice shakers Pen, pens
controls puzzle, puzzle
Paper Cardboard
Cut Cake, knife .p ! Fabric, scissors I
scissors carpet knife
Container with
Cup of coffee, Sugar package, Bowl of flour,
Scoop ground coffee, .
. teaspoon measuring spoon  hand
measuring spoon
Brown .
. . Folder, piece
Hide Plastic cup, marple envelope, Egg cozy, egg
of paper
letter
Wallet, bank Cup of tea, sugar  Piggybank,
Put into Hard disk, case . P & ggy
bill cube coin
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Table 2. Analysis of sequential motifs embedding M

https://doi.org/10.1016/j.neurcimage.2021.118534

Triplet M embedded in triplet

General occurrence per

triplet

Observed Likelihood Expected Observed Likelihood

number number number
U-T-u 176 0.503 129.4 411 0.412
T-U-T 79" 0.226 133.1 423 0.424
U-T-T 28 0.080 22.9 73 0.073
T-U-U 14" 0.040 5.7 18 0.018
TT-U 10 0.028 15.4 49 0.049
TTT 6 0.017 1.9 6 0.006
U-u-T 1 0.003 5.7 18 0.018
U-u-u o 0.000 - 0 0.000

Note. T = Touching event, U = Untouching event, M = Unit mark. Asterisks indicate whether

the observed number of triplets embedding M significantly differed from the expected

number with *** = p < 001 and ** = p < .005.
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Table 3. Video content analysis

Action phase M placed in action phase General occurrence
Observed Expected number Observed Likelihood
number number

Object 74" 39.64 128 0.14

manipulation

Start of 82" 45.83 148 0.16

object

transport

Hand 44 72.15 233 0.26

transport

Object 39" 60.69 196 0.22

transport

Tool 4 3.72 12 0.01

transport

End of object 26" 49.54 160 0.18

transport

end of 10 7.43 24 0.03

manipulation
with a tool

Note. M = Unit mark. Asterisks indicate whether the observed number significantly differed

from the expected number with *** = p < .001, ** = p < .005, and * = p < .05.

45



3.1 Touchings Predict Human Action Segmentation

J. Pomp et al. https://doi.org/10.1016/j.neurcimage.2021.118534

Table 4. Maxima of activation from the direct contrasts of the second-level

whole-brain analyses at p <.005 peak-level FDR-corrected.

Macroanatomical H Cluster t-value MNI Coordinates
location Extent X y z
M>TnM>U
Anterior inferior parietal sulcus L 266 7.32 -57 -22 29
Superior parietal lobule L 5.34 -33 -46 62
Anterior inferior parietal sulcus/ R 209 7.97 60 -16 29
Supramarginal gyrus
Ventral premotor cortex / R 52 6.32 54 11 14
inferior frontal gyrus (BA 6/44)
Fusiform gyrus L 40 6.30 -45 -52 -19
R 32 5.05 45 -52 -13
Lateral occipital cortex / L 69 5.85 -42 -67 5
human motion area
Mid-insula L 23 6.21 -39 -4 14
R 23 5.34 42 -1 11
T>M
Cuneus L 20 6.00 -6 -82 26
R 59 7.63 12 -76 23
Lingual gyrus L 42 7.60 -9 -79 -1
R 11 5.47 12 79 4
Uu>mm
Cuneus L 963 9.65 -9 -97 14
R 7.82 9 94 14
Parieto-occipital fissure R 114 5.86 21 -58 29
Retrosplenial cortex R 490 9 -46 5
Parieto-occipital fissure L 61 5.18 -18 -58 23
Parahippocampal gyrus R 38 5.71 24 -46 -4
Dorsal premotor cortex L 123 6.76 -21 2 56
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Anterior superior frontal sulcus

Dorsal anterior insula

Anterior cingulate cortex

R 134
L 35
R 48
L 47
R 62
R 82

5.55

5.54

5.34

5.13

6.59

5.19

5.95

33

21

-30

27

-27

27

12

-13

-4

44

38

26

20

20

59

56

17

26

32

Note. H = Hemisphere, MNI = Montreal Neurological Institute, L = Left, R = Right, M = Unit

mark, T = touching event, U = untouching event.

Table 5. Maxima of activation from the main contrasts of the second-level

whole-brain analyses at p <.005 peak-level FDR-corrected of the parametric GLM.

Macroanatomical H Cluster t-value MNI Coordinates
location Extent X y z
Mp
Lateral occipital cortex / L 4760 10.95 -51 -73 5
human motion area
R 10.22 48 -70 -7
Fusiform gyrus L 8.81 -39 -49 -19
Superior parietal lobule L 6.17 -18 52 71
R 5.94 21 -55 68
Inferior parietal lobule L 6.26 -51  -37 53
R 7.46 36 -52 59
Angular gyrus L 5.57 -39 -61 47
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Dorsal premotor cortex L 151 6.92 -48 11 44
R 250 6.72 51 5 50

Inferior frontal gyrus pars L 272 7.79 -57 17 20

triangularis

Mid-Insula L 4.49 -45 -1 5
R 16 4.40 42 -1 5

Inferior frontal gyrus pars R 97 5.50 57 11 11

opercularis

Inferior frontal gyrus pars R 4.87 57 32 17

triangularis

Supramarginal gyrus R 333 6.26 63 -28 38

Thalamus R 34 6.29 15 -28 2

TU >nTU

Cuneus L 1697 8.52 -9 -97 17
R 8.43 15 -91 29

Lingual gyrus L 7.87 -6 -79 -1
R 6.16 12 -79 -4

Fusiform gyrus R 6.16 33 -52 -7

Parahippocampal gyrus R 471 30 -37  -16

T>nTU

Lingual gyrus L 1136 8.75 -9 -76 -1
R 7.59 12 -76 -4

Cuneus L 7.84 -9 -88 23
R 717 9 -79 26

U>nTU

Lingual gyrus L 1462 10.05 -24 -73 -4

6
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R 9.12 33 52 -7
Cuneus L 8.71 -9 -100 17
R 8.28 15 -94 29
Parahippocampal gyrus L 6.39 -30  -34  -16
R 5.83 30 -31  -16
Parieto-occipital fissure R 5.82 21 -55 23
L 34 5.03 -15 67 29
Dorsal premotor cortex L 203 7.32 -24 2 53
R 175 6.58 24 2 50
Anterior superior frontal sulcus R 15 4.86 27 35 29
Inferior frontal junction L 27 5.24 -36 5 29
Dorsal anterior insula L 27 5.78 -27 23 -1
R 69 6.06 30 23 5
Dorsal anterior cingulate cortex R 32 5.53 12 20 32

Note. GLM = General linear model, H = Hemisphere, MNI = Montreal Neurological Institute,
L = Left, R = Right, Mp = parametric unit mark, T = touching event, U = untouching

event, nTU = non-touching/untouching event.

49



3.1 Touchings Predict Human Action Segmentation

J. Pomp et al. https://doi.org/10.1016/j.neuroimage.2021.118534

2. Figures

0.03
0.02
0.01

0.03- B nTU -
0.02- i
0.01- i

Likelihood of occurrence

0 10 20 30 40 50 60 70 80 90 100
Video progress (%)

Figure 1. Likelihood of occurrence of non-critical events during the video, nM = non-unit
mark, nTU = non-(un)touching event. A) Likelihood for non-unit marks. B) Likelihood for non-

(un)touching events.

PMd

. Unit mark

Untouching

. Touching

ACC SPL LG/CUN LOC/hMT alPS/SMG

Figure 2. Functional MRI activation at p < .005, peak-level FDR-corrected, for the effects

based on direct contrasts between experimental conditions: the conjunction contrast of
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post-fMRI human-determined unit marks versus untouching and untouching [[M >T) n (M >
U), red], objective untouching events (U>M, green) and objective touching events (T>M,
blue). Peak coordinates are given in Supplementary Table 4. PMd = dorsal premotor cortex,
dAl = dorsal anterior insula, SPL = superior parietal lobule, LG = lingual gyrus, CUN = cuneus,
LOC = lateral occipital cortex, hMT = motion area, ACC = anterior cingulate cortex, alPS =
anterior inferior parietal sulcus, SMG = supramarginal gyrus. Unthresholded statistical maps
have been uploaded to NeuroVault.org and are available at

https://neurovault.org/collections/8736
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Action Segmentation in the Brain: The Role of
Object-Action Associations
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Florentin Worgotter®, and Ricarda I. Schubotz'?

Abstract

M Motion information has been argued to be central to the sub-
jective segmentation of observed actions. Concerning object-
directed actions, object-associated action information might as
well inform efficient action segmentation and prediction. The
present study compared the segmentation and neural processing
of object manipulations and equivalent dough ball manipulations
to elucidate the effect of object-action associations. Behavioral
data corroborated that objective relational changes in the form
of (un-)ytouchings of objects, hand, and ground represent mean-
ingful anchor points in subjective action segmentation rendering
them objective marks of meaningful event boundaries. As
expected, segmentation behavior became even more systematic
for the weakly informative dough. ftMRI data were modeled by
critical subjective, and computer-vision-derived objective event
boundaries. Whole-brain as well as planned ROI analyses showed

INTRODUCTION

Everyday actions consist of smoothly concatenated action
steps. The segmental structure of actions is reflected in the
way that we teach, learn, and execute actions ourselves
(Braun, Mehring, & Wolpert, 2010), and also in how we
perceive actions performed by others (Newtson, Hairfield,
Bloomingdale, & Cutino, 1987). Behavioral studies in chil-
dren (Buchsbaum, Griffiths, Plunkett, Gopnik, & Baldwin,
2015; Baldwin, Baird, Saylor, & Clark, 2001) and adults
(Hard, Recchia, & Tversky, 2011; Newtson & Engquist,
1976) show that action segmentation arises spontaneously
(see also Zacks, Speer, Swallow, Braver, & Reynolds, 2007)
and helps us process and remember dynamic events effi-
ciently (Kurby & Zacks, 2018; Zacks & Swallow, 2007).
To measure subjective segmentation behavior,
researchers ask participants to indicate when they per-
ceive event boundaries, that is, those points in time when
one action segment ends and the next begins (Newtson,
1973). This procedure has been shown to yield intra-
individually consistent action segments (for a review:

"University of Miinster, “Otto Creutzfeldt Center for Cognitive
and Behavioral Neuroscience, 3u niversity of Gottingen, “Univer-
sity Medical Center Gottingen, *Vytautas Magnus University,
Kaunas, Lithuania, (’University of Trento

© 2024 Massachusetts Institute of Technology. Published under a
Creative Commons Altribution 4.0 International (CC BY 4.0) license.
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that object information had significant effects on how the brain
processes these boundaries. This was especially pronounced at
untouchings, that is, events that announced the beginning of
the upcoming action and might be the point where competing
predictions are aligned with perceptual input to update the cur-
rent action model. As expected, weak object—action associations
at untouching events were accompanied by increased biological
motion processing, whereas strong object-action associations
came with an increased contextual associative information pro-
cessing, as indicated by increased parahippocampal activity.
Interestingly, anterior inferior parietal lobule activity increased
for weak object-action associations at untouching events, pre-
sumably because of an unrestricted number of candidate actions
for dough manipulation. Our findings offer new insights into the
significance of objects for the segmentation of action. 1l

Sargent, Zacks, & Bailey, 2015), but the question remains
which stimulus properties drive the segmentation
behavior. A number of studies have specifically addressed
the role of motion as a cue for updating action models at
event boundaries (Zacks, Kumar, Abrams, & Mehta, 2009;
Hard, Tversky, & Lang, 2006; Newtson, Engquist, & Bois,
1977). Typical measures to quantify motion include binary
time interval coding for separate movement types (Hard
et al., 2006) or motion tracking through speed and
acceleration of hands and head (Zacks et al., 2009). Corre-
spondingly, the activity of the motion-selective middle
temporal visual area (MT/V5) was found to increase during
the perception of event boundaries in actions (Schubotz,
Korb, Schiffer, Stadler, & von Cramon, 2012; Speer, Swallow,
& Zacks, 2003; Zacks et al., 2001), pointing to change in
motion as an efficient cue that announces event boundaries
and triggers updating processes in frontal networks.
However, having a life-long experience with manipula-
ble objects, the movements one expects when observing
object-directed actions certainly also depend on the
involved object and might influence spatial attention and
processing. Objects are an important source of informa-
tion that individuals use to understand an observed action
because we have learned how to act with or on an object
and thereby build object-action associations (Borghi,

Journal of Cognitive Neuroscience 36:9, pp. 1784-1806
bttps:/idoi.org/10.1162fjocn_a_02210
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2021; Zhao, 2019). In a former study (Schubotz, Wurm,
Wittmann, & von Cramon, 2014), we built on the idea that
objects are reminiscent of actions often performed with
them. For instance, the combination of a knife and an
apple remind us of peeling the apple or cutting it. Findings
confirmed that the BOLD response in action-related infe-
rior parietal and posterior temporal areas varied with the
number of object-implicated actions. This impact of
objects has been shown to influence the processing of
observed action, even when these objects are not actually
used (El-Sourani, Trempler, Wurm, Fink, & Schubotz,
2019; El-Sourani, Wurm, Trempler, Fink, & Schubotz,
2018; Hrka¢, Wurm, Kiihn, & Schubotz, 2015). However,
because action segmentation appears to be highly depen-
dent on movement-related information and may develop
in early infant action observation when functional or
semantic knowledge about objects is still rudimentary,
object information may not be essential for action segmen-
tation. One may ask how action structures are processed
before having experience-based knowledge of object-
associated actions, for instance, when encountering
actions with novel objects, which is common in young
infancy (cf. Hunnius & Bekkering, 2010).

In the present study, we aimed to investigate the effect
of object-action knowledge on action segmentation and
underlying brain processes. We built on a previous study
(Pomp etal., 2021), which examined action segmentation
in everyday object manipulations. To this end, we recre-
ated the movies of the object manipulation actions, but
this time using formed pieces of play dough as objects.
This replacement of common objects by formed dough
minimized object—-action associations, that is, individuals
did not strongly associate the formed dough with specific
actions (except for kneading, if at all). The actions them-
selves were kept as similar as possible to the actions per-
formed on the everyday objects to balance the movement
patterns between the current and the previous study. After
a passive action observation session in the MRI scanner,
individual behavioral action segmentations of these
actions were gained using the unit marking procedure
(Newtson, 1973). Although subjective reports are impor-
tant and can be informative, we do not necessarily have
explicit access to all event boundaries that our brain regis-
ters and exploits to make sense of the world. Moreover,
subjective reports may be focused on behaviorally relevant
events and have been shown to be highly dependent on
the exact task, for example, with regard to the instruction
of detecting “meaningful” boundaries or selecting a spe-
cific “fine” or “coarse” grain of the segmentation (Zacks
et al., 2007). Manual action segmentation is therefore a
possible, but not necessarily a reliable, approximation
for the way in which the brain segments events.

An exciting complement to research into action seg-
mentation is therefore a more objectifiable stimulus-based
approach to action segmentation (Pomp et al., 2021). We
extracted objective stimulus characteristics based on the
notion of semantic event chains (Worgotter et al., 2013;
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Aksoy et al., 2011). In an object-directed action, this
approach describes actions as a sequence of relational
changes in the form of touchings (T) and untouchings
(U) of objects, hands, and ground (TUs, hereafter). For
instance, when a hand grasps an object, motion velocity
usually reaches zero when the hand and object touch. In
case of a subsequent object transport, the object then
untouches the ground, and velocity increases again until
it decreases before the object touches its destination. In
case of a subsequent object manipulation, for example,
turning, velocity increases while the object is turned and
decreases before the hand untouches the object after
manipulation. Thus, the binary coding of touching rela-
tions (touch, untouch) between each pair of objects,
hands, and ground in an action scene can be used to
describe the course of action without the need to analyze
velocity and trajectory patterns and was used in the cur-
rent study to model brain activity. Note that the above-
explained underlying computer-vision algorithm that we
used is model-free and stimulus-driven (Aksoy et al.,
2011). Therefore, it does not require functional or seman-
tic knowledge about objects (or hands or ground), which
might imitate the simple model of early infant action
observation. The use of objective event boundaries, which
can be extracted directly from the stimulus material, offers
promising opportunities to understand the neural pro-
cesses underlying ongoing action segmentation.

Using the touching—untouching approach in the pres-
ent study, we examined the impact of object—action
knowledge on action segmentation and underlying brain
processes. If object—action associations play a role in
action segmentation, we expected significant differences
between our previous study on object manipulation and
our current study on dough manipulation in terms of seg-
mentation behavior and time-point-specific brain activity.
To this end, we compared the neural processing of object
and dough videos at different types of event boundaries,
including group-consistent behavioral segmentations
(unit marks, Ms hereafter) and objective TU events as rel-
evant points in time. We refer to the boundaries assessed
by the participants as unit marks (conceptually based on
the unit marking procedure) and not as event boundaries,
as we assume that they are only one type of event bound-
ary of interest. For object manipulations, TU events were
found to be meaningful anchor points for action segmen-
tation behavior (Pomp et al., 2021), and we expected TUs
to gain even more importance when object-action associ-
ations are weak. Specifically, we expected participants’
action segmentation behavior to be even more dependent
on TU events, that is, temporally less spread and closer
to TUs. We refer to the temporal relation between
participant-judged event boundaries and TU events as
being systematic if their occurrence coincided more than
randomly often, which we examined on single subject and
group level. For object manipulations, this systematic rela-
tion had been shown (Pomp et al., 2021) and we expected
that this systematicity in behavior would increase for
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dough manipulations. Thus, we expected that participant-
judged event boundaries would reliably coincide with TU
events, but not necessarily vice versa.

With regard to brain activity, we examined at which of
the critical time points T, U, and M activity would differ
between object and dough manipulation in one of three
ROIs derived from previous findings: the anterior inferior
parietal lobule (aIPL), the parahippocampal cortex (PHC),
and the biological motion-sensitive area (BMA, hereafter)
in the lateral temporo-occipital cortex. Concerning the
first ROI, as mentioned above, Schubotz and colleagues
(2014) showed inferior parietal regions’ activity to vary
with the number of object-implicated actions at the mere
sight of the object, independent of its usage. This activity
was located in aIPL, and therefore, we expected increased
alPL activation for actions performed on objects versus
dough pieces. The alPL, as part of the ventrodorsal visual
processing route (Binkofski & Buxbaum, 2013), is
engaged in the representation of pragmatic object proper-
ties (Bosch et al., 2023) and hand-object interactions
(Pelgrims, Olivier, & Andres, 2011; Vingerhoets, 2008)
when we perform, plan, or observe object manipulations.
Correspondingly, aIPL is known to be an important ana-
tomic substrate underlying ideomotor apraxia (O’Neal
etal., 2021), and it has been suggested to resolve compe-
tition between possible actions (Watson & Buxbaum,
2015). Concerning the second RO, as for aIPL, we hypoth-
esized an increased PHC activation for actions performed
on objects versus actions performed on dough. The PHC is
generally involved in processing contextual associations
(Li, Lu, & Zhong, 2016; Aminoff, Kveraga, & Bar, 2013;
Bar, Aminoff, & Schacter, 2008), which is the principal
element underlying many cognitive processes, including
spatial processing in scenes and episodic memory. In pre-
vious studies, we found PHC activity to specifically
increase at action boundaries, possibly signaling the
memory-driven updating of expectations of the next
action associated with the object (Pomp et al., 2021,
Schubotz et al., 2012). We here expected that familiar
objects would trigger more contextual action associations
than formed pieces of play dough accompanied by higher
PHC activity. Finally, regarding the third ROIL, we expected
motion information to gain importance for play dough
compared with object videos, which we hypothesized to
detect in BMA. We reasoned that detailed motion analysis
might be less critical when objects provide clues about
which actions are about to be performed, whereas
detailed motion analysis might be especially important,
when pieces of dough are manipulated, to constrain the
observer’s predictions efficiently.

METHODS

For the current study, we used the experimental design of
a previous study (Pomp et al., 2021), employed new
videos, and tested a new group of participants comparable
in size. The current study was kept as similar as possible to

1786 Journal of Cognitive Neuroscience

the previous one to allow direct statistical comparisons.
This includes that the participants were recruited through
the same channels, the study took place at the same insti-
tute, participants were scanned in the same MRI scanner,
behavioral sessions were in the same laboratory rooms,
and all sessions followed the exact same experimental pro-
tocols with similar equipment and materials (except for
the stimulus videos). The results of the previously pub-
lished study will not be shown here again, but only new
analyses relating to statistical between-studies compari-
sons. Regarding brain activity contrasts, only interaction
effects are reported, to make the results resistant to any
differences between groups. With regard to the interpre-
tation of direct comparisons between the two studies, we
statistically compared the sample characteristics to rule
out that differences between the samples could account
for differences observed between the video types. We
used the demographic details on age, sex, and profession,
as well as participants” answers to the short surveys about
their physical and mental condition, and experimental task
features that concluded each of the separate sessions (for
details on the survey, see section Experimental Procedure)
to predict the participant’s affiliation to either study. In
separate analyses for the continuous, ordinal, and binary
data types, no significant differences between groups were
found using Bayesian modeling. To be precise, these anal-
yses yielded support for the null hypothesis in all but one
case, where the evidence ratio was inconclusive—giving
neither evidence for the null nor for the alternative
hypothesis. We uploaded the corresponding data, the R
script of the analyses, and the results to the Open Science
Framework (OSF) repository (DOI 10.17605/0SFI0/MGQSF).

Participants

Thirty-three right-handed participants (Mage = 23.03
years, SD = 3.00 years, age range = 18-29 years, 28
women, 5 men) took part in this study. This sample size
was based on previous work (Pomp et al., 2021) that
showed robust results with a similar sample size. All partic-
ipants reported intact color perception, and none of the
participants reported any history of neurological or psychi-
atric disorders. The participants had not taken part in
related precursor studies. In the course of the experiment,
it became apparent that one participant had not under-
stood the instructions of the behavioral segmentation task
correctly; hence, this participant’s data set was excluded
from the behavioral model construction but was included
in the fMRI data set (as the fMRI session was before and
independent of the behavioral categorization task). There-
fore, in the behavioral analysis, the data of 32 participants
(27 women, 5 men) aged between 18 and 29 years (M =
22.88 years, SD = 3.13 years) were considered. Partici-
pants gave written consent to voluntarily participate in
the experiment and were self-reportedly suitable for fMRI
measures. They either received course credits or were
paid for their participation. The current study is in

Volume 36, Number 9
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accordance to the Declaration of Helsinki and was
approved by the local ethics committee of the Faculty of
Psychology at the University of Miinster (Germany).

Stimulus Material

The transitive actions employed in this study were
designed based on the Semantic Event Chain (SEC) frame-
work described by Worgdtter and colleagues (2013). Only
transitive actions involving one active hand and one or two
objects are included in this framework whereof 12 actions
were selected for the current study that belonged to six
action categories. The 12 selected actions were: turn, pull,
rip off, uncover, take down, take away, out on top, put
together, cut, scoop, hide, and put into. The execution
of these transitive actions was recorded using an industrial
camera (BASLER acA 1300-75gc) with a TV zoom lens
(11.5-69 mm, 1:1.4) as well as an ASUS Xtion Live RGB-
D sensor (ASUS TeK Computer Inc.) recording color as
well as depth images. The video material presented in this
study showed an actress from the front (BASLER camera)
up to the shoulders performing the action with formed
pieces of blue play dough on a white table. The ASUS Xtion
Live recorded the actions from above, and its recordings
were utilized for SEC time point extraction. For each
object manipulation, 24-25 unique video takes were cho-
sen for the final stimulus set (to account for the natural var-
iation usually observed in human action performances),
meaning that no video was repeatedly presented. In total,
294 action videos were shown to the participants. The
videos had a frame rate of 23 fps. Each video started 10
frames before the hand lifts from the table to act and fin-
ished five frames after the hand lies back on the table with
a video duration ranging from 68 frames to 165 frames
M = 112.35, 5D = 18.13), that is, 2957 msec to 7174 msec
(M = 4885, SD = 788). To increase the perceptual variabil-
ity, all videos were vertically mirrored so that actions
seemed to be performed by the left hand. Each participant
saw 50% of the actions mirrored.

Adopted from our previous study (Pomp et al., 2021),
the stimulus sequence was designed as a second-level
counterbalanced De Bruijn sequence with seven condi-
tions (six action categories + null condition) created using
the De Bruijn cycle generator (Aguirre, Mattar, & Magis-

Weinberg, 2011). Subsequently, condition labels of the
six action categories were permuted to create 20 different
stimulus lists. Per list, half of the stimuli were shown mir-
rored, and a second list contained the complement of
these, which gave 40 different stimulus lists in total. For
the second and third experimental sessions, the start of
the individual stimulus sequence was shifted by one third
and two thirds, respectively, to prevent recognition of the
stimulus sequence as well as to prevent time-dependent
effects. For the fMRI session, the stimulus sequence was
subdivided into seven runs, and at the start of each run,
the last two videos of the preceding run were repeated
and then discarded from analyses to presume a continu-
ous stimulus sequence (the first run started with the last
two videos of the last run).

Video Segmentation and SEC Determination

As previously described (Pomp et al., 2021), we used an
automated extraction of time points of TU events. Extract-
ing these TU events automatically had the advantage that
human bias could be avoided in the objective segmenta-
tion process. A flow diagram for the automated extraction
of time points at which touching/untouching relations
between object pairs change is shown in Figure 1. Here,
we used the frame number to define the time points.
The input to the algorithm is a sequence of RGB-D frames
fi @ =1...n,nisthe number of frames), and the output is
a sequence of time events ¢; ( = 1 ... m, m is the number
of TU events, which was predefined manually). In the fol-
lowing subsections, we provide details for the four main
steps of the algorithm.

Point Cloud Extraction and Preprocessing

Point clouds for each frame f; were generated from depth
images, which were acquired using ASUS Xtion Live sen-
sor. ROI on the left side of the frame was cut as shown
in Figure 1, because always only one hand was involved
in the analyzed actions. Furthermore, point clouds were
subsampled by a factor of four to reduce the number of
points, this way speeding up the clustering procedure.
Before clustering, ground plain subtraction was per-
formed. Ground plain subtraction, that is, removing points

Point cloud extraction
and preprocessing

Clustering and calculating
Silhouette values

ty

Curve fitting using ANN Extraction of time events

Figure 1. Flow diagram for the automated extraction of time points of TU events (see Methods section for details). ANN = artificial neural network.
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3.2 Object-Action Associations in Action Segmentation

corresponding to the table, was done as follows. First, we
fitted a flat 2-D surface and then removed all points from
the 3-D point cloud data, which were above the fitted
plane, that is, we first removed points p; = {x, y; z;}, if
z;—Z1; > thl, where Z1; = P1(x; y;) are corresponding
points of the fitted plane P17, and th1 = 0.02 is the manually
set threshold. Afterward, we fitted the plane one more time
to the remaining background points bg p; = {bg x; bg v,
bg z;} and we removed points that were below the fitted
plane (see black points in Figure 2A, bottom row), that is,
i =15 s 21}, if 2,— 72; < 1h2, where Z2; = P2(bg_x; bg_y,)
are corresponding points of the fitted plane P2, and th2 =
0.01 is the manually set threshold. The removed points
p: were not included to further cluster analysis. Thus,
for the clustering step, we only used point clouds of
the hand and objects.

Clustering and Calculation of Silbouette Scores

Clustering of points (objects) was performed based on 3-D
point coordinates p; = {x; y; z;} by using hierarchical
clustering with Euclidean distance as a similarity measure
and nearest distance as a linkage method. The clustering
procedure was repeated K—1 times for each frame f; (i =
1 ... n) with a predefined number of clusters £ = 2 ... K,
where K is the number of objects including the hand (but

excluding the table). For each frame f;, we computed a
maximal Silhouette score as follows:

S(f) = max(Sy), (k = 1...K), with M

Sk (]) =Ssum [(mm (Dhetweerz (]1 1) ) = Dwitbin (]) )

/max(Dwitbin (]) ,min (Dbe!wewx (]7 1) ) )] /N, 2

where D7) is the average distance from the jth point
to the other points in its own cluster, and Dyespeen(F; 1) 1S
the average distance from the jth point to points in
another cluster /. Here, N is the total number of points.
The Silhouette score for each point;j measures how similar
that point is to points in its own cluster in comparison to
points in other clusters. The values of the Silhouette score
are between —1 and 1. Thus, when two clusters are getting
closer, then the score S(f;) decreases, whereas it increases
when clusters are moving apart (see Figure 2B).

Fitting of Silbouette Curve Using Artificial
Neural Network

The time points of TU events can be extracted from the Sil-
houette curve; however, Silhouette scores are noisy because
of noise present in the point cloud data obtained from the
RGB-D sensor. Thus, we first filtered the Silhouette scores

Frame number

B 1 1 it triits  laiits te
0.8 :
0.5 ——ANN fit
0.6 ——Derivative
=—Threshold
2 0.4
0 —Silhoutte values
——Smoothed values 0.2
= ANN fit
0% 50 w0 % 50 100

Frame number

Figure 2. Schema of the procedure for automatically extracting the time points for touching and untouching events from an exemplary action, here
“take down.” (A) RGB images (top) from the above-scene installed ASUS Xtion Live RGB-D sensor and corresponding clustered point clouds

(bottom). Clustered point clouds (objects) are color-coded and when two objects touch, they become one cluster with a shared color. When these
objects untouch, the point clouds separate and one cloud changes to an individual color. (B) Raw silhouette values (black), smoothed silhouette
values using a median filter (red), and fitted silhouette curve using an artificial neural network (ANN; blue). (C) Derivative of the ANN fit (green) and
obtained time points of TU events after thresholding: #; = hand detaches from the table (i.e., first untouching); £, = hand touches the upper play
dough object (i.e., first touching); 25 = hand lifts the upper play dough object from the bottom play dough object (i.e., second untouching); z5 =
hand places the play dough object on the table (i.e., second touching); 5 = hand detaches from the play dough object (i.e., third untouching); and
t¢ = hand touches the table (i.e., third touching). Thus, in this example, a U-T-U-T-U-T event sequence is extracted. A demo source code of

automated extraction that corresponds to the shown example can be downloaded from the OSF repository (DOI 10.17605/OSF.I0/MGQSF).
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S(fy using a median filter with a time window of 20 frames
and then fitted filtered scores with an artificial neural network
(ANN). This leads to a smooth curve with descending and
raising slopes that allows extracting of time points in the next
step. For fitting 5(f;), we used a fully connected feed-forward
network with one hidden layer where, in the hidden layer,
we used a fansig transfer function and, in the output layer,
a linear transfer function was used. The number of neurons
in the hidden layer corresponded to the number of sigmoid
functions needed to fit the Silhouette value function S (see
Figure 2B), which corresponded to changes in cluster
configuration, that is, if two clusters are merging, then
objects are touching each other (T) and, if two clusters are
getting apart, then objects are detaching from each other
(U). In the given example in Figure 2 for a “take down”
action, we have six TU events (hand lifts up from the table,
hand touches upper play dough object, hand lifts the upper
play dough object from the lower play dough object, hand
places the play dough object on the table, hand leaves the
play dough object, and hand touches the table). Thus, the
TU events follow an irregular pattern of Ts and Us, and to
represent two TU events, one sigmoid function is needed
as demonstrated by an example shown in Figure 2C (see
t1, 25 13, Lg; and ts, tg). The number of neurons h in the
hidden layer was set based on the number of TU events m,
that is, h = round(m/2). In this case, we used three neurons
in the hidden layer. The network was fitted 10 times, and
then the best outcome with respect to the minimal mean
squared error between S(f;) and network’s prediction
Sann(fy) was used for the next step.

Extraction of Time Poinis

Finally, time points of TU events were extracted by applying
dynamic thresholding to the derivative of the Sy (f). We
started with some initial threshold value TH,,; = 0.01 and
increased it by 0.005 until the predefined number of TU
time points was obtained. The time points were extracted
at the frame numbers where the derivative of the Syyn(7y)
crossed the threshold value TH (see Figure 2C).

Whenever the algorithm misinterpreted the scene, which
gave an error message, the extracted time points were
checked against manual TU segmentation results and time
points. Deviation from human TU segmentation, on aver-
age, was 4.14 frames (8D = 3.42), and in 93.02% of the cases,
deviation was less than 10 frames (i.e., approx. mean value
+2 % SD). Thus, we corrected outliers in 6.98% of the cases,
where TU event segmentation differences were larger than
nine frames, by setting values of automated segmentation to
corresponding values of human TU segmentation. The
framework was implemented using MATLAB (https:/www
.mathworks.com) where standard MATLAB functions for
clustering and ANN fitting were used. Extracted TU events
were taken as machine-determined objective events (TUs)
and the middle frames between two TU events were taken
as corresponding non-events (nTU) to be maximally far
away from an event.
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Experimental Procedure

Congruent with our previous study (Pomp et al., 2021),
participants completed three sessions. The MRI session
was, on average, 4 days (range = 3-6) before the behav-
ioral test—retest sessions, which were, on average, 14 days
apart from one another (range = 14-18). In the first ses-
sion, participants paid attention to the action videos while
being in the MRI scanner. Action videos were back-
projected onto a screen and displayed centrally with a
screen resolution of 640 X 512 pixels by Presentation
20.3 (Neurobehavioral Systems Inc.). Participants viewed
the screen binocularly through a mirror above the head
coil. Attention-capturing questions followed 14% of the
videos, asking whether an action description was appro-
priate for the preceding action video (see Figure 3A for
the experimental trial design). Participants responded by
pressing one of the two response keys with their right
index and middle finger. Including anatomical scans and
six short breaks during the task, the scanning time
amounted to approximately 60 min. The overall duration
of the first session was between 90 and 120 min including
consent forms, instructions, preparation, scanning, and a
short survey at the end.

The second experimental session comprised the unit
marking task (Newtson, 1973). Participants saw the same
videos as in the first session. Stimuli were presented on a
23-in. monitor by Presentation 18.1 (Neurobehavioral Sys-
tems Inc.), and participants were instructed to press a button
with their right index finger whenever they think an action
step is finished, that is, an event boundary occurred. Training
trials were offered at the beginning, and two self-paced
breaks were provided after one third and two thirds of the
trials. This task took approximately 45 min. See Figure 3B
for the experimental trial design. In the third session, this
task was repeated to retest the unit marking behavior.

At the end of each of the three sessions, participants filled
in a two-paged survey about their current state (mood, sub-
jective health, tiredness before and after the task); the
amount of sleep in the last night and whether this was more,
less, or as much as usual; drug consumption (the day before
and in general) ; their feeling of hunger before and after the
task; and task-related questions about difficulty, monotony,
task fatigue, inattentive phases, handedness of the shown
actor, subjective guessing rate for the answered questions
during the task, recognizability of the objects and actions,
change in individual segmentation strategy within-session
and between-sessions, and their segmentation strategy.

Behavioral Reliability Measures

Intra-individual Retest Reliability of

Unit Marking Responses

As the unit marking procedure is a subjective judgment task
and, therefore, responses cannot be right or wrong, retest
reliability was assessed on the single-subject as well as on
the group level to ensure that responses were consistent
and meaningful. Details regarding these reliability

Pomp et al. 1789



3.2 Object-Action Associations in Action Segmentation
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Figure 3. Experimental task design. (A) In the fMRI session, video trials (action video followed by a jittered ISI that showed a white fixation cross)
and null event trials (showing a white fixation cross) were passively attended to but question trials (question followed by a jittered ISI that showed a
white fixation cross) required participants to confirm or reject an action description with regard to the preceding action video by button press. The
question disappeared only after button press and followed 14% of the action videos. For the video trials, here, each single frame represents a full
action video plus ISI as indicated by the dotted lines. In total, 308 videos, 42 questions, and 49 null events were presented to each participant,

separated in seven blocks with short breaks in between. (B) In the two subsequent behavioral sessions (test-retest), each participant saw the same
videos in the same sequence as during fMRI and indicated by button press (hand icon) when they thought an action step had finished. In case no
response was given (hand icon crossed out in red), the video at hand was repeated. Participants were instructed to use this mechanism in case they
wanted to rewatch the video before indicating action steps. Thus, minimally one button press was necessary per action video but no instruction was
given about the expected total number of button presses per action video. Each single frame in the figure represents a full action video plus an 18I that
showed a white fixation cross, as indicated by the dotted lines. Example videos are provided in an OSF repository (DOI 10.17605/0SF.10/MGQSF). The

entire stimulus material is available via the Action Video Corpus Miinster (AVICOM, https:/www.uni-muenster.de/IVV5PSY/AvicomSrv/).

measurements have been previously described (Pomp
et al,, 2021). As the first step, responses were converted
from milliseconds to frames (one frame amounting to a
1000/23 msec segment) to allocate each response to the
correspondingly presented frame of the video. Note that
we did not subtract any motor RT as participants were
highly familiar with the kind of simple everyday actions that
we employed, which they saw for the second and third time
in the behavioral sessions. Hence, we adopted the premise
that responses were delivered in clear anticipation of critical
events in the videos, not in a reactive manner.

On the single-subject level, we examined whether test ses-
sion responses matched retest session responses consis-
tently. To this end, trials with an equal number of responses
in the test and retest session were selectively used to define
an individual temporal consistency criterion ¢;, which was
then applied to all trials independent of the number of
responses. For each response in each of these equal-number-
of-responses-trials, the absolute difference d|,_,| in frames
between test button press ¢ and retest button press ¢ was
determined and then averaged over all responses per partic-
ipant. The upper bound of the 95% confidence interval (CI)
of this mean difference score per participant was taken as
individual criterion ¢; for consistent button presses in the test
and retest sessions. In summary, for each retest response ¢ it
was determined whether a test response ¢ appeared within
the individual time window around the retest response
(' £ ). If this was the case, it was considered a consistent
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unit marking response. That is, the participant pressed the
response key at the same time during the action video in
the test and retest session. Subsequently, as a measure of
intra-individual retest reliability, the percentage of consis-
tent responses per participant was identified. These
consistency rates were statistically compared with the corre-
sponding object study’s values using independent-samples
¢ tests and the corresponding Bayesian test with JASP
(JASP Team, 2024), and JZS Bayes factors are reported
(Rouder, Speckman, Sun, Morey, & Iverson, 2009).

To ensure the validity of our intra-individual retest reliabil-
ity results, we compared the intra-individual retest reliability
results to random button presses. To this end, we extracted
the time intervals between button presses (for the first but-
ton press in a video, we used the distance to the start of the
video) of the test session per participant. From this distribu-
tion, we randomly drew and cumulated intervals to simulate
random test session data while preserving the stochastic
characteristics of the individual behavior. By this procedure,
we generated 10 simulated test session data sets, calculated
the percentage of consistent responses per participant
based on the real retest session data (applying the identical
protocol as for the actual behavioral data), and averaged this
percentage per participant over the 10 simulations. To test
whether the participants performed more reliably than ran-
domly, we calculated a paired-samples ¢ test between the
actual percentage of consistent responses per participant
and the percentages based on the simulated data sets.
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3.2 Object-Action Associations in Action Segmentation

Retest Reliability of Unit Marking Responses dt the
Group Level

To examine the unit marking responses on the group
level, we smoothed the frame-by-frame data of all partici-
pants with a rectangular kernel of a width of three frames
(3 * (1000/23) »~ 130.4 msec, referred to as bin hereafier).
This means, for each video, we aggregated the number of
responses for each frame f; plus those from adjacent
frames f,, and f;,,. Thereby, we pooled the data of all
participants. Maximally, one response per participant
was taken into one bin of three frames so that the total
number of participants was the maximum value a bin
could reach. The bin value was then allocated to the mid-
dle frame f; of the bin and will be referred to as frame
value hereafter. Consequently, the frame value was set
to zero if no response had occurred within the bin. To
determine the group-level retest reliability, we correlated
the time series of frame values per video between the test
and the retest sessions (Pearson r). The r values per video
were then Fisher z-transformed, averaged, and retrans-
formed to » to give a mean correlation indicating group-
level retest reliability. Furthermore, the # values per video
were statistically compared with the corresponding object
study’s values using independent-samples ¢ tests and the
corresponding Bayesian test reporting JZS Bayes factors
(Rouder et al., 2009) with JASP.

Group-consistent Unit Mark (M) Determination
and Their Relation to TU Events

Determination of Group-consistent Unit Marks

The maximum frame value per video was taken to indicate
a group-consistent unit mark (M) as it reflects the point of
maximum group agreement. To assure the meaningful-
ness of these values, we utilized the 10 simulated test
session data sets that were generated to evaluate intra-
individual retest reliability. We applied the same protocol
to these 10 simulated data sets as we did to the original
data. Thereby, we determined simulated group-consistent
unit marks and then compared their maximum frame
values to the actual one per video.

To determine the non-unit-mark (nM) as relevant points
in time for the fMRI analyses, one of the frames with the
minimum frame value of zero was randomly chosen,
excluding the first 12 and last 12 frames of each video.
Ms and nMs were then used to model brain responses.

Temporal Convergence of Participani-determined Unit
Marks and Objective Evenits

We investigated the temporal relation of Ms to TUs by eval-
uating whether the majority of Ms coincides with TUs. We
examined how often an M was not further than two frames
(i.e., maximally ~130 msec) away from a TU. Subse-
quently, we compared this result to randomly distributed
unit marks to validate the systematics of the relationship.
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Equal to the protocol for the test—retest performance of
individual participants, we shuffled the time intervals
generated by the unit marks, randomly drew from this
shuffled distribution, and cumulated intervals to simulate
random unit marks while preserving the stochastic char-
acteristics of the group behavior. This way, we generated
10 simulated unit mark data sets, examined per data set
the proportion of simulated Ms being not further than
two frames away from a TU, and then calculated a one-
sample ¢ test to compare simulated and actual coinci-
dence rates.

Effects of Object—-Action Associations on the
Temporal Relation of Ms to TUs

Building on our previous study that showed that Ms were
systematically delivered in relation to TU events (Pomp
et al., 2021), we hypothesized weak object—action associ-
ations to increase the temporal proximity of M to TU. As
the first analytic step, we tested whether the M-TU differ-
ence distributions differed between studies using the
Mann-Whitney U/ test, and tested for equality of variances
using Levene’s test. Following our hypothesis that Ms are
closer to TU events in dough actions (independent of
whether they appear before or after the TU), absolute dif-
ference values were further analyzed. As these absolute
temporal differences between Ms and its closest TUs in
both studies had a negative binomial distribution, we
fitted a generalized linear (negative binomial) model using
the lme4 package (Bates, Michler, Bolker, & Walker,
2015) in the R programming language (https:/www.R
-project.org/). In the model, the absolute temporal dif-
ferences between Ms and TUs, measured in frames,
were predicted by Study (i.e., Dough vs. Object) and
Event Type (i.e., Touch vs. Untouch). In the model,
the action categories of the videos were used as a ran-
dom intercept:

absolute(M-TU) ~ Study x EventType
+ (1| ActionCategory). 3)

fMRI Data Acquisition

Structural and fMRI data were acquired using a 3-Tesla Sie-
mens Magnetom Prisma MR tomograph with a 20-channel
head coil at the Translational Research Imaging Center of
the University Hospital Minster. High-resolution, T1-
weighted images were obtained by a 3-D-multiplanar
rapidly acquired gradient-echo sequence (scanning
parameters: 192 slices, repetition time = 2130 msec, echo
time = 2.28 msec, slice thickness = 1 mm, field of view =
256 X 256 mm?, flip angle = 8°). For the functional images,
a BOLD contrast was measured by gradient-EPIL Seven EPI
sequences were used to measure the seven experimental
blocks (scanning parameters: 33 slices, TR = 2000 msec,
echo time = 30 msec, slice thickness = 3 mm, field of
view = 192 X 192 mm?, flip angle = 90%).
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fMRI Data Analysis

Preprocessing

Anatomical and functional images were preprocessed
using the Statistical Parametric Mapping software
(SPM12; The Wellcome Centre for Human Neuroimaging)
implemented in MATLAB R2019a. Preprocessing included
slice time correction to the first slice, realignment to the
mean image, co-registration of the individual structural
scan to the mean functional image, normalization into
the standard anatomical MNI (Montreal Neurological Insti-
tute) space on the basis of segmentation parameters, as
well as spatial smoothing using an isotropic 8-mm FWHM
Gaussian kernel. To remove low-frequency noise, a
128-sec temporal high-pass filter was applied to the
time-series of functional images.

JMRI Design Specification and Whole-brain Stalistics

The statistical analyses of the functional images were done
using SPM12, implementing a general linear model for
serially autocorrelated observations (Worsley & Friston,
1995; Friston et al., 1994) and a convolution with the
canonical hemodynamic response function. As regressors
of no interest, the six subject-specific rigid-body transfor-
mations obtained from realignment were included. The
volumes of the first two video presentations of each EPI
were discarded to allow for Tl-equilibrium effects. To
investigate functional areas specialized in the processing
of subjective action boundaries, as well as objective T
and U events, a general linear model was constructed
including eight regressors of interest coding for onsets
and durations of the specific event types: video trial,
group-consistent unit mark of the test-retest session
(M), no unit mark in the test—retest session (nM), objec-
tive touching event (T), objective untouching event (U),
no touching or untouching event (nTU), null event, and
question trial. For each of the 340 Ms, an nM was deter-
mined (7 = 340; see Determination of Group-consistent
Unit Marks section) and included in the design. Likewise,
all 735 touching and all 808 untouching events were
included and correspondingly 735 nTUs (see Video Seg-
mentation and SEC Determination section). Both types
of noncritical events (nTU and nM) appeared distributed
over the video duration and were chosen to be maximally
far away from their corresponding events (TU and M,
respectively). The rapid succession of Ms and TUs with
naturally jittered interevent intervals made it possible to
differentiate associated BOLD responses, and the differ-
ence in frequency of occurrence ensured the overall low
overlap between M and TU events. Moreover, we
applied the post hoc variance inflation factor (VIF)
method using the CANlab imaging analysis tools
(https://canlab.github.io/) to rule out multicollinearity
issues and this yielded VIFs below 10 (object study VIFs
< 7.2, dough study VIFs < 7.9), speaking against a
severe issue of collinearity.
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On the first level, f-contrasts for Ms versus nMs were cal-
culated and submitted to a second-level £ test to detect
functional areas specialized in the processing of group-
determined event boundaries. Analogously, #-contrasts
for T versus nTU, U versus nTU, and the complete video
trials versus null events were conducted on the first level
and then passed to a second-level ¢ test. To elucidate the
central question of the object—action association effect, we
contrasted activity patterns for play dough actions of this
study to activity patterns for object actions of our previous
study in a second-level two-sample ¢ test. We did this for all
full-length videos as well as time-point specifically at M, T,
and U events. Importantly, because we only considered
interactions, all contrasts controlled for the main effects
of group, action type, and so forth.

To identify brain areas where neural activity was signif-
icantly explained by both object and play dough actions’
events, we performed conjunction analyses testing against
the conjunction null hypothesis, p(false discovery rate
[FDR]) < .005 (Nichols, Brett, Andersson, Wager, &
Poline, 2005) using a second-level, one-way ANOVA on
individual statistical maps derived from the M > nM,
T > nTU, U > nTU, and video > null contrasts.

For the second-level, whole-brain analyses, we applied
FDR correction at p < .005 peak level and a cluster extent
threshold of 15 voxels. Activity patterns were visualized
using bspmview (DOI 10.5281/zenodo.595175) in
MATLAB R2022a, and graphs for visualization were gener-
ated using the ggplor2 library (Wickham, 2016) in RStudio
(R Core Team, 2022). We uploaded the unthresholded sta-
tistical maps to NeuroVault.org (Gorgolewski et al., 2015),
which are available at https:/neurovault.org/collections
/16065/.

ROI Analyses

To inspect the effects of object—action associations more
specifically in the hypothesized regions, we additionally
performed planned ROI analyses. Addressing alPL, we
used area PFt (Caspers et al., 2006, 2008) of the Julich-
Brain Cytoarchitectonic Atlas (Amunts, Mohlberg, Bludau,
& Zilles, 2020; Eickhoff et al., 2005), noting that also
relevant peak MNI coordinates of our previous study all fell
into this field (Schubotz et al., 2014). The alPL Julich-Brain
ROI was created using the SPM anatomy toolbox (www.fz
-juelich.de/inm/inm-7/JuelichAnatomyToolbox). As
second ROI, we used the PHC. We defined the extend
of the PHC ROI using the Harvard-Oxford anatomical atlas
(https://fsl.fmrib.ox.ac.uk/fslfslwiki/Atlases) and the soft-
ware MRIcron (https://www.mccauslandcenter.sc.edu
/mricro/mricron), including voxels if the atlas labeled
them as “Parahippocampal Gyrus, posterior division” or
“Parahippocampal Gyrus, anterior division” with a proba-
bility of >25% (Li et al., 2016; Ward, Chun, & Kuhl, 2013).
As third ROI, we employed the temporo-occipital area sen-
sitive to biological motion (BMA), which we gratefully
adopted from a recent meta-analysis on the functional
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organization of the posterior lateral temporal cortex
(Hodgson, Lambon Ralph, & Jackson, 2023). We extracted
the mean contrast estimates of our main contrasts for each
ROI using the Marsbar toolbox (Brett, Anton, Valabregue,
& Poline, 2002), which were then compared between
studies by a two-sample ¢ test (unequal variances, a =
.05, two-sided) per region using MATLAB R2022a.

RESULTS
Behavioral Reliability Measures

Intra-individual Relest Reliability of
Unit Marking Responses

Concerning single-subject retest reliability, on average,
63.27% were consistent responses (i.e., the test response
matched the retest response in time) ranging between the
participants from minimally 48.18% to maximally 71.22%
(SD = 6.34). The individual consistency criterion ¢;, which
defined the width of the time window around the retest
response separately for each participant, was minimum
3.9 frames (i.e., ~170 msec), median 5.7 frames (i.e.,
~248 msec), and maximum 11.3 frames (i.e., ~491 msec).
Importantly, the consistency of the participants’ unit
marking behavior was significantly higher than the consis-
tency of simulated random button presses, t(31) = 17.81,
95% CI [28.65,36.07|,p < .001,d = 3.15, two-sided. Thus,
participants’ unit marking behavior followed a specific
nonrandom pattern and was intra-individually consistent
across the test-retest sessions. Compared with the object
manipulation study (Pomp et al., 2021), the intra-
individual retest reliability was similar regarding the indi-
vidual percentages of consistent responses as indicated
by a Bayesian independent-samples ¢ test that showed evi-
dence for the null hypothesis and its classical counterpart
yielding nonsignificant results, BFy; = 3.502), {(61) =
0.139, p = .89, d = 0.035, two-sided. With regard to the
respective comparison to random button presses, a
greater Cohen’s i of 3.15 in dough study’s individual retest
reliability versus 1.91 in the object study, indicated that
individual participants’ segmentations were even more
systematic for dough videos.

Retest Reliability of Unit Marking Responses at the
Group Level

Corresponding to the single-subject retest reliability
results, between-subject unit marking behavior was con-
sistent, as revealed by a highly significant correlation
between group-based test—retest segmentation perfor-
mance. That is, correlations testing the group level retest
reliability gave a mean correlation of test and retest
smoothed time series of frame values per video of
#2(292) = .72 (Fmin = 40, Fmax = .90; each individual
correlation per video being significant, all p < .0001).
Compared with the object manipulation study (Pomp
et al., 2021), group-level retest reliability was significantly
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higher for dough manipulations, £(586) = 17.153, p <
001, d = 1.415, two-sided (BFy, = 1.365 x 10*°%).

Group-consistent Unit Mark (M) Determination
and Their Relation to TU Events

Determination of Group-consistent Unit Marks

The frame with the maximum frame value in a video that
represents the maximum agreement between participants
was taken as group-consistent M. On average, this maxi-
mum frame value was 9.93 (SD = 2.00), ranging from 6
to 18. All maximum frame values were at least 2 SDs above
the mean frame value of the respective video, following
previous approaches (Pomp et al., 2021; Schubotz et al.,
2012). In contrast, the maximum frame values resulting
from simulated random unit markings ranged, on average,
between 6.11 and 6.37 (i.e., <9.93). In none of these
simulated data sets all maximum frame values passed the
criterion of being at least 2 $Ds above the respective video
mean frame value. Taken together, this finding suggests
that the participants did not segment the action videos
randomly, and overall, the group showed a specific non-
random segmentation behavior.

Furthermore, we inspected the relation between the
number of Ms and the number of TUs per video: The num-
ber of Ms per video on group level ranged from one to four
M =1.2,8D = 0.36, n = 294) and was significantly lower
than the number of TUs per video that ranged from three
to six (M = 5.2,8D = 1.01,n = 294; 1(586) = 64.97,95% CI
[3.97,4.22], p < .001,d = 5.36, two-sided). On the single-
subject level, the average number of individual test-retest
consistent unit marking responses per video ranged from
0.6 to 1.9 with a mean of 1.4 (SD = 0.26, n = 294).
Crucially, the number of individually consistent unit mark-
ing responses per action significantly correlated with the
number of TUs per action video, #(292) = .55, p <
.0001, as well as the number of group-level Ms that posi-
tively correlated with the number of TUs, »(292) = .17,
p = .003, both pointing to a systematic relationship
between the number of Ms and TUs.

Temporal Convergence of Parlicipani-determined Unil
Marks and Objective Everls

With regard to the temporal relation of Ms to TUs, for
more than one third (39.1%) of the Ms, the time lag to
the next TU was maximally two frames, that is, =130 msec.
This coincidence rate was significantly higher than the
coincidence rates obtained from the 10 sets of simulated
random unit marks, 7(9) = —9.46, 95% CI [24.32, 30.03],
b <.0001,d = 2.99, two-sided underpinning our expecta-
tion that Ms were systematically delivered in relation to
TUs. Compared with the object manipulation study (Pomp
et al., 2021), this significant coincidence rate’s difference
to simulated random unit marks was more pronounced in
the dough study with a Cohen’s & of 2.99 compared with a
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3.2 Object-Action Associations in Action Segmentation

Cohen’s d of 1.27 in the object manipulation study, indi-
cating a stronger systematicity on the group level.

Effects of Object-Action Associations on the
Temporal Relation of Ms to TUs

As shown above and in Pomp and colleagues (2021), single
subject as well as group behavior was consistent across test
and retest sessions in both studies, and descriptive behav-
ioral values regarding the number of Ms per video were
comparable between both studies. Still, and as hypothe-
sized, our current results showed a higher coincidence
rate between Ms and TUs, with 39.12% for play dough
actions compared with 28.3% for object actions. Further-
more, inspecting the temporal distances between Ms and
their closest TUs, Levene’s test for equality of variances
indicated unequal variances, F(1, 688) = 5.71, p = .017,
with dough action M-TU distances having a significantly
lower variance (Var = 23.34) than object M-TU distances
(Var = 37.12) and thus, as hypothesized, a smaller spread
of data. The distributions of M-TU differences differed sig-
nificantly between studies (W = 48885.50, p < .001, r =
—.18, 7 = 690). To test our hypothesis that Ms are tempo-
rally closer to TUs when only weak object-action associa-
tion is present, we compared the absolute temporal delay
between the occurrence of M and TU for object and play
dough actions. Generalized linear (i.e., negative binomial)
modeling showed that although the two studies were not
significantly different, Wald x*(1) = 0.02, z test = —0.02,

P =.89,d = 0.02; dough: mean = 4.1 + 3.2, median = 3.5;
object: mean = 5.5 + 4.4, median = 5, generally, the M-T
differences differed significantly from the M-U differences,
Wald % (1) = 13.87,z test = 0.30, p < .001,d = 0.30; M-T:
mean = 4.84 = 4.0, median = 4; m-u: mean = 4.78 = 3.7,
median = 4. Furthermore, a significant interaction
between Event Type (touch, untouch) and Study (dough,
object) was observed, Wald x*(1) = 15.98, z test = —0.48,
p < .001,d = —0.48. To elucidate this interaction, we con-
ducted Bonferroni-adjusted post hoc contrasts, which
revealed that although the M-T differences were significantly
different between the two studies, z-ratio(object/dough) =
—3.41, p < .001 (Figure 4B), the M-U differences were not
significantly different, z-ratio(object/dough) = 0.13, p = .89
(Figure 4D). These results indicate that actions were seg-
mented closer to T events in case of weak object-action
associations. For signed and unsigned M-T and M-U differ-
ences, see Figure 4. The signed temporal differences in
Figure 4A and Figure 4C illustrate when participant-judged
Ms appear in relation to T and U events. Moreover, the
unsigned differences shown in Figure 4B and Figure 4D
address the question whether Ms were temporally closer
to T or U events independent of the sign.

fMRI Results

To investigate the whole-brain and ROI effect of object—
action associations, we compared brain activity patterns
of the two studies for the full video length (video > null)

Figure 4. The temporal relation
of unit marks (M) to touch A | B
(T) and untouch (U) events. T |
The distribution of M to T
differences (blue) shown as n=182
signed values (A) and unsigned
values (B) given in frames and
grouped by study (top, light:
dough study; bottom, dark:
object study). Similarly, the ! : objects
distribution of M to U b
differences (green) shown as ! ! H
signed values (C) and unsigned ! ! n=195
values (D) grouped by study. k L
. . -26 -20 -15-10 -5 0 5 10 15 0 5 10 15 20 25
The red dashed line atx = 0 T-M(frames) |T-M(frames)|
indicates when participants M M
behaviorally segmented actions, C 1 DR
that is, a unit mark (M) was | |
determined. The action videos U 1 N
had a frame rate of 23 frames | 1 n= 168
per second (1 f £ 43.5 msec).

1

i objects
: -
| | n=145
'l 'l
-25-20 -15-10 -5 0 5 10 15 0 5 10 15 20 25
U-M(frames) |U-M(frames)|
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A object > dough [video > null] & object N dough [video > null]
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Figure 5. fMRI activation in contrasts and conjunctions between object and dough data at p < .005, peak-level FDR-corrected, and ROI analyses of
left (L) and right (R) alPL, biological motion area (BMA), and PHC. A, B, and C illustrate the between-studies’ effects for the full video length (video >
null; purple). D and E show the whole-brain effects, and F shows the ROI analyses for the between-study comparison at untouching events (U >
nTU; green). ROI analyses for the between-study comparison at touching events (T > nTU; blue) are illustrated in G and for unit marks (M > nM;
red) in H. Finally, between-study conjunction results are depicted in J for touching events and K for unit marks. For ROI analyses: Mean contrast
estimates were extracted from the contrasts video > null, U > nTU, T > nTU, and M > nM of the object (dark shade) and dough (light shade) study.
Note that all comparisons show Group X Event interaction effects. For objects 7 = 31, for dough 7 = 33. Statistics: two-sample ¢ tests (fwo-tailed).
*p < .05, #*p < .01, ***p < .001. Unthresholded statistical maps of the whole-brain analyses have been uploaded to NeuroVault.org and are available
at https://neurovault.org/collections/16065/.
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Table 1. Maxima of Activation from the Contrasts and Conjunctions of Dough Study and Object Study Contrasts at p < .005
Peak-level FDR-Corrected

MNI Coordinates

Macroanatomical Location Abbreviation H Cluster Extent t Value x ¥y z

U > nTU

Dough > object

Anterior supramarginal gyrus/ aSMGAPoS R 672 9.48 60 -16 26
ventral postcentral sulcus
Anterior supramarginal gyrus aSMG R 9.38 66 —16 29
Anterior intraparietal sulcus alPS R 7.19 57 =25 53
Anterior supramarginal gyrus/ aSMG/vPoS L 742 9.17 —60 —19 23
ventral postcentral sulcus
Anterior intraparietal sulcus alPS L 7.27 =57 =25 50
Superior parietal lobule SPL L 5.82 —18 —49 71
Mid-insula MIC L 152 7.94 -39 —4 14
R 162 7.08 39 -1 14
Insula IC R 6.48 39 -1 -1
Lateral occipito-temporal cortex LOTC R 341 7.17 51 =70 -7
Posterior inferior temporal gyrus pITG R 6.36 51 —58 -19
Lateral occipito-temporal cortex LOTC L 379 7.16 —48 =73 -1
Ventral precentral gyrus preCG R 127 5.70 57 11 35
L 23 4.30 —57 8 29
Cerebellum CER L 25 5.39 —15 -67 —46

Object > dough

Lingual gyrus LG R 445 7.18 15 —88 2
L 6.29 —24 =76 —4
Cuneus Cun R 6.52 9 —94 11
L 6.22 -9 —100 14
Object N dough
Parahippocampal cortex PHC R 18 6.37 33 —55 -7
L 7 5.37 —33 =55 =7
Dorsal premotor cortex PMd L 29 5.48 =21 —10 56
Video > null
Object > dough
Anterior intraparietal sulcus/ alPS/PoS R 174 6.49 42 -31 47
postcentral sulcus
Anterior supramarginal gyrus aSMG R 6.00 60 —19 32
Object N dough
Posterior middle temporal gyrus pPMTG R 1834 15.98 48 —064 2
Inferior occipital gyrus 10G R 15.09 42 —-73 i
Middle occipital gyrus MOG R 14.30 30 —91 5
1796 Journal of Cognitive Neuroscience Volume 36, Number 9
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Table 1. (continued)

MNI Coordinates
Macroanatomical Location Abbreviation H Cluster Fixtent t Value x ¥ z
Hippocampus HC R 5.01 24 —13 16
Posterior middle temporal gyrus pMTG L 1665 15.24 —45 —67 5
Lingual gyrus LG L 13.12 -27 —91 -10
Inferior occipital gyrus 10G L 12.60 -39 —76 -7
Fusiform gyrus FG L 11.20 -39 —61 —13
Parahippocampal gyrus PHG L 3.90 —24 —28 —16
Insula IC L 4379 10.79 =36 -7 14
Ventral postcentral sulcus vPOS L 10.79 —51 —-25 41
Ventral premotor cortex PMv L 10.70 —57 5 32
Insula IC R 4379 10.37 36 —4 14
Postcentral gyrus PoG R 10.16 54 —19 41
Anterior intraparietal sulcus alPs L 9.94 —42 —31 47
Cerebellum CER L 117 7.97 -9 —73 —43
R 89 6.44 12 =73 —43
Rectal gyrus RG L 105 6.02 0 29 —22
Mid cingulum MCC R 22 4,72 15 -16 44
SMA SMA L 81 4.63 -9 -1 56
R 4.44 9 2 56
Amygdala AMY R 29 4.34 36 -1 —16
M > nM
Object N dough
Lateral occipital cortex LOC L 252 8.41 —48 =73 -7
L 8.02 —45 =70 2
Posterior middle temporal gyrus pMTG R 274 8.29 48 —64 2
Superior parietal lobule SPL R 40 5.55 18 —58 68
L 49 5.24 -21 —58 65
T > nlU
Object N dough
Cuneus CUN L 657 6.75 -6 —82 23
R 5.99 9 -79 26
Lingual gyrus LG L 6.17 -9 —76 -1
R 5.87 12 =76 —4
H = hemisphere; L = left; R = right; U = untouching events; n'TU = non-(un-}touching events; M = unit marks; T = touching events.
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as well as for the time-point-specific activation contrasts at
MM > nM), T (T > nTU),and U (U > nTU) events. Please
note that we always refer to the just enumerated contrasts
when we refer to M, T, and U as events. This means that all
reported between-study time-point-specific effects are
interaction effects (e.g., object study M > nM vs. dough
study M > nM), ruling out group effects.

The Entire-video Effects

Comparing object versus dough videos for the full video
length (Figure 5A), we found a single cluster in the right
aIPL to be significant, including the posterior bank of the
ventral postcentral sulcus, the anterior supramarginal
gyrus (aSMG), and the anterior intraparietal sulcus (aIPS).
ROI analyses affirmed and extended this result by yielding
significant activation increases not only in the right,
1(44.53) = 5.77, p < .001, d = 1.45, two-iailed, but also
in the left, #(58.62) = 3.30, p = .002, d = 0.82, two-tailed,
alPL for strong object—action associations in object
manipulations (Figure 5B). The reverse contrast did not
yield significant results. For the common activity between
studies during the entire action videos, see the corre-
sponding conjunction results as illustrated in Figure 5C
and Table 1.

Interaction Effects at Specific Time Points in the
Video (M, T, U)

Contrasting object versus dough videos at critical time
points’ contrasts, there were no significant differences at
Mor T events but at U events (Figure 5D) in bilateral cuneus
and lingual gyrus. Moreover, ROI analyses (Figure 5F)
showed increased activity in bilateral PHC, left PHC:
1(60.96) = 2.43, p = .018, d = 0.60, two-tailed; right
PHC: ¢(56.86) = 2.53, p = .014, d = 0.63, two-tailed.

The opposite contrast of dough versus object videos
(Figure 5E) led to higher BOLD responses at U events in
bilateral aIPS extending into the SMG in the right hemi-
sphere and to the superior parietal lobule (SPL) in the left
hemisphere; furthermore, bilateral insula, bilateral lateral
occipital cortex (LOC), and bilateral ventral precentral gyrus
activations were detected. The ROI analyses (Figure 5F)
showed dough versus object effects at U events in the
bilateral aIPS (left: £(58.75) = 6.35, p < .001, d = 158,
two-tailed; right: 1(54.27) = 7.06, p < 001, d = 1.76, two-
tailed) and bilateral BMA, left: #(45.87) = 5.51, p < .001,
d = 139, wo-tailed, right: 1(44.01) = 5.68, p < 001, d =
1.43, two-tailed. Moreover, comparing dough versus object
yielded a significant increase in the right aIPS ROI for
T events, #60.00) = 2.51, p = .015, d = 0.62, fwo-tailed
(Figure 5G), whereas whole-brain contrasts at T events
were nonsignificant. Neither whole-brain nor ROI analy-
ses revealed significant differences between dough and
object videos’ time-point-specific M activity (for ROI anal-
yses, see Figure 5H).
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Conjunction Effects at Specific Time Poinis in the
Video (M, T, U)

To examine whether dough video effects at M, T, and U
resemble corresponding object video effects, conjunc-
tions between studies were calculated, and they generally
replicated T- and M-specific activity patterns. For T, the
conjunction yielded bilateral cuneus as well as bilateral
lingual gyrus activity (Figure 5J), and for M, the conjunc-
tion revealed bilateral LOC and bilateral SPL activation
(Figure 5K). Notably, the U-specific activity was partially
replicated. The conjunction showed overlapping activity
in bilateral PHC and left lateralized dorsal premotor area.
See Table 1 for the peak maxima of the described con-
trasts and conjunctions.

DISCUSSION

Previous studies have shown that motion information is of
central importance for the brain segmentation of observed
actions. Accordingly, we recently showed that touching—
untouching events indicating maximal motion changes
are an efficient cue for participant-judged event bound-
aries and are associated with specific processing steps at
the neural level (Pomp et al., 2021). In the current fMRI
study, we hypothesized that objects also have a significant
influence on action segmentation because they are associ-
ated with specific manipulations. Extending the previous
study, we replaced objects with formed pieces of dough
to weaken the object-action associations and compared
the behavioral and neural processes of action segmenta-
tion between the two fMRI studies. Findings show that,
indeed, objects influence action segmentation behavior
and the neural processing at specific events.

Behavioral findings showed that touching—untouching
information was used for action segmentation, no matter
whether object-associated action knowledge was strong
or weak. Moreover, intra-individual and group retest reli-
ability measures corroborated reliable segmentation
behavior for both studies, as tested via a unit marking
procedure (Newtson, 1973). In both object and dough
videos, participants reported event boundaries systema-
tically in relation to (un-)touchings. However, as
expected, the variance in segmentation behavior was sig-
nificantly smaller when object—action associations were
weak. In addition, when compared with random button
presses, participants’ segmentations were even more
systematic for dough videos. Accordingly, the retest reli-
ability on the group level was higher. In summary, this
suggests a lower dispersion of data values in the absence
of strongly learned object—action associations. Besides,
behavioral measures of reliability and consistency, as
well as event frequencies and systematicity in dough
action segmentation, resembled those in object actions,
corroborating the interpretability of subjective event
boundaries and their systematic relationship to objective
touching and untouching events.
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Inspecting the temporal relationship between
participant-judged event boundaries and (un-)touchings,
we observed that, as hypothesized, the coincidence rate
between unit marks and (un-)touchings was higher for
dough actions. Furthermore, here again, the specific
response pattern’s coincidence rate differed from simu-
lated random unit marks’ coincidence rate more pro-
nounced when object—action associations were weak. This
result indicated higher behavioral systematicity in the
absence of strong object-action associations. In addition,
actions were segmented temporally closer to touching
events when object—action associations were weak,
indicating increased reliance on objective touching
events. This is in line with our previous findings suggesting
especially touching events announcing an untouching
event to be important anchor points of behavioral action
segmentation (Pomp etal., 2021). Note that the systematic
relation of Ms to TU does not imply a generally high
overlap of events in time, as there were considerably more
TU events (735 touching and 808 untouching events) than
participant-judged unit marks (340). Thus, consistent with
our first study (Pomp et al., 2021), we also found in the
dough manipulation study that participant-judged event
boundaries very frequently coincided with TU events,
but the majority of TU events did not coincide with a
participant-judged event boundary. Future studies need
to investigate exactly which TU events are used as anchor
points triggering subjective boundary detection.

Taken together, the smaller spread of data and the
larger behavioral systematicity in the responses to dough
videos showed that the subjective event boundaries relied
even more on touching events when strong object—action
associations are absent. Thus, before having experience-
based knowledge of object-associated actions, the individ-
ual presumably relies particularly strongly on objective
(un-)touchings. In general, our behavioral findings corrob-
orated that relational changes in the form of touchings and
untouchings of objects, hands, and ground represent
meaningful anchor points in subjective action segmenta-
tion. This finding is critical for creating objective event
boundaries that can be used for meaningful action seg-
ments. Hard and colleagues (2006) underpinned that
goal-based event schemas are not required to detect event
structure and concluded that physical changes in the
actions subserve event segmentation, measured as bursts
of change in movement features. Zacks and colleagues
(2009) came to a similar conclusion that movement
variables play an important role in action segmentation
using a motion tracking system and transcribing move-
ment as a set of 15 variables. Notably, both studies agreed
that event structure can be extracted from movement
parameters but used complex and costly methods to quan-
tify movement. This is not required in our current
approach, which illustrates its practical advantage in this
area of research.

Extending the picture arising from the behavioral anal-
yses, fMRI data revealed that object information had
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significant effects on how the brain processes different
types of event boundaries. Importantly, based on interac-
tion contrasts from within-study main effects, our
approach controlled for mere perceptual differences aris-
ing from the sight of objects or dough pieces. We expected
that alPL and PHC processing might be more relevant for
the segmentation of object-directed actions than dough-
directed actions, whereas the opposite might be true for
an area sensitive to biological motion (BMA). Our findings
partly confirmed these hypotheses and also revealed that,
among the three types of event boundaries, untouchings
were associated with prominent differences between
object and dough videos. By contrast, modeling brain data
with touching events and participant-judged unit marks
replicated the effects that we found for object-directed
action segmentation largely (see Appendix). We will,
therefore, focus our discussions on untouching events.
As shown in our previous study (Pomp et al., 2021), partic-
ipants reported event boundaries in response to a subset
of touching—untouching motifs, that is, the point in time
where the observed movement increased significantly
from null (touching) to positive change (untouching)
and thus became highly informative in respect of the
upcoming manipulation. We suggest that object—action
associations made the biggest difference at untouching
events because participants had to rely much more on
movement information when observing dough videos as
compared with object videos.

At untouching events, activity increased for dough ver-
sus object manipulations in the prespecified ROIs alPL and
BMA, along with bilateral insula and bilateral ventral pre-
central gyrus activity. Conversely, object versus dough
manipulations led to increased bilateral activity in the
PHC ROI along with bilateral lingual and cuneal activity.
These findings corroborated our hypotheses (a) regarding
the increased impact of biological motion for action seg-
mentation in the absence of strong object-action associa-
tions and (b) regarding the particular role of long-term
mnemonic associations of object and context as reflected
by parahippocampal sites for action segmentation in the
presence of strong object-action associations.

In light of the fact that (un)touching events provide
abstracted dynamic information, the BOLD difference in
the BMA at untouchings is a strong indication that partic-
ipants rely heavily on hand movements to meaningfully
process action segments in the absence of strong
object—action associations. The employed BMA ROI was
functionally defined in a recent meta-analysis (Hodgson
et al., 2023) for biological motion. Importantly, the
reported effect in our study cannot be because of an
increase in motion in the stimuli per se because videos dif-
fered only with regard to the target of manipulation,
dough, or everyday objects. BMA forms part of the ventro-
dorsal route for visual input (Binkofski & Buxbaum, 2013),
which has been argued to process information aconcep-
tually (Mahon, 2023), that is, without “knowing” what
the moving object is. Concerning the analysis of critical
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events in studies on action observation, participantjudged
event boundaries have been found to activate BMAs
(Pomp et al., 2021; Schubotz et al., 2012; Speer et al.,
2003). Similarly, dough manipulation data showed BMAs
to be active at participant-judged unit marks. This
unit-mark-related increase was found for both dough and
object-directed manipulations but the untouching-
related increase was more prominent for dough-related
actions. Therefore, the current approach extends our
understanding of motion as playing a key role in event
structure perception. Because activity in BMA at
untouchings was particularly prominent when objects
were weakly informative with regard to associated actions,
one may speculate that infants’ brains at an age when they
do not yet have a mature knowledge of object—action
associations can already segment actions into meaningful
units based on movement information and may even
begin to categorize object manipulation types using this
structure (Worgotter et al., 2013, 2020). A similar
principle is used to allow robots to gain some kind of
“action understanding.” These machines are also, without
programming them with additional knowledge, agnostic
with respect to the action semantics of objects (Ziaeetabar
et al.,, 2021), and (un-)touching sequences (SECs; Aksoy
et al., 2011) can be used by them to recognize actions of
humans with whom a robot has to cooperate.

Object manipulations that offered associated action
options (and thus assumingly an informed predictive
action model) showed the hypothesized increase in PHC
activity at untouchings. PHC engagement is reliably seen
in tasks where contextual associative information is
encoded or retrieved from memory (Li et al., 2016;
Aminoff et al., 2013) and is sensitive to the stochastic
structure of observed events (Schiffer, Ahlheim, Wurm,
& Schubotz, 2012; Turk-Browne, Scholl, Johnson, & Chun,
2010; Amso, Davidson, Johnson, Glover, & Casey, 2005).
We take the stronger PHC engagement for object versus
dough at untouching to reflect a stronger top—down signal
of action prediction, as objects contained more informa-
tion about possible upcoming actions than pieces of
dough. This information about possible upcoming actions
possibly provided a restriction on the matching process
between the observed and the expected action based on
object-action association knowledge. In the absolutely
reduced scenery we used in our videos, which consisted
only of the table surface, one or two objects, and the
actress’s upper body up to the shoulders (without
head/face), contextual-associative information consisted
solely in the combination of the respective object(s) and
the manipulation performed on it.

Unexpectedly, alPL activity did not increase for object
versus dough videos, but on the contrary, dominated for
dough compared with object videos when we modeled
brain activity at untouching events. In our view, this result
can only be interpreted if we also consider two other con-
ditions in which the same area was also significantly acti-
vated: for object versus dough videos when we modeled
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the entire video length, and for the conjunction of both,
object and dough videos in their full length. Thus, the aIPL
was not specifically associated with the processing of only
object-related information, and its engagement precisely
increased at untouchings when weak object—action associ-
ations were available. Notably, in our study, untouching is
the phase where updating of the current expectation
occurs, as reflected by the engagement of frontal, parahip-
pocampal, and insula regions (Pomp et al., 2021). Note
that, although this finding was replicated in the present
study (see Appendix), here we focus only on the specific
modulations of these responses by the strength of object
information. Updating expectations would normally mean
that object information is used to select a restricted
number of possible manipulations, which can be (or are
typically) associated with the presented object. Thus,
expectations could be restricted based on this kind of
long-term memory, as reflected by the dominance of para-
hippocampal activity for modeling the BOLD response at
untouching events for object versus dough videos. How-
ever, in the case of dough videos, this restriction was not
provided by the piece of dough, and alPL activity increase
must be related to this unrestricted search for expectable
manipulations. The alPL is generally engaged in tasks high-
lighting object—hand interactions (Pelgrims et al., 2011,
Vingerhoets, 2008). The activated cluster in the inferior
parietal lobule that we observed included closely co-
localized activation maxima in aSMG and aIPS, which have
been assigned distinct but synergetic functions underlying
the usage of tools. The aSMG was proposed to integrate
semantic and technical information about objects,
whereas alPS rather selects the object-appropriate grasp
based on object affordances (Bosch et al., 2023). More-
over, the aSMG may be particularly challenged by unfamil-
iar tools or conflicting alternative object-directed actions,
whereas alPS modulates this competition by structure-
based and skilled use knowledge (Bosch et al., 2023;
Buxbaum, 2017; Watson & Buxbaum, 2015). In a previous
study, we found that activity in the aIPL varied as a function
of the number of actions that participants associated with
objects or object sets, even when these actions were not
observed (Schubotz et al., 2014). Against this background,
we suggest that alPL was observed time-locked to
untouchings when object—action associations were weak
because of an unrestricted number of candidate actions
in the case of dough manipulation videos, reflecting the
matching of the beginning manipulation to the large rep-
ertoire of possible manipulations unrestricted by object—
action associations. In line with this suggestion, Sacheli,
Candidi, Era, and Aglioti (2015) demonstrated that the
inhibition of aIPL selectively impaired participants’ perfor-
mance during complementary interactions and suggested
aIPL to predictively code other people’s actions. In addi-
tion, Benedek and colleagues (2018) reported that gener-
ating new object uses compared with the generation of
known object uses was associated with increased left alPL
activation.
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Limitations

Although we made every effort to achieve equal experi-
mental conditions for both experiments’ samples, we can-
not completely rule out that some behavioral differences
at the group level are an artifact. To avoid this limitation,
future studies need to randomly assign participants to
either group. Importantly, this limitation only concerns
the comparison of behavioral data as fMRI analyses con-
sisted only of interaction effects that rule out group
effects. However, the overall similarity between the behav-
ior of the two experimental groups concerning segmenta-
tion frequencies, intra-individual retest reliability, and
group coherence as well as the systematic relationship
to TU events gives us confidence in the authenticity of
our behavioral results.

Furthermore, objects and dough pieces did not only dif-
fer with respect to the associated actions and there might
be alternative interpretations of the differences in segmen-
tation behavior. Future research is needed to address the
degree of object—action associations in dependence on
affordance, functional knowledge, object familiarity, and
object complexity. It might be promising to parametrically
vary the strength of object—action associations and other
dimensions of relevance, and assess their impact on the
corresponding segmentation behavior.

Conclusion

Having a life-long experience with manipulable objects
provides individuals with a huge repertoire of object—
action associations, which is used to efficiently predict
object-directed actions. In the present study, modeling
brain activity with objective and subjective event bound-
aries, we showed that object information had, indeed, sig-
nificant effects on how the brain processes these events. In
the absence of strong object—action associations, the

increased impact of biological motion processing at objec-
tive untouching events, as well as the increased impact of
contextual associative information when strong object—
action associations were present, confirmed our hypothe-
ses. At the same time, alPL activity increased for weak
object-action associations, presumably because of an
unrestricted number of candidate actions. Furthermore,
when objects were only weakly informative with regard
to associated actions, segmentation behavior became
even more systematic and tied to touching events. The
present study confirms that objective relational changes
in the form of touchings and untouchings of objects, hand,
and ground represent meaningful anchor points in subjec-
tive action segmentation, rendering them objective marks
of meaningful event boundaries. Our findings offer inter-
esting insights into the neural segmentation of object-
directed action and the significant influence objects have
on the processing of different types of event boundaries
because of their association with specific manipulations.

APPENDIX

Figure Al shows the event-related main effects of touching
and untouching events as well as of the participant-judged
unit marks for object-directed and dough-directed actions.
See Table Al for the activation peaks of the dough
manipulation study and Pomp and colleagues (2021) for
the activation peaks of the object manipulation study. It
gets obvious that object-directed action activation pat-
terns are largely replicated by dough-directed activation,
which means that event processing is mostly not modu-
lated by object-action associations. One striking differ-
ence is the activation in alPS/SMG, which was found for
unit marks in object-directed actions and for untouching
events in dough-directed actions. Direct whole-brain
comparison of the contrasts though yielded no significant
differences between action types at unit marks just as the

IFJ SlsL ACC LDC.’hMT LG/CUN aIF’S/‘SMG

object-manipulations dough-manipulations
Touching . PMd PHG
Untouching
unit Marks

SPL LOC.’hMT LG/CUN alPS/SMG

Figure Al. fMRI activation at p < .005, peak-level FDR-corrected, for the main contrasts of post-fMRI, participant-judged unit marks (M > nM, red),
objective touching events (T > nTU, blue), and objective untouching events (U > nTU, green) of the object-directed action study (left), and the
dough-directed action study (right). PMd = dorsal premotor cortex; dAl = dorsal anterior insula; PHG = parahippocampal gyrus; IF] = inferior
frontal junction; LG = lingual gyrus; CUN = cuneus; hMT = motion area; ACC = anterior cingulate cortex.
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Table Al. Maxima of Activation from the Main Contrasts of the Second-level Whole-brain Analyses of the Dough Manipulation Study
at p < .005 Peak-level FDR-Corrected

MNI Coordinates

Macroanatomical Location Abbreviation H Cluster Extent t Value x ¥ z
M > nM
Posterior middle temporal gyrus pMTG R 381 10.04 48 —64 2
Inferior occipital gyrus 10G R 6.38 30 -97 -1
Lateral occipital cortex LOC L 371 9.46 —48 -73 -7
Inferior occipital gyrus 10G L 7.01 —-27 —97 -1
Superior parietal lobule SPL R 101 6.33 33 —52 65
Anterior intraparietal sulcus alPS L 178 6.01 —=51 —34 56
Superior parietal lobule SPL L 5.74 —24 —58 68
Intraparietal sulcus IPS L 5.58 —45 —40 62
Cerebellum CER R 19 5.04 9 —73 —43
T > nlU
Cuneus CUN L 1313 9.09 —12 —82 23
Lingual gyrus LG L 8.20 —12 =79 8
Calcarine gyrus CG L 7.57 —18 —73 14
Lingual gyrus LG R 7.47 15 =73 5
Calcarine gyrus CG R 7.41 15 =79 17
Cuneus CUN R 7.08 15 =79 26
Insula (@ R 80 7.03 39 —-16 23
Rolandic operculum ROL L 47 6.25 —42 —16 17
Rolandic operculum (lateral) ROL L 33 528 —57 5 5
R 36 5.04 54 -1 8
U > nilU
Postcentral gyrus/anterior PoG/alPS L 195 7.62 —63 —-16 35
intraparietal sulcus
Anterior intraparictal sulcus alPS L 4.99 —45 —22 38
L 491 —42 —28 41
Postcentral gyrus PoG R 219 722 66 -10 29
Anterior intraparietal sulcus alPS R 5.75 51 -16 44
R 5.05 60 —-16 44
R 4.78 51 —25 44
Mid-insula mIC R 62 7.01 36 —4 20
Parahippocampal cortex PHC R 114 7.00 36 —58 -7
L 127 6.66 —36 =55 =10
L 5.46 =33 —43 —-16
1802  Journal of Cognitive Neuroscience Volume 36, Number 9
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Table Al. (continued)

MNI Coordinates

Macroanatomical Location Abbreviation H Cluster Extent t Value X ¥ z
Cuneus CUN R 26 6.44 12 —94 29
Middle intraparietal sulcus mIPS L 80 6.13 —-27 —43 50
Dorsal premotor cortex pMd L 156 6.13 —30 —13 50
Mid-insula mIC L 85 6.11 —36 -7 20
Inferior frontal junction IF] L 5.72 —54 2 32
Dorsal premotor cortex PMd R 35 5.91 36 —10 56
Middle intraparietal sulcus mIPS R 49 5.34 27 —40 50
Posterior intraparietal sulcus pIPS L 24 5.02 —21 —-73 35

H = hemisphere; L = left; R = right; M = unit mark; nM = non-unit mark; T = touching event; U = untouching event; n'TU = non-(un-)touching

event.

corresponding ROI analyses (see Results section). At
untouching events, however, significant differences were
found for alPS/SMG as well as in other regions as discussed
in the Discussion section.
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ARTICLEINFO ABSTRACT
Keywords: At an abstract temporospatial level, object-directed actions can be described as sequences of touchings and
Action observation untouchings of objects, hands, and the ground. These sparse action codes can effectively guide automated sys-
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Inverse MultiDimensional Scaling
Semantic Event Chain

alPL

Object-directed action

tems like robots in recognizing and responding to human actions without the need for object identification. The
aim of the current study was to investigate whether the neural processing of actions and their behavioral clas-
sification relies on the action categorization derived from the touching-untouching structure. Here we show,
using a representational similarity analysis of functional MRI data from two experiments, that action repre-
sentations in left anterior intraparietal sulcus (aIPS) are particularly associated with this categorization of
touching-untouching structures. Within the examined action observation network, only the touching-untouching
category model selectively correlated with the representational profile of the left aIPS. The behavioral results
showed a significant relation between the touching-untouching structure and the observers’ judgments on the
similarity of actions with weakly-informative objects. Extending prior research on touchings and untouchings as
meaningful anchor points for explicit action segmentation, our findings suggest that touching-untouching se-
quences serve as an organizing principle in inferior parietal action representation.

1. Introduction tasks pose significant challenges for machines, the human brain excels at

action recognition effortlessly, and researchers are actively exploring

Action recognition is crucial in many modern applications like video the underlying mechanisms that enable this ability.

surveillance, human-computer interaction, web-video search and In the attempt to let a robot recognize manipulations performed by a
retrieval, robotics, elderly care, and sports analytics (Herath et al., human and let it execute these itself, Aksoy et al. (2011) developed the
2017). Accordingly, automatic action recognition is a popular and concept of semantic event chains (SECs). This approach formalizes
promising field of basic and applied research. However, despite having object-directed actions as sequences of relational changes in the form of
similarities to static image analysis, video data analysis is far more touchings (T) and untouchings (U) of objects, hands, and the ground
complicated (Jiao et al., 2022). The main challenges of this continuous (TUs, hereafter). Thus, SECs or TU sequences encode the contact states
process arise due to the movement of objects and changes in perspective between surfaces, without prioritizing the hand over objects or the table
leading to changing size and appearance, blurriness, and changing light surface. Most importantly, robots can recognize and execute manipu-
intensities. Moreover, current deep learning networks still depend lations using this SEC-based representation without prior object
heavily on extensive pretraining (Han et al., 2021), and object recog- knowledge (Aksoy et al., 2011). It showed that computer vision using
nition remains particularly difficult due to the complexity and vari- the SEC approach was able to distinguish between 30 different
ability within object categories (Liang and Wan, 2020). Therefore, the one-handed object manipulations typical of everyday life (Worgotter
ultimate goal is to enable machines to learn actions directly from video et al., 2013). Against this background, the question arose whether these
observations without human intervention. Interestingly, while these TUs, that are useful for robots to recognize actions, could be also used in
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human action recognition. And indeed, previous research has shown current study, we built on these findings and investigated whether the
that TUs are meaningful anchor points for individual action segmenta- action categories derived from the TU structure of an action might be
tion (Pomp et al., 2024, 2021). Thus, TUs have been shown to be informative for the brain, and whether they are also reflected in cate-
objective and meaningful event boundaries, and certain sequences of gorization behavior. Specifically, the question was whether there are
TUs emerged as particularly relevant for individuals to determine action brain regions that reflect action categories as predicted by their full TU
steps (Pomp et al., 2024, 2021). Moreover, we found that the observa- sequence and whether behaviorally determined categories resemble
tion of Ts and the observation of Us were each associated with different them. To address this question, we employed fMRI-based representa-
brain activation patterns, emphasizing their importance in the analysis tional similarity analyses as well as inverse multidimensional scaling
of observed actions. (MDS).

Interestingly, taking the entire TU sequence of an action into ac- Based on the SEC-based ontology of manipulation actions, video
count, also action categories arise from the SEC formalism. For example, stimuli were recorded that belonged to six separate action categories. In
turning, pulling, and poking an object all share the same TU sequence two separate experiments, two non-overlapping groups of participants
and belong to the action category termed “rearrange”. Their TU passively watched these videos during the MRI scan. Importantly, the
sequence differs from, for example, breaking, ripping-off, and uncov- two experiments were similar except for the manipulated objects in the
ering by picking and placing, that also share a similar TU sequence and videos. In the first experiment, manipulation actions were performed

build another category termed “break” (Worgotter et al., 2013). In the with daily life objects (e.g., a calculator, a cup, or a piggy bank) and in

A Action observation task during the MRI scan
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B Multi-arrangement task in a behavioral session

Exp2 Exp1

&>

Fig. 1. Experimental task designs. (A) During the fMRI scan, video trials (action videos followed by a jittered inter-stimulus-interval that showed a white fixation
cross) and null event trials (showing a white fixation cross) were passively attended to. Question trials (question followed by a jittered inter-stimulus-interval that
showed a white fixation cross) required participants to confirm or reject by button press an action description with regard to the preceding action video. The question
disappeared only after button press and followed 14% of the action videos. For the video trials, here, each single frame image represents a full action video plus inter-
stimulus-interval as indicated by the dashed lines. In sum, 308 videos, 42 questions, and 49 null events were presented to each participant, split into seven blocks
with short breaks in between. The task design was equivalent in experiment 1 (Exp 1) and experiment 2 (Exp 2), but the action videos differed, as shown in the lower
part of (A). Example videos are provided via the Action Video Corpus Miinster (AVICOM, https://www.uni-muenster.de/IVV5PSY/AvicomSrv/), where the entire
video stimulus material is available upon request. (B) In a subsequent behavioral session, each participant did a multi-arrangement task with the time course of the
action videos being represented by a sequence of three single frame images (see blue box zooming in the items). The participants spatially arranged subsets of these
items within a 2D white circular arena on a 27" computer screen using the computer mouse. (Dis-)similarity between items was expressed through the relative spatial
position of the items. The task was implemented in the Meadows web-based platform for psychophysical experiments (http://meadows-research.com). The figure
shows an exemplary screen for the evaluation of similarity relationships in the stimulus material of experiment 2.
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the second experiment, these objects were replaced by formed play
dough pieces that did not resemble meaningful objects (see Fig. 1). This
enabled us to focus on the actions’ common TU sequences and to control
for potential effects associated to object identity. For both experiments,
we created a similarity model that captured the action categories as
defined by the TU structure given by the SEC framework (referred to as
“TU model”, hereafter). Furthermore, to investigate to which extent the
TU structure of actions influenced how participants subjectively cate-
gorize actions, we created a rating-based behavioral similarity model
and compared it to the TU model. This model was created using the
similarity ratings of a behavioral post- MRI multi-arrangement task that
employed the inverse MDS approach by Kriegeskorte and Mur (2012),
and we refer to it as “MDS model” hereafter.

With regard to brain activation, we reasoned that if two actions are
defined as similar in TU structure, they should evoke similar activation
patterns in brain areas coding actions in terms of SEC-like information.
Accordingly, we performed a specific form of multivoxel pattern anal-
ysis known as representational similarity analysis (RSA) to investigate
which brain regions reflect the action categories as predicted by their TU
structure. We used a searchlight RSA for a brain-wide analysis and a
region of interest (ROI) RSA focused on the action observation network,
respectively. Here, we specifically focused on the left anterior inferior
parietal lobule (aIPL), as this region has been consistently shown to be
sensitive to (observed) hand-object interactions (Murata et al., 2016;
Vingerhoets, 2014), observation of touch (Chan and Baker, 2015),
physical scene understanding (e.g., how objects rest on each other and
how colliding objects behave; Fischer et al., 2016), and reasoning on
physical object properties (Reynaud et al., 2016). Moreover, lesion
studies have shown that the left parietal lobe plays a major role in
apraxia, which comes with severe impairments to associate objects to
appropriate actions (Buxbaum and Randerath, 2018). While the aIPL
apparently enables a range of closely related functions rather than a
single homogeneous one, this profile seemed best suited to represent the
TU structure of actions.

2. Methods

For the current investigation, we used fMRI data that was analyzed
and published in two previous works (Pomp et al., 2024, 2021). These
original datasets included also unpublished data of a post-fMRI multi--
arrangement task, which were the focus of the current work. Further-
more, in contrast to the preceding analyses, fMRI-based RSA was used
here to identify neural representations of action categories. In several
passages in the methods section, we refer to the preceding publications
for detailed descriptions. Yet, we repeat details if necessary for imme-
diate understanding of the current study.

2.1. Participants

2.1.1. Experiment 1

As reported in Pomp et al. (2021), 31 participants (Mg — 23.84
years, SD = 3.01, age range = 18 - 31 years, 25 women, 6 men)
participated in experiment 1. One additional data set was excluded from
the analyses as the participant misunderstood the instructions. The
participants were all right-handed as determined by the Edinburgh
Handedness Inventory (Oldfield, 1971), had intact color perception,
normal or corrected-to-normal vision, reported no history of neurolog-
ical or psychiatric diseases, and self reportedly met the criteria for MRL
scanning. The experiment was conducted according to the Declaration of
Helsinki and approved by the local Ethics Committee of the Faculty of
Psychology (University of Miinster, Germany). The participants pro-
vided informed consent and either received course credits (29 of the
participants were students of the University of Miinster) or were paid for
their participation.

NeuroImage 310 (2025) 121113

2.1.2. Experiment 2

Asreported in Pomp et al. (2024), 33 right-handed participants (Mg
= 23.03 years, SD = 3,006, age range = 18-29 years, 28 women, 5 men)
took part in experiment 2. The participants reported having no history of
neurological or psychiatric disorders, intact color perception, and had
not taken part in related precursor studies. In the course of the behav-
ioral part of the experiment one participant dropped out; hence, this
participant’s data set was not included in the behavioral model con-
struction but was included in the fMRI data set. The behavioral analysis
comprised the data of 32 participants (27 women, 5 men) aged between
18 and 29 years (Mage = 22.88, SD = 3.13). The participants gave
written informed consent in voluntarily participating in the experiment
and were self-reportedly suitable for MRI scanning. They were either
paid for their participation or received course credits. The experiment
was conducted according to the Declaration of Helsinki and approved by
the local Ethics Committee of the Faculty of Psychology (University of
Miinster, Germany).

2.2. Stimulus material

The object-directed manipulation actions for the video stimuli were
chosen according to the SEC framework (Worgotter et al., 2013). This
framework includes transitive actions involving one active hand and one
or two objects. Twelve of these actions were selected for the current
studies that belonged to six action categories: Rearrange (turn; pull),
break (rip off; uncover), destroy (cut; scoop), destruct (take down; take
away), construct (put on top; put together), and hide (put over; put into).
For experiment 1, each action was recorded using four different objects
which resulted in 48 object manipulations (6 action categories x 2 ac-
tions x 4 objects). For experiment 2, all 12 actions were performed with
formed pieces of blue dough (6 action categories x 2 actions).

Action videos were recorded using an industrial camera and the
created video material showed the actress from the front up to the
shoulders performing the action on a white table (see Fig. 1). Subse-
quently, the videos were vertically mirrored so that the actions looked
like being performed by the left hand. Each participant saw 50% of the
action videos mirrored. For more details on the creation of the video
material see Pomp et al. (2021, 2024). In order to control the transition
probabilities of the video trials in the experiment, the stimulus sequence
was designed as a second-level counterbalanced De Bruijn sequence
with seven conditions (6 action categories + null condition) using the De
Bruijn cycle generator by Aguirre et al. (2011) and NeuroDebian 8.0.0
(Halchenko and Hanke, 2012). See Pomp et al. (2021, 2024) for details.

For the behavioral multi-arrangement task, each action was repre-
sented as a sequence of three video images, i.e., single frame images
from the start, middle, and end of the action video (Fig. 1B). Therefore,
the sequence of images showed the start state, the manipulation, and the
end state of the action whereby the middle one was enlarged and
highlighted. The image triplets were supposed to represent the course of
action of the respective video, that had repeatedly been seen.

2.3. Experimental procedure and tasks

In both experiments, the participants completed three experimental
sessions. The first session comprised the MRI session. As described
earlier (Pomp et al., 2024, 2021), the participants passively attended to
the action videos during the MRI scan. Attention capturing questions
followed 14% of the videos asking whether an action description was
appropriate for the just seen action video. Participants responded by
pressing one of two response keys with their right index and middle
finger to reject or affirm the given description. Their response was
necessary for the experiment to continue ensuring that participants
engaged in attending and recognizing the actions shown in the videos.
See Fig. 1A for the experimental trial design. See Pomp et al. (2021,
2024) for details on stimulus presentation in the scanner and the pro-
cedure at the scanner.
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As second part of the third session, participants did a multi-
arrangement task (Fig. 1B). We adapted the multi-arrangement
method proposed by Kriegeskorte and Mur (2012), which uses inverse
MDS to obtain a distance matrix from multiple spatial arrangements of
subsets of items within a 2D space. The participants did this task in a
behavioral laboratory using the Meadows web-based platform for psy-
chophysical experiments (http://meadows-research.com). Participants
arranged the actions, as represented by a sequence of three single frame
images, in a two-dimensional space (on a computer screen of 27")
thereby expressing (dis-)similarity through the relative spatial position
of the items. Due to the limited screen size, only a subset of actions was
arranged per trial. In experiment 1 the subset included a maximum of 11
actions being simultaneously presented and in experiment 2 a maximum
of six actions. These numbers were chosen to give participants enough
space to arrange items while having enough items per trial to efficiently
gather pairwise similarity ratings in a reasonable total number of trials.
In experiment 1, in total the pairwise similarity of 48 actions (12 ma-
nipulations x 4 objects) was estimated and in experiment 2, as the object
dimension was absent, the pairwise similarity of 12 actions was
assessed. Regarding the subset of actions per trial, the concrete items for

NeuroImage 310 (2025) 121113

the second trial’s subsets of stimuli (and all subsequent) were deter-
mined using an adaptive algorithm that provided the optimal evidence
for the pairwise similarity estimates that were inferred from the 2D
arrangement of the items on the screen (see Kriegeskorte & Mur, 2012,
for details). Therefore, some of the trials included fewer actions than the
set maximum, as determined by the algorithm, which allowed partici-
pants to refine their judgments within the given arena space. The par-
ticipants were instructed to drag and drop the stimuli within a circular
arena using the computer mouse and place similar actions closer
together and dissimilar ones further apart. No explicit instruction was
given on which feature to use for similarity. The relative inter-item
distances, rather than the absolute screen distances, represented dis-
similarities between the items from trial to trial. All items had to be
placed in the arena. The task terminated automatically either when a
sufficient signal to noise ratio was achieved (the minimum required
evidence weight was set to 0.5), or when the maximum session length of
60 minutes was reached. Subsequently, the participants completed a
short survey. Please note that the participants knew the action videos
very well as they also saw the videos in a behavioral test-retest regime
and manually segmented meaningful action steps by button press in the
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Fig. 2. Model Representational Dissimilarity Matrices (RDMSs). (A) The touching-untouching (TU) action category model shown as model RDM with row and column
labels, which are representative of the other models. Action categories that contain the concrete actions are given on the left side. (B) Visualizations of the second to
sixth model RDMs for experiment 1 (top row) and experiment 2 (bottom row). The scale is from dissimilar (yellow) to similar (red).
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second and third experimental session (see Pomp et al., 2021, 2024). We
therefore assumed that a triplet representation (i.e., three single frame
images) of each action video was sufficient to remind the participants of
the respective action video and to let them judge the similarity based on
the plot of the action (i.e., the interaction with the object).

2.4. Representational dissimilarity matrices (RDMs)

We created six model RDMs to use them in the RSA (Fig. 2). The first
and second models were of main interest for the current study while the
third to sixth models were created to control for perceptual stimulus
features that might covary with the first and second one. The second
model based on participants’ judgments. The other models were objec-
tive and were derived directly from the video stimuli either through
experimenters’ judgments (MD model, M model) or feature extraction
(V model, D model).

(1) The first model created was a dissimilarity model that captures
the action categories as defined by their TU structure according to
the SEC framework. We compared each of the 12 actions with
each other in terms of whether they belong to the same SEC
category (dissimilarity = 0) or not (dissimilarity = 1). This TU
model was identical for experiment 1 and 2. All following models
were created separately for experiment 1 and 2. Tmportantly, TU
categories did not systematically covary with the position of the
object relative to the subject. Similarly, the TU categories did not
covary with specific grip types, as the same TU sequence was
performed with different objects, each requiring a different type
of grip.
To investigate to which extent TUs influenced how participants
subjectively categorize actions, we created a second model based
on similarity ratings. The inverse MDS results from the post-fMRI
multi-arrangement task were used for this MDS model. The
resulting pairwise dissimilarity estimates, i.e., the Euclidean
distance between the two actions of a pair, were averaged across
trials, resulting in a 48 x 48 (Exp. 1) or a 12 x 12 (Exp. 2)
dissimilarity matrix for each participant. Each dissimilarity ma-
trix was normalized by dividing each value by the maximum
value of the matrix. Finally, the dissimilarity matrices were
averaged across participants and across the exemplars of each of
the 12 actions.
To create a low-level visual similarity or ¥V model, we computed
the pixelwise similarity of each action video. In a first step, we
averaged the frames of each action video. We then vectorized the
resulting average frames to obtain a pixelwise vector for each
action exemplar. The pixelwise action vectors were correlated
with each other, resulting in a 12 x 12 correlation matrix. This
matrix was transformed into a dissimilarity matrix by subtracting
it from 1 (1 - r). Computing pixelwise similarity is a common
practice in RSA to capture general low level visual representa-
tions of stimuli (e.g., Kriegeskorte et al., 2008; Peelen and Car-
amazza, 2012), including videos (de Vries and Wurm, 2023;
Wurm and Lingnau, 2015). To capture more specific levels of
low-to-midlevel representations upstream of basic pixelwise
similarity, several options exist, including FSIM (others are e.g.
Radon, silhouette, DNN layers), and specifically for videos, it is
also possible to use models based on optical flow and motion
energy, as well as more sophisticated models such as Dense
Trajectory models and Space-Time-Interest Points (Urgen et al.,
2019). However, such higher-level models were beyond the
purpose of this study, since we only wanted to control for basic
low-level visual similarity of our stimuli.
(4) Since the videos differed in terms of their duration, we computed
a video duration or D model by computing the absolute difference
between video durations.

(2

=

(3

=
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(5) We created a movement direction or MD model that captured
whether an object was moved away from the body toward
another object or vice versa, i.e., away from another object to-
ward the body. We compared each of the actions with each other
with respect to whether the actions were made in the same di-
rection (0 = similar) or in different directions (1 = dissimilar).
This model turned out to be similar for experiment 1 and 2. Please
note, this model was independent of left-right movements, as
these were balanced by showing the stimuli also vertically
mirrored (see Section 2.2. Stimulus material).

Finally, some of the actions involved both hands, as the non-
dominant hand stabilized the object for manipulation, whereas
other actions were unimanual, i.e., the non-dominant hand
remained still on the table without touching an object. We
computed a manual or M model by pairwise comparing each of
the actions with each other with respect to whether they both
were unimanual or bimanual (0 = similar) or one action was
unimanual and the other action was bimanual (1 = dissimilar).

(6

=

Regarding models three to six, each of the perceptual dissimilarity
matrices were averaged across the exemplars of each of the 12 actions
where applicable.

2.5, Behavioral data analysis

2.5.1. Behavior during the MRI scan

During the MRI scan, attention-maintaining questions irregularly
followed the action videos. We evaluated the accuracy and calculated
the median reaction time of the correct responses.

2.5.2. Analyses regarding the MDS model

To assess the inter-subject reliability of the MDS models, obtained
from the multi-arrangement task, we correlated each participant’s
pairwise similarities (i.e., the lower triangle of the correlation matrix)
with the averaged pairwise similarities of the remaining subjects using
leave-one-subject-out cross-validation in MATLAB (https://www.math
works.com). The resulting correlation values were averaged.

Moreover, to ensure that the MDS models of experiment 1 and 2
reliably captured the behavioral similarity across different types of
stimuli (i.e., with and without real objects), we correlated these two
models in MATLAB.

Finally, we tested whether the participants’ subjective similarity
ratings could be explained by the TU model. To this end, we first
calculated a multiple regression analysis in JASP (JASP Team, 2024)
including the four control models (V, D, MD, and M) as predictor vari-
ables, and the subjective similarity ratings as outcome variable. Pre-
dictor variables that did not significantly predict the outcome variable
were eliminated from the regression equation. Subsequently, the
remaining control models were added to the null model to investigate
the portion of variance explained by the alternative model which
included the TU model as predictor variable.

2.6. fMRI data analysis

2.6.1. fMRI data acquisition, preprocessing, and design specification

For both experiments, MRI data were acquired at the Translational
Research Imaging Center (TRIC) of the University Hospital Miinster
using a 3-Tesla Siemens Magnetom Prisma MR tomograph with a 20-
channel head coil. First, high-resolution T1-weighted images were ob-
tained by a 3D-multiplanar rapidly acquired gradient-echo (MPRAGE)
sequence (scanning parameters: 192 slices, TR = 2130 ms, TE = 2.28 ms,
slice thickness = 1 mm, FoV = 256 x 256 mm2, flip angle = 8°). Sub-
sequently, a blood-oxygenlevel-dependent (BOLD) contrast was
measured by gradient-echo echoplanar imaging (EPI). Seven EPI se-
quences measured the seven experimental blocks (scanning parameters:
33 slices, TR = 2000 ms, TE = 30 ms, slice thickness = 3 mm, FoV = 192
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% 192 mm?2, flip angle — 90°). The {MRI data have been used in two
previous papers (Pomp et al., 2024, 2021).

The anatomical and functional images were preprocessed using the
Statistical Parametric Mapping software (SPM12; The Wellcome Centre
for Human Neuroimaging, London, UK) implemented in MATLAB
R2019a. The preprocessing included slice time correction to the first
slice, realignment to the mean image, co-registration of the individual
structural scan to the mean functional image, normalization into the
standard anatomical MNI space (Montreal Neurological Institute, Mon-
treal, QC, Canada) on the basis of segmentation parameters, as well as
spatial smoothing using an isotropic 3 mm full width at half maximum
(FWHM) Gaussian kernel. A 128 s temporal high-pass filter was applied
to the time-series of functional images to remove low-frequency noise.

The functional images were statistically analyzed using SPM12
applying a general linear model (GLM) for serially autocorrelated ob-
servations (Friston et al., 1994; Worsley and Friston, 1995) and a
convolution with the canonical hemodynamic response function (HRF).
As regressors of no interest, the six subject-specific rigid-body trans-
formations obtained from realignment were included. To allow for
T1-equilibrium effects, the volumes of the first two video presentations
of each EPI were discarded. The constructed GLM included 14 regressors
of interest coding for onsets and durations of the 12 action video types,
null events, and question trials.

2.6.2. Representational similarity analysis (RSA)

The RSA (Kriegeskorte et al., 2008) was carried out using the CoS-
MoMVPA toolbox (Oosterhof et al., 2016) and the representational
similarity toolbox (Nili et al., 2014). For each participant and run, beta
weights of the experimental conditions were estimated using design
matrices containing predictors of the 12 action conditions, null trials,
question trials, and of 6 parameters resulting from 3D motion (trans-
lation and rotation) correction. Each predictor was convolved with a
dual-gamma hemodynamic impulse response function (Friston et al.,
1998). Each trial was modelled as an epoch lasting from video onset to
offset. The resulting reference time courses were used to fit the signal
time courses of each voxel. The resulting beta weights were averaged
across the seven runs to obtain one beta weight per condition and voxel.
The searchlight (Kriegeskorte et al., 2006) and ROI RSA were performed
in volume space using spherical ROIs with a radius of 12 mm.

2.6.2.1. ROI RSA. For the ROI generalized linear models (GLM) RSA,
ROIs were defined in the action observation network based on the peak
coordinates of the univariate contrast of all actions vs. null condition
(for coordinates see Table 1). While in experiment 2, six bilateral ROIs
were defined, experiment 1 did only yield five bilateral and one uni-
lateral ROI (i.e., no univariate peak in right ventral premotor cortex was
detected). For each participant, ROI, and condition, we extracted and
vectorized the beta values of the ROI to obtain one vector of beta values
per action. For each vector, we demeaned the beta values across voxels
by subtracting the mean beta value from each individual beta value.
Next, we correlated the vectors with each other resulting in a 12 x 12

Table 1
ROI coordinates.
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correlation matrix per ROI and participant. The neural correlation
matrices were transformed into a neural RDM (1 - 1). The pairwise ac-
tion comparisons of neural and model RDMs were vectorized, z-scored,
and entered as independent and dependent variables, respectively, into
a multiple regression RSA. Resulting beta coefficients were entered into
a repeated measures analysis of variance (ANOVA) with between-
subject factor Experiment(2), and within-subject factors ROI(11), and
MODEL(6) to see whether ROIs dissociated before entering the beta
coefficients into one-sided signed-rank tests across participants (Nili
et al., 2014). Statistical results were corrected for the number of ROIs
and tested models (11 ROIs * 6 models = 66 tests) using the false dis-
covery rate (FDR) at @ = 0.05 (Benjamini and Yekutieli, 2001).

2.6.2.2. Searchlight RSA. The searchlight GLM RSA was performed
using identical parameters as reported above. For all searchlight ana-
lyses, individual beta coefficient maps were Fisher transformed and
entered into one-sample #tests (Oosterhof et al., 2016). Statistical maps
were corrected for multiple comparisons using an initial voxelwise
threshold of p = .001 and 10,000 Monte Carlo simulations as imple-
mented in the CoOSMoMVPA toolbox (Oosterhof et al., 2016). Resulting z
maps were used to threshold statistical maps (at p = .05 at the cluster
level), which were projected on a cortex-based aligned group surface for
visualization.

To test for multicollinearity between the models, we computed
condition indices (CI), variance inflation factors (VIF), and variance
decomposition proportions (VDP) using the colldiag function for MAT-
LAB. The results of these tests (Exp. 1: Cl<4, VIF<2.2, DVP<0.8; Exp. 2:
Cl<4, VIF<2.6, DVP<1.0) revealed no indications of multicollinearity
that could give rise to potential estimation problems (Belsley et al.,
1980).

3. Results
3.1. Behavioral resulis

3.1.1. Behavior during the MRI scan

To control whether the participants performed the task in the scan-
ner accurately, their performance was analyzed: In experiment 1, par-
ticipants responded on average in 88.5 % correct (SD = 7.5) with a
median reaction time of 1615 ms; and in experiment 2, the mean ac-
curacy was 90.7 % (SD — 6.6) with a median reaction time of 1511 ms.

3.1.2. Results regarding the MDS model

In a first step, we aimed at assessing the reliability of the MDS models
obtained from the multi-arrangement task. In both experiments, we
observed robust correlations between the ratings of individual subjects:
For experiment 1, we found a mean inter-subject correlation of r(64) =
0.66, and all but two subjects’ data correlated significantly with the
group mean (all ps < 0.01, one-sided; for the two remaining subjects: p =
.09, and p = .45; one-sided). For experiment 2, the mean inter-subject
correlation was r(64) = 0.53, and the data of all the subjects

Experiment 1 Experiment 2

L R L R
ROI X y z X y z x y z x ¥y z
alP§ -51 -25 41 45 -22 41 -48 -25 41 42 -28 44
LOTC -45 -70 8 51 -67 -1 -42 -73 -4 48 -64 2
pIPS -24 -76 35 30 -67 32 -24 -73 32 27 73 38
SPL -24 -55 59 30 -49 59 -27 -55 62 21 -64 59
PMd -27 -10 53 30 -7 59 -24 -7 56 24 -4 53
PMv -54 5 38 = = = -57 8 29 60 8 32

Note. Spheres of 12 mm. ROI = Region of interest, L = left hemisphere, R = right hemisphere, %, y, z = MNI coordinates, alPS = anterior intraparietal sulcus, LOTC =
lateral occipitotemporal cortex, pIPS = posterior intraparietal sulcus, SPL = superior parietal lobule, PMd = dorsal premotor cortex, PMv = ventral premotor cortex.
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correlated significantly with the group mean (all ps < 0.01, one-sided).
Moreover, the MDS models of the two experiments strongly correlated
with each other (r(64) = 0.82, p < .001, one-sided). This finding suggests
that the MDS models reliably captured the subjective similarity across
different types of stimuli, i.e., with and without real objects.

Subsequently, to test whether the participants’ subjective similarity
ratings were predicted by the TU model independent of the four control
models (V, D, MD, and M), we conducted a multiple regression analysis.
For experiment 1, the test revealed that the D model as well as the V
model were no significant predictors (D: p = 0.131, #(65) = 1.377,p =
.174; V: p= 0.075, t(65) = 0.722, p = .473). Therefore, these two pre-
dictor variables were deleted from the equation. Then, the remaining
two models (MD and M) were included in the null model of the
regression analysis. This test revealed that the null model explained 49.0
% of the variance in the subjective similarity ratings (R*> = 0.490, F
(2,63) = 30.224, p < .001) and the alternative model including the TU
model as predictor variable explained additional 2.0 % of the variance
(R%>=0.510, F(1,62) = 2.563, p=.115). The predictor variable of the TU
model was no significant predictor of the participants’ subjective simi-
larity ratings, p = 0.144, t(65) = 1.601, p = .115. This means that the
subjectively judged similarity barely changed for a higher TU similarity
in experiment 1.

For experiment 2, we proceeded in the same way and found slightly
different results: As in experiment 1, the initial test of the control models
revealed that the D model as well as the V model were no significant
predictors of the subjective similarity ratings (D: p = 0.165, #65) =
1.943, p = .057; V: p= 0.209, {65) = 1.692, p = .096). Therefore, these
two predictor variables were deleted from the equation. Then, the MD
model and the M model were included in the null model of the regres-
sion analysis. The test indicated that the null model explained 49.8 % of
the variance in the subjective similarity ratings (R% = 0.498, F(2,63) —
31.288, p < .001) and the alternative model including the TU model as
predictor variable explained additional 5.1 % of the variance (R*> =
0.549, F(1,62) = 6.943, p = .011). Thus, the predictor variable of the TU
model was a significant predictor of the participants’ subjective simi-
larity ratings in experiment 2, p = 0.229, #65) = 2.635, p = .011. This
means that the subjectively judged similarity increased for a higher TU-
structure similarity in experiment 2.

Experiment 1 (objects) Experiment 2 (dough)

0=0.001, corrected

34 10EN

6.0

. Experiment 1
. Experiment 2
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In sum, a small portion of the variance in the participants’ subjective
similarity ratings was significantly explained by the TU model in
experiment 2 only. In both experiments, the M model and the MD model
were significant predictors of the similarity ratings.

3.2. Neuroimaging results

As expected, the searchlight GLM RSA revealed that in both, exper-
iment 1 and experiment 2, the TU model predicted the representational
organization of actions in the left anterior intraparietal sulcus (aIPS).
The clusters in aIPS found in the two experiments strongly overlapped,
peaking in the ventral postcentral gyrus and extending anteriorly into
the central sulcus and posteriorly into the supramarginal gyrus (Fig. 3).
Experiment 1 revealed an additional cluster for the TU model in the left
occipital cortex.

The effect of the TU model in left aIPS indicated that the similarity in
terms of TU sequence explained the representational variance in this
area over and above the control models (for the searchlight result maps
of the other models, see the Supplementary Material).

To test whether the aIPS differs significantly from other regions of
the action observation network in this respect, we performed a GLM RSA
in ROIs of the action observation network (based on univariate cluster
peaks), which allows a more sensitive quantitative comparison of RSA
effects in the different ROIs. This was done as it could be that also other
regions of the action observation network are sensitive to the TU
sequence, but failed to survive the conservative correction for multiple
comparisons in the searchlight analysis.

Preparatory for the ROI RSA, to see whether the effects in the ROIs
dissociate, a repeated measures ANOVA with between-subject factor
Experiment(2), and within-subject factors ROI(11), and Model(6) was
carried out. The Greenhouse-Geisser corrected results revealed signifi-
cant main effects for ROI (F(10,620) =7.529, p < .0001, rl(% =0.006) and
Model (F(3.39,210.07) = 19.919, p < .0001, n% = 0.094) as well as a
significant interaction effect between ROI and Model (F(17.78,1102.61)
=6.7,p <.0001, n(z; = 0.060) but no main effect for Experiment (F(1,62)
= 0.363,p = .549, q% = 0.0002). All remaining interaction effects were
significant (all ps < 0.001).

The ROI RSA (Fig. 4) revealed that in the left aIPS, not only the TU

& 7

Experiment 1

Fig. 3. Searchlight GLM RSA result for the TU model separately for experiment 1 and experiment 2 (A), and overlapping (B). Furthermore, (C) and (D) show the
results for experiment 1 and 2, respectively, in axial slices (z coordinates given between slices). The peak coordinates are given in the Supplementary Material. Maps

were thresholded using Monte Carlo correction for multiple comparisons.
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Fig. 4. ROI RSA results. Each bar chart shows the correlation of a neural RDM with the six model RDMs. A - F show the results for each bilateral ROI in experimentl
(Exp 1, top row) and experiment 2 (Exp 2, bottom row). For experiment 1, no right PMv ROI was defined as represented by blank space in the figure. Colored frames
highlight matching results between experiment 1 and experiment 2. The yellow frame highlights common results regarding the TU model. Blue frames highlight
matches for all the other models. Model abbreviations: TU - touching-untouching category model, MDS - inverse multidimensional scaling model, V - low-level visual
model, D - duration model, MD - movement direction model, and M - manual model. aIPS — anterior intraparietal sulcus, pIPS — posterior intraparietal suleus, PMd —
dorsal premotor cortex, SPL — superior parietal lobule, PMv — ventral premotor cortex, LOTC — lateral occipitotemporal cortex. * p <= 0.05, ** p <=0.01, ***p <=

0.001, **** p <= 0.0001.

model explained the representational variance. In fact, most variance
was explained by the M model. This did not come as a real surprise, since
the alPS§ is a critical region for object manipulation and tool use, which
usually mainly draws on the dominant hand but often also requires the
coordinated interplay of the dominant hand with the passive, stabilizing
hand.

Furthermore, experiment 1 revealed additional effects in the left aIPS
for the MDS model and the D model. Interestingly, the representational
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profiles in other areas clearly dissociated from that of the left aIPS. Thus,
the right aIPS also revealed effects for the M model, but not for the TU
model. Instead, we observed a clear effect for the MDS model. Inter-
estingly, common effects were revealed for the MDS model in several
ROIs: right aIP8, left PMv, bilateral pIPS, bilateral SPL, and right PMd.
Right lateral occipitotemporal cortex (LOTC) revealed an effect for the
M model and left SPL for the MD model in both experiments. In contrast,
the left LOTC as well as the left PMd revealed no effects that were
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consistent for both experiments.
4. Discussion

At a fundamental temporospatial level, object-directed actions can
be described as touching-untouching (TU) sequences of hands, objects,
and the ground. While actions that we observe can be classified in
various ways, our study aimed to investigate whether our brain employs
this TU structure as a sparse classification code for actions, and whether
this code is reflected in explicit action categorization. Findings were
consistent across two separate experiments involving either real objects
or weakly-informative dough objects: Neuroimaging results revealed
that the TU structure of actions is represented in the left anterior
intraparietal sulcus, independent of other perceptual and semantic fac-
tors that may co-vary with this structure. At the behavioral level, we
identified a subtle yet significant correlation between the TU structure
and observers’ judgments of action similarity with the dough objects.
This suggests that the TU structure of actions can predict action cate-
gorization, particularly in contexts where object information is limited.

Just as technology is sometimes inspired by nature, the current brain
activation study was inspired by robotics. Sequences of TUs are highly
informative and useful for robots to recognize and execute object ma-
nipulations (Aksoy et al., 2011). Our findings suggest that they provide
an organizing principle in human action recognition, too. There could be
various reasons for this. For instance, TUs are particularly salient and
thus easily recognizable incidents, since touching is always accompa-
nied by deceleration and untouching announces acceleration of our
movements. Accordingly, TUs are also particularly informative. At the
same time, the recognition of TU sequences does not require the ability
to distinguish between hands, objects, and the ground or to identify
different objects. It therefore appears to be an ideal starting point for
learning categories of action even before critical object expertise is built
up (see Hunnius & Bellering, 2010, for the early development of object
knowledge). In this vein, it has been proposed that object-action asso-
ciation may develop earlier than object-word association (Eiteljoerge
et al., 2019). Accordingly, preverbal infants might use TU sequences to
more efficiently encode and more easily recognize everyday object
manipulations they observe.

In our previous studies, we showed that the TUs in an object-
manipulation action video are important and reliable anchor points
for subjective event boundaries (Pomp et al., 2024, 2021). In addition to
this behavioral relevance of TUs, we showed specific neural processing
patterns differentiating between touchings and untouchings. Specif-
ically, the difference in brain activity between touchings and untouch-
ings suggested distinct cognitive processing roles: touchings strongly
engaged visual regions, likely reflecting bottom-up visual processing,
while untouchings recruited broader regions involved in updating ex-
pectations, highlighting the brain’s response to action transitions and
anticipation of what comes next.

The current results expand on these findings and show that TUs are
not only meaningful for action segmentation but also serve as mean-
ingful information in neural action category representation. Specifically,
the left alPS represents actions with similar TU structure similarly,
which was shown at the whole-brain level and was unique in the
examined action observation network. Generally, the aIPS is involved in
creating an action plan for reach and grasp actions (see Turella &
Lingnau, 2014, for a review), it codes hand and tool actions
(Cabrera-Alvarez and Clayton, 2020), represents skills and conceptual
action knowledge (Johnson-Frey, 2004), stores abstract representations
of specific object-directed actions (Chen et al., 2018), and is involved in
physical scene understanding (Fischer et al., 2016). The left aIPS has
been described as one of the brain regions that are generally capable of
discriminating actions of distinct categories and specifically of object
manipulations (Wurm et al., 2017). Recent work by Wurm and Erigiic
(2024) found the aIPL to encode abstract representations of cause-effect
structures that capture the effect that is induced by an effector-target
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interaction in both observed human actions and abstract animations.
Thus, our current finding that the TU structure of actions is represented
in aIPs fits well the current state of research, Given the numerous similar
characterizations of alPS in terms of its role in hand-object interaction,
TU sequences might even be a simple explanatory abstraction of this
functionality.

Importantly, the present findings do not suggest that the left aIPS is
specifically involved in the representation of touchings and untouchings
per se. Rather, this area reflects the sequential pattern of touchings and
untouchings that characterize different action categories. This is also
supported by previous studies in which the contrast between touchings
and non-TUs showed no engagement of the aIPS but significant activa-
tion in regions associated with visual processing, specifically the cuneus
and lingual gyrus (Pomp et al., 2024, 2021). Engagement of these visual
areas in response to touchings highlights their role in providing
perceptual anchors for action segmentation in visual contexts. In
accordance with this, the conjunction of untouchings contrasted to
non-TUs in real-object actions and dough-object actions neither showed
alPS activation (Pomp et al., 2024).

In the same vein, our findings do not reflect differences in hand
configuration. Previous studies showed the importance of grip similarity
for ratings of manipulable objects (Hussain et al., 2024) as well as the
influence of similarity in magnitude of arm movement and the hand
configuration during use (Watson and Buxbaum, 2014). At first glance,
one might assume that TU categories correspond to different grip types;
however, this potential confound was ruled out, as TU categories in the
present work did not systematically covary with specific hand postures.

Furthermore, to integrate our results into existing research, it is
crucial to inspect the relationship between TU sequences and other
formal descriptions of actions. A sequence of TUs describes an action on
a very basic level. It captures the temporal dvnamics of object manip-
ulation—specifically, when and where contact happens or is lost. TU
sequences might be a basic, foundational code that can be used to
represent and recognize actions from early on and throughout life.
Though TU sequences do not differentiate between agents or objects and
can code contact states between item surfaces in object interactions
without any agent involved (e.g., a branch that breaks off the tree in a
storm and separates two apples lying on the ground is coded as destroy).
Therefore, these sequences do not directly represent an abstract func-
tional goal itself, but they form the underlying frame-work through
which abstract functional goals like "rearranging” or "destroying" are
realized and can correspond to them.

At the behavioral level, observers’ similarity judgments of actions on
minimally informative dough objects significantly related to the TU
structure. While real objects might prompt action classification based on
categorical associations, the reduced object information in the dough
condition highlighted the TU structure, making it a key, informative
basis for similarity judgments. This finding aligns with our previous
study (Pomp et al., 2024), which showed that when object information is
weak, subjective event boundaries fall systematically closer to touch-
ings, emphasizing their perceptual relevance. Interestingly, comparing
planning actions with unfamiliar in contrast to familiar objects, Van Elk
et al. (2012) suggested a stronger goal-representation for familiar ob-
jects and a stronger motor imagery for unfamiliar objects, which points
in the same direction as the current results. Also, violation paradigms
where the object did not match the grip or goal of an action revealed
independent neural temporal dynamics of the integration of motor acts
and goal related information during action observation (Decroix et al.,
2020). In a similar vein, Bach et al. (2009) describe at least two partially
distinet subprocesses involved in deriving both the motor act and the
function of objects, which integrate during recognition into a unified
action representation. To judge the similarity of the dough-object ac-
tions in the current study, participants may have preferably used the
motor act information which is closer to TU structures than functional
goals implied by familiar objects.

Remarkably, the MDS models derived from the two behavioral
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similarity ratings accounted for a significant proportion of the variance
in neural representational profiles across several regions in the action
observation network of both experiments: bilateral posterior IPS, bilat-
eral SPL, right aIPS, right PMd, and left PMv. This alignment suggests
that behavioral similarity judgments resonate with the neural encoding
of action structure, even in regions not directly tied to touching-
untouching representation.

4.1. Limitations

In the multi-arrangement task, participants arranged triplets of sin-
gle frame images that were supposed to remind them of the well-known
action videos. While it is not particularly uncommon to use static images
in action observation paradigms (cf. Caspers et al., 2010), future
research might profit from presenting the entire action video in
multi-arrangement tasks. Especially when participants are not as
familiar with the actions as in the present work.

Furthermore, we applied a range of perceptual and semantic control
models to confirm the specific, independent representation of TU
structure. Future research could examine whether the TU model pri-
marily reflects TU-based SEC categorization or if it aligns with addi-
tional perceptual and semantic principles beyond those assessed in this
study. Tt could also profit from using more sophisticated visual control
models than pixelwise similarity. Furthermore, it remains an open
question whether the TU structure of an action plays a role in the
recognition process or merely emerges as a byproduct of action cate-
gorization. This leads to the possibility that observers recognize actions
by category, and because these categories covary with TU structure, we
observe corresponding effects in both brain and behavior. Ultimately,
these findings establish TU structure as a key element in how actions are
perceived and recognized, opening new avenues for exploring the
cognitive and neural bases of action segmentation.

4.2, Conclusion

Describing actions as an abstract sequence of relational changes in
the form of touchings and untouchings of objects, hands, and the ground
can effectively guide automated systems like robots in recognizing and
responding to human actions without relying on object identification.
The current study examined whether the neural processing of actions
and their behavioral classification relies on the action categorization
derived from their TU sequence. Using {MRI-based multivoxel pattern
analysis, we identified neural representations of actions in the anterior
intraparietal sulcus to be particularly associated to this TU structure.
While models of one- or two-handedness and behavioral similarity rat-
ings also explained representational activity in the action observation
network, only the TU category model selectively correlated with the
representational profile of the aIPS. These findings suggest that se-
quences of touchings and untouchings serve as a key organizing prin-
ciple in inferior parietal action representation, extending prior research
on meaningful anchor points for subjective event boundaries.
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Fig. S1. Searchlight GLM RSA results for experiment 1 (left) and experiment 2 (right). Respective model names
are given in the left column. Maps were thresholded using Monte Carlo correction for multiple comparisons.
MDS = multidimensional scaling.

Tables

Table S1. Maxima of Activation from the Searchlight GLM RSA of the TU Model

Macroanatomical Abbreviation H Cluster t-value MNI Coordinates
location Extent

X y z

Experiment 1 (objects)

postcentral gyrus PCG L 324 5.69 -63 -7 32
anterior intraparietal sulcus alPS L 4.89 -51  -22 29
anterior supramarginal gyrus aSMG L 3.79 -60 -28 32
inferior occipital gyrus 10G L 143 7.63 -24  -100 2
Experiment 2 (dough)

postcentral gyrus PCG L 557 5.80 -60 -16 41
parietal operculum OPRpr L 5.77 -51  -28 23
Posterior Insula INS L 5.24 -36  -10 20

Note. H = Hemisphere, L = Left.
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4 General Discussion and Future Directions

The present work aimed to investigate event perception through subjective and objective
event boundaries, their mutual relationship, underlying neural processing, emerging action
categories, and their variability due to fluctuating object-action associations. Event perception
serves as a central cognitive mechanism, structuring time in a way that enables the brain to
form memories and generate predictions. Accordingly, it is essential to investigate this
phenomenon to better understand its underlying mechanisms. To this end, we related observer-
labeled boundaries to stimulus-derived boundaries, identified categories and both the
boundaries and categories were used to model participants’ brain activity. In two experiments,
participants passively observed object manipulations of either commonplace items or dough
items during the MRI scan. Subsequently, the manipulation videos were behaviorally segmented
into events and finally spatially arranged to derive action categories from these similarity
judgments via inverse multidimensional scaling. Objective boundaries and corresponding
action categories were extracted using computer vision algorithms based on low-level stimulus
features. To examine neural activation patterns, we applied univariate as well as
representational similarity analyses to the fMRI data. In the following sections, the results and

limitations of the experiments will be summarized and discussed.

4.1 Event Boundaries

The results of Experiment 1 and Experiment 2 revealed that subjective event boundaries
did not match objective event boundaries but co-occurred systematically. Due to the different
occurrence frequencies, it was still possible to disentangle the time-locked neural activity

patterns. The following sections summarize and discuss the boundary-evoked brain responses,
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the systematic temporal co-occurrence of different boundary types and the detection reliability

to finally answer the first research question* in the conclusion of this section.

4.1.1 Boundary-Evoked Brain Responses

In the following, | will discuss the neural activation patterns underlying the different
types of event boundaries that were mutually found in Experiment 1 and Experiment 2, as

analyzed in Study Il. Thus, these activation patterns are constant across different object types.

4.1.1.1 Brain Responses at Subjective Event Boundaries

Experiment 1 and Experiment 2 revealed increased bilateral brain activity at observer-
labeled event boundaries in the lateral occipital cortex (LOC), posterior middle temporal gyrus
(pPMTG) and superior parietal lobule (SPL). Regarding the former, boundary-evoked activity at the
occipitotemporal junction, spanning the motion-sensitive MT complex, has been described
earlier (Schubotz et al., 2012; Speer et al., 2003; Zacks, Braver, et al., 2001; Zacks, Swallow, et
al.,, 2006). The hypothesis that distinctive movement features matter in event structure
perception was put forward early on (Newtson et al., 1977) and the current results further
support the idea that event structure perception is related to the detection of visual change such
as, for instance, changes in motion. Zacks (2004) found that the probability of identifying an
event boundary was related to movement features so that observers have a tendency to mark
event boundaries when objects are moving quickly. Furthermore, Zacks, Swallow, et al. (2006)
showed that brain regions that process general and biological motion selectively respond at
event boundaries. In fact, the brain activation patterns of the conjunction of boundary-evoked
activation between Experiment 1 and 2 (as shown in Fig. 5 of Study Il) include the mean location

coordinates reported in Zacks, Swallow, et al. (2006; Table 2). Thus, the current results

“As previously introduced, the first research question reads:

Are TUs as objective event boundaries a meaningful supplement or reference point to subjective event
boundaries and how do they contribute to understanding neural event structure processing in object-
directed action observation?
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replicated boundary-sensitivity in regions processing general motion and biological motion, but
the question of the driving processes remains unanswered. It is possible that greater motion
changes appeared at event boundaries and directly triggered bottom-up MT complex activation.
On the other hand, the motion changes could have been predicted by higher-level cognitive
processes (e.g., event models) that activate the MT complex top-down. Future research is

needed to further elucidate the role of motion processing in event structure perception.

In addition to the posterior temporal and lateral occipital cortex, the SPL was found
active. This region has been shown to be activated by controlling goal-directed limb movements
and especially by reaching (Gamberini et al., 2020), and reach-to-grasp action (Fattori et al.,
2017). Furthermore, it was frequently reported as being part of the action observation network
(Hardwick et al., 2018). It has been found active when observing reaching to and grasping of
objects and Wurm et al. (2017) suggested its activation to be related to body part motion in
space. In the context of event structure perception, boundary-evoked SPL activation has barely
been reported before. However, in the current work, the SPL activity could reflect the stimulus
material showing reaching and grasping actions. Though, the precise nature of its role in time-
locked subjective boundary processing remains elusive. For a better understanding of SPL’s
boundary sensitivity in object-directed actions, future research is needed. The current results
suggest that motion and especially motion of the hand are essential for subjective event

structure perception.

4.1.1.2 Brain Responses at Objective Event Boundaries: Untouchings

In contrast to subjective event boundaries, the processing of objective event boundaries
has barely been investigated with functional imaging. It is remarkable that the simultaneous
modeling of fMRI data with subjective and objective event boundaries split the pattern found so
far for observer-labeled boundaries. In this section, | will address the results for objective

untouchings (i.e., the point when two touching objects un-touch). While in Experiment 1 (as
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reported in Study 1) a more distributed pattern was found for untouchings, the results of
Experiment 2 replicated only two cortical regions. Specifically, the conjunction of the brain
activation to untouchings between Experiment 1 and Experiment 2 (as reported in Study II)
revealed bilateral parahippocampal cortex and left dorsal premotor cortex (PMd) activity.
Regarding the latter, dorsal premotor activity has been reported before for observing transitive
versus intransitive actions (Wurm, Caramazza, et al., 2017), and it has been found for observer-
labeled boundaries in object-directed actions (Schubotz et al.,, 2012). Furthermore, dorsal
premotor (or caudal superior frontal sulcus) activity was found to be elicited by updating the
attentional focus, together with the posterior parietal cortex (Bledowski et al., 2009). It has been
suggested that PMd is specifically involved when the position of an object in space drives the
spatial parameters of arm movements (i.e., reaching) given the spatial properties form the
attentional focus (Schubotz & von Cramon, 2001). Furthermore, and important in the current
context, left PMd has been shown to be involved in initiating action prediction during the
observation of everyday actions (W. Stadler et al., 2011, 2012). Though this region has been
reported rather rarely in the context of event segmentation, the opposite is the case for the PHC

(see Baldassano et al., 2017; Reagh et al., 2020; Schubotz et al., 2012).

Boundary-evoked PHC activity has been shown in different age groups, and a decrease
during aging has been reported (Reagh et al., 2020). Furthermore, Baldassano et al. (2017)
reported on cortical event boundaries in PHC, that strongly related to hippocampal activity,
suggesting that the hippocampus encodes information about the just-ended event into episodic
memory and De Soares et al. (2024) demonstrated that the timing of cortical event boundaries in
PHC are influenced top-down. Besides, PHC activity can reliably be seen when contextual
associative information is encoded or retrieved from memory (Aminoff et al., 2013; Li et al,,
2016), especially in spatial and episodic memory (Geva-Sagiv et al., 2023). In sum, the current
state of research is far from providing a clear picture of the PHC involvement in event structure

processing though its involvement as such is not in question. Concurrent activation of PMd and
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PHC in action observation has been found for action prediction (W. Stadler et al., 2011) and for
action boundary detection (Schubotz et al., 2012). Thus, the current results suggest that at
untouchings the attentional focus is updated and the end of an event is signaled so that it may
be encoded in the hippocampus. Furthermore, the found activation pattern indicates the

prediction of the upcoming action step.

4.1.1.3 Brain Responses at Objective Event Boundaries: Touchings

Touching incidents could also be clearly separated from untouchings and observer-
labeled event boundaries regarding their corresponding brain response. The conjunction of the
brain activation to touchings between Experiment 1 and Experiment 2 (as reported in Study II)
revealed increased bilateral cuneal and lingual gyrus activation. These results are consistent
with past studies showing that the activation of medial occipital areas close to the calcarine
sulcus reflect low-level visual differences between stimuli in the representation of local scene
elements (Kamps et al., 2016). In addition, increased cuneus and lingual gyrus responses were
shown for allocentric versus egocentric spatial representations (Ruotolo et al.,, 2019). The
medial occipital lobe is a highly interconnected system that performs coordinated basic visual
processing and has many long-range association fibers supporting language and memory
functions (Palejwala et al., 2021). Increased medial occipital lobe activity in response to the
emerging surface contact (i.e., touching) between two objects points to increased visual
inspection of the scene. This information may then be propagated to align with the prediction of

the subsequent action step.

4.1.2 Co-Occurrence of Objective and Subjective Event Boundaries

The results of Experiment 1 and 2 revealed a systematic co-occurrence of group-
determined event boundaries and objective (un)touchings. Their distribution over time showed

clear peaks of subjective boundaries shortly after a touching relation emerged and a more
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widely distributed emergence of subjective boundaries around untouchings. Subjective
boundaries were significantly closer related to TUs than random button presses. Hence, some
touching and untouching incidents were important anchor points for behavioral action
segmentation. The T-U motif and video content analyses of Experiment 1 (as reported in Study I)
further revealed that subjective boundaries especially marked certain action phases, that is,
during the object manipulation and at the onset of object transport. During hand transport,
during object transport, and at the end of object transport, in contrast, subjective boundaries

were less prevalent.

The current results represent an initial step toward revealing objective anchors for
subjective boundary markings. They suggest that at least some points of touching and
untouching are relevant to predict participants’ segmentation behavior, though many are not.
Strikingly, the mere frequency of the incidents varies greatly so that further identification and
characterization of relevant TU incidents will be necessary. To this aim, object identity seems an
obvious candidate to specify TUs. A current approach that specifically examined hand-object
touchings and untouchings (ignhoring the contact states between objects, and object to ground),
for instance, turned out to be useful in marking action steps in action prediction processing
(Selvan et al., 2024). Considering these results, it may be the touching between the hand and
the object that primarily gave rise to subjective event boundaries in the current experiments. The
onset of the object transport was coded as the phase between the touching of the hand with the
object and the subsequent untouching of the object from the ground. Here, especially the
emerging hand-object contact may have been crucial. Regarding the second important action
phase (i.e., during the object manipulation), it was coded as the period between the timepoint
when the hand touches the object to manipulate and when the hand un-touches from this
object after manipulation. Here again, the emerging hand-object contact may have been

decisive.
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It has been argued that the sequence of touching and untouching between objects
(including the hand and the ground) may be a fruitful source of information for preverbal infants.
Nonetheless, it cannot be denied that during development we learn to distinguish hands from
objects in the sense that hands are the effectors of an agent and therefore different from
inanimate objects. In fact, anticipatory eye movements have been demonstrated for hand-
object interactions at the age of 12 months (Falck-Ytter et al., 2006) and in adults (Flanagan &
Johansson, 2003), and when the possibility existed to infer an autonomous agent as causing the
observed movements (Gesierich et al., 2008). It would therefore make sense if the greater
relevance of the acting effector is reflected in a higher relevance of its contact with manipulable
objects. This hypothesis has yet to be tested. In order to do this, it may even be possible to
selectively reanalyze the data of this thesis. Specifically, the changes in contact states between
the hand and a manipulable object could be identified and selected to repeat the analyses with
this part of the data regarding their temporal co-occurrence to subjective event boundaries. This
could offer a preliminary insight and inspire further studies. According to the present status, our
results reveal a significant role of objective event boundaries for subjective event structure

perception that lies the groundwork for further, in-depth research.

4.1.3 Reliability in Event Boundary Detection

Previous research repeatedly demonstrated the high intra- and interindividual reliability
in behavioral action segmentation (for a review see Sasmita & Swallow, 2023). Correspondingly,
the retest reliability results from Experiment 1 and Experiment 2 confirmed consistent unit
marking behavior on the individual and on the group level. Especially the comparison of the
behavioral segmentation data to simulated random button presses, that preserved the
stochastic characteristics of the individual behavior, validated that the segmentation followed a

nonrandom pattern. In sum, these results confirm that the unit marking procedure is a valuable
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and useful method to determine subjective event boundaries. The comparison to simulated

button presses complements the reliability check meaningfully.

The objective event boundaries were determined by computer vision. Automated visual
action recognition is a rapidly growing field, and the methods applied depend inter alia on the
data’s input format. In the current work, RBG-D data was used meaning that the algorithm
utilized depth images to generate point clouds in the first step of automated TU time point
extraction. Compared to manual time point extraction, which would need a time-consuming
frame-by-frame inspection of each action manipulation video by several raters, the algorithm
bears a significant efficiency gain. Moreover, it successfully detects emerging and disappearing
touching relations. However, the algorithm does not guarantee perfect performance.
Occasionally, it misinterpreted the scene and needed manual correction. As stated above, it
used depth images which are essentially two-dimensional data while three-dimensional data
would probably improve its performance considerably. Especially the precise determination of
an emergence of a touching relation and its disappearance can depend on the perspective on
the scene. Viewed from an unfavorable perspective, the contact between surfaces can be
occluded. Fortunately, the rapid development of virtual reality (VR) techniques that goes along
with high fidelity three-dimensional camera setups promises even better input data quality and

visual action recognition and segmentation algorithms to come.

4.1.4 Understanding Event Structure Perception Through Objective Boundaries

One of the aims of this work was to determine whether objective event boundaries
meaningfully supplement subjective event boundaries and how they contribute to
understanding (neural) event structure perception. Concerning segmentation behavior,
objective event boundaries seem to be valuable anchor points for subjective event boundaries.

Concerning the neural processing of event structure, the activation patterns underlying
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subjective and objective event boundaries were clearly distinguishable and could be
functionally interpreted. Observer-labeled event boundaries were mainly accompanied by
increased motion processing. This pattern is consistent with previous findings and suggests that
participants tend to segment actions dependent on motion features. Previously identified
regions beyond this could now be assigned to objective event boundaries. Despite behavioral
data implying that the moment of touch could be the most critical one, this is not the case.
Medial occipital activation patterns appear to reflect merely increased visual inspection of the
scene when objects touch, rather than more complex processing. In contrast, the moment when
a touching relation is released (i.e., the untouching) marks the point at which attention is

redirected, the completion of an event is signaled to memory and upcoming action is predicted.

In sum, it can be concluded that objective event boundaries constitute a meaningful
addition to subjective event boundaries to investigate event structure perception in object-
directed actions. Fortunately, objective event boundaries offer several advantages as they can
be determined a priori independently from the participants’ perception, and they can
deliberately be manipulated to a certain extent to design experiments. Eventually, according to
the current state of research, when investigating the neural processing of event structure,
objective event boundaries can be seen as a supplement to subjective boundaries rather than a

replacement.

4.2 When Objects Suggest Action

Objects that we use in our daily life carry a lot of information about what we can do with
them (El-Sourani et al., 2018, 2019; Hrka¢ et al., 2015; Kalénine et al., 2016; Schubotz et al.,
2014) and the strength of these object-action associations varied between experiments. In
Experiment 1, the associations were strong, whereas in Experiment 2, they were weak or

nonexistent. This is because in Experiment 1 commonplace items were manipulated in the
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action videos and in Experiment 2 these items were replaced by formed pieces of dough. The
idea was motivated by the fact that the employed computer vision algorithm does not identify
objects, nor does it use object-related knowledge. While adult humans benefit from a life-long
experience with manipulable objects, the algorithm could be a model for early infants’ action
perception. Furthermore, the time-locked analyses of objective event boundaries that sparsely
code movement information allowed the dissociation between movement effects and object
effects. Remarkably, the difference in association strength had no major effect on the neural
processing of objective touchings and of observer-labeled event boundaries, but even more so
when it comes to untouchings and segmentation behavior. The following sections summarize
and discuss the effects of strong and weak object-action associations separately to finally

address the second research question® in this section’s conclusion.

4.2.1 Strong Object-Action Associations

The neural activity increase due to strong object-action associations was relatively
small. Concerning the entire action duration, objects with strong action associations evoked
increased activity in right anterior supramarginal gyrus (aSMG) and anterior intraparietal sulcus/
ventral postcentral sulcus with ROI results being significant in bilateral alPL. This is consistent
with previous research by Meyer et al. (2011) who showed 5-second videos of bimanual object
exploration to their participants and revealed that the most discriminative voxels (i.e., when
discriminating between videos) were located in the postcentral sulcus and on the posterior wall
of the postcentral gyrus with a right hemispheric dominance. In a follow-up study, Kaplan and
Meyer (2012) extended these results and inferred that stimulus-specific patterns of activity
around the intraparietal sulcus bear high information content. While the authors interpreted

their results with respect to somatosensory processing of haptically perceived shape of different

5 As previously introduced, the second research question reads:
Do object-action associations, provided by the manipulated object, modulate action segmentation
behavior and the neural processing at subjective and objective event boundaries?
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objects, this is not the only possible interpretation. Each video showed one everyday object that
was haptically explored. Therefore, the observed brain activation pattern could also be
interpreted as it was proposed by Schubotz et al. (2014). They showed that activity in the alPL
varied as a function of the number of actions that participants associated with objects.
Similarly, Wurm and Schubotz (2018) contrasted naturalistic versus pixelized object-directed
actions and found stronger neural responses in bilateral postcentral gyrus extending into aSMG.
Both naturalistic and pixelized stimuli showed the kinematics of the action, but only the
naturalistic one allowed recognition of the object and to use the related information.
Remarkably, increased right ventral postcentral gyrus activation for grasping an everyday object
versus grasping a geometrical shape was even found for action imagination (Schulz et al., 2018).
Thus, the precise nature of alPL’s role is currently the focus of research and object identity
including associated information could be pivotal, as in the case of strong object-action

associations.

Concerning the time point specific analyses, the effect of strong object-action
associations became apparent at untouchings. A particular role of mnemonic associations in
the presence of strong object-action associations was hypothesized and was indeed reflected in
increased parahippocampal responses. This result was consistent with previous findings in
which the parahippocampal cortex has reliably been reported for the encoding and retrieval of
contextual associations (Aminoff et al., 2013). Thus, when robust object-action associations
were available, this information was retrieved from memory to segment and predict actions.
Furthermore, increased cuneal and lingual activity was detected at untouchings which indicated
increased visual inspection, as discussed earlier. This could be due to commonplace items
being visually more detailed than formed pieces of dough. The visual information could then be

used to identify the object and predict the unfolding action.
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4.2.2 Weak Object-Action Associations

The neural activity increase due to weak object-action associations was surprisingly
large. At untouchings, our hypothesis was corroborated regarding an increase in activation in
biological motion processing areas. Thus, without strong object-related predictions for the
upcoming action, motion processing gained importance for segmenting and predicting object-
directed actions. This may be frequently the case for infants, for whom it is perfectly normal to
encounter unknown objects, and rarer for adults. As early as at the age of four months, infants
show a preference for biological motion patterns (Fox & McDaniel, 1982) and functional object

knowledge of familiar objects solidifies shortly afterwards (Hunnius & Bekkering, 2010).

Furthermore, weak object-action associations have had a significant effect on the
segmentation behavior. The behavioral measures of reliability and consistency, as well as unit
marking frequencies, and systematicity were broadly comparable between Experiment 1 and 2,
but the group retest reliability and behavioral systematicity were higher in Experiment 2 going
along with a smaller variance in segmentation behavior. Thus, participants set event boundaries
more often and closer to touching events when objects were weakly informative. The occurrence
of a touching is frequently associated with a reduction in speed, eventually coming to a stop.
Here, this acted as a reference to segment the action. When the object did not offer specific
information about what action to expect, this movement sequence gained importance. The

behavioral results thus paint the same picture as the above-mentioned increase in brain activity.

Unexpectedly, weak associations yielded increased alPL activation at untouchings.
Based on previous studies, showing increasing alPL activity with an increasing number of
correlated actions (Schubotz et al.,, 2014), we rather expected an increase for strong
associations, which could indeed be seen when analyzing the entire duration of the action and
has been discussed above. In contrast, the time-locked effect at untouchings was interpreted as

reflecting an unrestricted number of candidate actions in the case of dough manipulations. This
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is, object-action associations restrict which actions are considered to unfold next and in the
case of dough items, the search space for candidate actions is unrestricted by these
associations. A comparable effect has been described before. Wurm and Schubotz (2012)
showed that the pre-activation of expectable actions by contextual cues reduced the search
space for input-to-memory matching by biasing those actions that are most probable in a given
context. In a subsequent study, Wurm, Artemenko, et al. (2017) examined contextual factors in
children between four and eight years of age and revealed that they effectively integrated
contextual information in action recognition and profited the most from context information
when actions were unfamiliar. Apparently, the alPL’s functional profile is many-faceted and | will

discuss the role of alPL comprehensively in section 4.4 The alPL in Action.

4.2.3 Action Processing Modulated by Object-Action Associations

One of the aims of this work was to determine the effect of object-action associations on
action segmentation and its neural processing. The current results confirm that object-related
knowledge modifies how object-directed actions are processed. Segmentation behavior
becomes more targeted to objective event boundaries when objects do not offer rich
information about what to expect and movement information gains importance when the
prediction of the next step is synchronized with the perceptual input. Moreover, at this point of
synchronization, increased alPL activation indicated an unrestricted search for candidate
actions when object information was limited. While this latter effect was time-point specific, the
contrary was the case across the whole period of the action. Concerning strong action
associations, the rich visual information that commonplace objects offer is crucial for the action

step synchronization.

Despite these modulations, there were major similarities for observing manipulations of
objects that were either strongly- or weakly-associated with actions. The conjunction analyses

(Study Il) showed a large common pattern of brain activity that replicated the well-established
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action observation network that | thoroughly described in section 7.2.7 The Action Observation
Network. It showed a large cluster in the posterior temporal and lateral occipital cortex that
ventrally extended in the parahippocampal cortex and hippocampus. This activity was
supplemented by a large parietal cluster that spanned along the postcentral sulcus in parallel to
the precentral sulcus activation that in turn extended into insular regions. Thus, object
information makes a notable difference in object-directed action processing though common

patterns clearly predominate.

4.3 Action Categories

It is one of the current challenges of cognitive neuroscience to understand semantic
representation in the brain. Previous research has shown patterns for various contents (for a
review see Binder et al., 2009), though these representations are dynamic and, for instance, are
modulated by attention (Cukur et al., 2013) with results depending on methodological choices in
multivariate imaging (Frisby et al., 2023). Nonetheless, in the current work, we aimed to examine
the representation of action categories. Actions can be grouped in categories according to their
patterns of touching and untouching. At the same time, actions can also be classified according
to participants’ judgments of similarity. The following sections discuss how these
categorizations are represented in the brain and how they relate to one another to address the

third research question®.

4.3.1 Objective Action Categories

Woérgotter et al. (2013) showed that action categories can be derived from TU sequences.

The current work showed in study Il that these action categories are associated with the neural

8 As previously introduced, the third research question reads:
Are TU action categories represented in neural processing patterns of object-directed actions and are they
related to behavioral action classifications?
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representations in the left alPS. These cross-experiment results highlight the value of objective
TU sequences to understand neural action representation. Regarding the functional profile of
the alPS, previous action observation research employing repetition suppression has suggested
that the left alPS is particularly important for processing the identity and function of a grasped
object, independent of grip and trajectory, and particularly involving goal representations

(Grafton & Hamilton, 2007).

It could be argued that TU action categories covary with abstract functional action goals.
This would mean that turning and pulling an object share their TU sequence and both achieve
the functional goal of rearranging. Theoretically, TU sequences code the contact states between
items irrespective of their identity or agency and accordingly, they cannot directly represent
abstract functional goals but only offer an underlying framework through which abstract
functional goals are realized. Practically, the SEC framework that has originated TU sequences
was developed to let robots learn the semantics of object action by observing humans’ object-
directed actions (Aksoy et al., 2011) which means that agency cannot be ignored. Accordingly,
the stimulus material employed in the experiments displayed TU sequences embedded in
action videos with an agent and a goal. Thus, the activation of the alPS could mirror the

covarying goals.

This would align with previous findings, suggesting the alPS/aSMG to represent the
abstract function or purpose of an action (i.e., decorating or protecting; Leshinskaya &
Caramazza, 2015). Similarly, Urgen et al.''s (2016) RSA results showed that the models for
category of action, intention of action, and target of action, all correlated best with the parietal
node of the action observation network. However, these considerations are speculative and
functional goals or intentions were not the primary focus of this work. It should be investigated

more systematically in future studies.
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To this end, one possibility would be to create stimuli that share the same TU sequence
but have no functional goal. It may prove to be difficult to design reasonable videos without an
agent, though, as the TU sequence specifies that some object manipulates another object. Even
if the first object is not as obvious an agent as the hand, participants would most likely read it as
the agent and attribute goals. Previous research has shown that already three-month-old infants
attribute goals to the actions of novel non-human agents (Luo, 2011). Accordingly, there are
different interpretations of the current results that emphasize different functional profiles of the
alPL. It must be noted, however, that TU-based action categories being represented in the alPL is
already a remarkable finding in itself, and a better understanding of these representations is an

important future research aim.

4.3.2 Subjective Action Categories

Using inverse multidimensional scaling served to gather subjective action categories,
respectively a subjective action space. The ROl RSA results of Study Ill revealed that the MDS
models explained a significant part of the representational variance in several brain regions of
the action observation network across experiments, i.e., the right alPS, left PMy, bilateral pIPS,
bilateral SPL, and right PMd. Thus, a large proportion of the action observation network was
associated with the behavioral action classifications. The question arises which dimensions
participants used to judge the similarity of the actions. While we asked participants to report
which criteria they used for categorization in a follow-up survey at the end of the third
experimental session, an explorative review of their free-text responses did not provide a clear
picture. The multiple regression analysis reported in Study lll, in contrast, showed a consistent
picture across studies. In both experiments, the M model (i.e., whether one or both hands are
used) and the MD model (i.e., movement direction) were significant predictors for the MDS

model. They explained 49% of the variance in the subjective similarity ratings in Experiment 1
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and 50% in Experiment 2.7 As defined, the MD model captured trajectory information. The M
model, in turn, can be related to action complexity. An action that needs a second, stabilizing
hand can be seen as more complex than a purely unimanual action, with coordination,
interaction and the role of each hand being key aspects (Krebs & Asfour, 2022). In infants,
mastering role-differentiated bimanual manipulations (e.g., object-directed actions in which
one hand stabilizes and the other hand manipulates an object) is a developmental milestone
showing interhemispheric coordination (Kimmerle et al., 2010). Hence, movement trajectory
and action complexity seem to influence observers’ similarity judgments to a huge degree. It is
an interesting question for future research which factors further shape subjective action
classification as the resulting model seems to capture similarity structures that are mirrored in

large parts of the action observation network.

Our results can be related to previous studies that used different tasks, asked
participants to rate objects, not actions, based on their manipulation similarity and found
primary object information to drive the coupling between pMTG and alPS while primary object
knowledge seemed to be mostly grip-type related (Hussain et al., 2024). Similarly, Watson and
Buxbaum (2014) found the configuration of the hand and the magnitude of arm movement to
play a role in determining how objects (in this case tools) cluster in action semantic space. The
latter could hint in a similar direction as discussed above; however, our arrangement task did
not ask for object manipulation knowledge, instead, it asked for observed action similarity
across objects. Accordingly, Tucciarelli et al. (2019) asked for action similarity in an inverse
multidimensional scaling protocol to examine the representational space of observed actions
and found that the LOTC best captured the semantic dissimilarity structure. The discrepancy
with our results could be due to the different stimulus material used. Tucciarelli et al. (2019)

used static images of mostly intransitive everyday actions, while we used videos of object-

7 As a brief reminder, in Experiment 2, the TU model significantly explained another 5% of the variance and
in experiment 1, the additionally explained variance of 2% did not reach significance.
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directed actions. Eventually, decoding the representational space of observed actions based on
subjective ratings invites huge differences based on material and instructions. Still, the fact that
this approach can link subjective and neural representations of action knowledge promises
great progress in the understanding of semantic representation in the brain. The big picture is
still unfolding, with many outstanding questions yet to be answered and actively being

addressed in the field.

4.4 The alPL in Action

One brain region that we repeatedly encountered in the current work is the alPL. It
constitutes a component of the action observation network, so its involvement does not appear
unexpectedly. Upon closer inspection, its functional profile across the present studies is diverse
and that is why | dedicate a separate paragraph to it. First, it is important to note that | refer to
the anterior part of the SMG and the ventral part of the postcentral sulcus (i.e., the alPS) when
saying alPL. More specifically, according to the Human Connectome Project (HCP) atlas as
presented in Rolls et al. (2023), | refer to region PFt (and maybe anterior PF). The alPL ROl used in
Study Il was created based on area PFt (Caspers et al.,, 2006, 2008) of the Julich-Brain
Cytoarchitectonic Atlas (Amunts et al., 2020; Eickhoff et al., 2005). All reported whole-brain
activation clusters in alPS and aSMG of Study | and Il peak within this ROI, and also the center

coordinates of the spherical alPS ROls in Study Il fall into this region.

To briefly recall the results per hemisphere, we found objective action categories to be
represented in the left alPL and the left alPL was found active at subjective boundaries for dough
items. We found the right alPL to be active at subjective boundaries for commonplace items, at
touchings for dough versus commonplace items, and to represent the subjective action space.
Furthermore, we found bilateral alPL activity to be increased for commonplace versus dough
items during the entire length of the action videos, at untouchings for dough and dough versus

commonplace items and finally to represent the manual model.
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Possible hemispheric asymmetries or specializations of the alPL are the topic of ongoing
debates as many lateralized results suggest that but no definite conclusion could be made due
to a multitude of factors (for reviews see e.g., Kemmerer, 2021; Tunik et al., 2007). For instance,
when observing hand-object interactions, the identity of the acting hand, the visual hemifield
where the action occurs, and the hand preference of the observer are just some of the many
factors that need to be taken into account to interpret lateralized results. That said, please note
that the participants in the reported studies were all right-handed and observed centrally
presented actions performed by either the right or left hand (counterbalanced within and across

participants).

Functionally, the alPL has been described as a critical node within a network that
dynamically controls actions on a higher order, that clearly exceeds low-level representations of
grasp configurations and includes the representation of intended action goals (Tunik et al.,
2007). Several studies suggest that the alPL derives knowledge based on the identity of objects
(Bach et al., 2010; Grafton & Hamilton, 2007; Urgen & Orban, 2021). Regarding the two main
visual pathways, the alPL belongs to the dorsal visual stream and, more precisely, it has been
suggested to belong to the ventro-dorsal stream that is concerned with knowledge about object-
associated actions (Binkofski & Buxbaum, 2013). Relatedly, Liu et al. (2024) found the bilateral
alPL (and right ventral premotor cortex) to encode action goals independent of action outcomes
(i.e., independent of whether the action succeeds in reaching the desired end-state, such as an
open bottle when opening a bottle) at an object-specific level. At the same time, only the left

alPL also contained goal information at an object-independent level.

The prominent role of object identities that emerges prompts me to review the univariate
results for commonplace and dough items separately, despite possible redundancy with
previous sections. For commonplace items that come with rich object-related knowledge, the

alPL activity was increased compared to dough items at the global video level and increased
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alPL activity had been yielded at subjective boundaries, though the latter did not survive the
comparison to subjective boundary processing in dough videos. The global activity increase is in
line with previous results indicating increasing alPL activity for an increasing number of object-
related actions (Schubotz et al., 2014) and was hypothesized in Study II. For dough items that
come with limited object-related associations, alPL effects were found at all three event
boundary types: on whole-brain level at subjective event boundaries (though, here again, this
effect did not survive the comparison to the corresponding contrast in commonplace items), on
ROI level at touchings versus non-boundaries (here, alPL activity was less reduced in dough
items than in commonplace items), and on whole-brain and ROI level at untouchings (both
within dough items and compared to commonplace items). Regarding the effect at the point of
untouching, extracted contrast estimates show that alPL activity is increased (compared to non-
boundaries) for dough items and, at the same time, decreased (compared to non-boundaries)
for commonplace items, which amplifies the effect. As mentioned earlier, this pattern is
interpreted as suggesting a restricted (or well-informed) candidate action space for familiar
objects and an unrestricted candidate action space for objects of limited information value at

the point where the next action step is predicted.

Regarding the multivariate results, the fact that the left alPL was associated with the
objective action space, the right alPL was associated with the subjective action space and both
were associated with the manual model, highlights the high level of discriminability of action
classes at the parietal level of the action observation network, as previously shown by Urgen
and Orban (2021). Consistent with Liu et al. (2024), the left alPL was found to represent

objective action categories that carry cross-object action information.

The key conclusions about the alPL’s role in action observation and event boundary
processing are that experience-based object-related knowledge modulates its bilateral

recruitment during action perception and prediction, representing objective action categories
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across objects in the left hemisphere at the same time. Therefore, the alPL is considered to

process object-related actions based on action knowledge.

4.5 Critical Evaluation and Methodological Considerations

Despite the significant findings of the present studies, certain experimental aspects
require critical evaluation. Some limitations and corresponding suggestions for improvement
have already been discussed so that this section specifically focuses on the experimental

paradigm and the stimulus material.

In designing the paradigm, it was important to us that the action videos were passively
observed during functional scanning, reliably segmented in post-fMRI sessions and finally
categorized, when the participants knew the video material very well. While the methodology
employed is robust, some aspects could be improved. Implementing a behavioral test-retest
procedure in action segmentation yielded reliable subjective event boundaries, though pressing
a button during the ongoing presentation of a video introduces reaction time considerations. We
did not subtract a hypothetical motor response as the participants knew the videos from the
scanning session already. Furthermore, not the test session’s but the retest session’s responses
determined the exact timing of the event boundaries, so the participants were familiar with the
segmentation procedure and the videos. Hence, we adopted the premise that button presses
were delivered in anticipation of critical events in the videos, not in a reactive manner. The idea
was that anticipation generates an early onset of the response that is then cancelled out by the
motor reaction delay so that the registered button press hits the intended time. It is evident that
this premise invites discussion, even though we have ultimately used group-aggregated time
points. To avoid this premise, it would have been advantageous to give participants control
about the video playing. If they had had the ability to stop and rewind the video, they could have

been very precise about when to mark a unit. Unfortunately, this comes with a significantly
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higher time expenditure per action video and would not have been feasible with the large
number of individual videos used in this work. In the reported experiments, individual action
videos were not repeatedly presented with the aim of introducing natural variability in
trajectories and timings. In future research, one could decide to reduce the number of individual
videos, present them repeatedly during functional scanning and give participants more time per
video to mark event boundaries. Although the unit marking procedure employed in the present
work is a well-established method, we combined it with a novel approach which gives rise to
new challenges. The precise timing of subjective event boundaries becomes increasingly critical
when being related to objective event boundaries and being utilized in time-locked brain activity
analyses. However, the latter is somewhat relativized by the coarse temporal resolution of fMRI.
Future studies that leverage MEG or EEG to investigate objective and subjective event

boundaries are recommended to pay particular attention to this aspect.

Another element of the paradigm that requires consideration is the categorization task in
the last behavioral session. Since the participants knew the action videos very well at that point,
the videos were represented by image triplets showing the start of the scene, the object
manipulation in the middle of the video and the final position of the objects. However, it cannot
be completely ruled out that presenting the videos (i.e., staying with the stimulus format) instead
of showing image triplets would have been beneficial. Additionally, and more crucially, a bigger,
responsive screen could have improved the setup. Some participants’ difficulty in completing
the multi-arrangement task within a 60-minute timeframe was partly due to the limited screen
size which prevented presenting all stimuli simultaneously. Despite the 27-inch screen being
considered large at the time of data collection, screen technology has evolved considerably
since then. Currently, tabletops may incorporate large screens that are operable via touch input.
Thus, participants could sit at a table and arrange the videos in the same way one would arrange
playing cards, using their finger. The screen should be large enough to display all stimuli

concurrently, allowing for their use in at least some trials. This will facilitate more efficient
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comparisons and enhance the overall experience for the participants. The videos could be
represented as image triplets, and touching the middle image would play the video. Embracing
these suggestions leads to even better MDS models to be used in multivariate analyses or to be

analyzed independently.

Finally, the stimuli could potentially be enhanced. First, regarding the commonplace
items’ manipulations of Experiment 1, the extent to which the objects suggested the applied
action varied. As an example, adding the last piece of a wooden puzzle differs from turning a
calculator. While the former is quite predictable from the start image where the last piece of the
puzzle lies in front of the agent (put together action), the latter is less foreseeable even if the
turning action gets the calculator in the right orientation to be used afterwards. An unpublished
explorative post-study rating in a separate group of 10 participants confirmed this difference in
expectability between object manipulations. This could be driven by the fact that completing a
puzzle aligns with its functional goal while a calculator that is turned without being used to
perform a calculation does not fulfill its primary function. Controlling this dimension would
result in a meaningful improvement of our paradigm. On the other hand, systematic
manipulation of this dimension could also be considered. This could be accomplished through
ratings of how expected a specific action appears when an object is seen in context. Preliminary
results of an unpublished exploratory comparison between object-implied actions and not-
object-implied actions of Experiment 1 (binary coded based on the above-mentioned rating) are
pointing in the same direction as the reported comparison of strong and weak object-action
associations. To clarify, however, these are two different concepts. Whether the concrete action
that is applied to an object is expected (maybe because it aligns with the functional goal of the
object) differs from the strength of action associations that the object carries, though they are
certainly not independent. The latter is inherent to the object (independent of the applied action)

and was systematically examined in the current work.
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The strength of object-action associations is the second aspect of the stimuli that future
studies could adjust. While we employed a binary distinction between strong and weak
associations, future work could investigate the effect of object-action association on a
continuum. To this end, participants could list the actions they expect when seeing an object
and rate the level of expectedness of each action. Based on the results of such a pre-study,
stimulus material could be designed accordingly. Ideally, the objects to be rated should be
presented exactly as they would be seen at the start of the action video (i.e., embedded in a
scene) as the configuration and the context of a scene facilitate action recognition and render
some actions less expected. This does not only refer to the location of the action but also the
position of the hand to the object (peripersonal space) and the presence of other objects (El-

Sourani et al., 2018, 2019; Kemmerer, 2021; Wurm & Schubotz, 2012).

Returning to the current stimulus material, in retrospect, it must be noted that in some
cases the initial scene of a video predicted the unfolding action. Keeping the start scene
constant across actions could help reduce the initial predictability. In the present experiments,
the scenes differed at the beginning of the action videos. Even if there was no systematic
covariance between the relative position of the object to the subject and the action category, the
method could be improved by keeping the spatial position of the objects at the start of the scene
constant. This would, however, imply more objects to be present in the scene, which has an
effect on action perception (El-Sourani et al., 2018, 2019). At the same time, the variability in
objects used in the first experiment should certainly be preserved as it ensures the
independence of the actions from specific grip types. | would even recommend future studies to
incorporate this dimension into the dough items. In Experiment 2, formed pieces of blue dough
were manipulated to limit object-related associations. Yet, it could be beneficial to adopt the
object variability. Each action could be performed with several differently formed pieces of

dough, each requiring a different type of grip.
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Finally, the employed stimuli have fulfilled their purpose to essentially demonstrate that
objective event boundaries in the form of changing contact states between objects are valuable
for understanding human action perception. They are, however, far from what we perceive in our
everyday life. Naturalistic action perception is exponentially more multifaceted, which limits the
scope of the present results. To build upon the current findings, future work could examine event
structure perception using more complex actions. In the following section, | will outline key

directions for future investigations.

4.6 Future Prospects

Derived from the discussed limitations new experimental approaches emerge. Several
suggestions have already been outlined in the course of the discussion, so this section will
focus on ecological validity and possible adjustments to the current paradigm for follow-up
studies. Subsequently, | will briefly address open questions and the resulting research

approaches.

Firstly, the ecological validity could be increased by altering action content and action
presentation. Regarding the content, one could use action videos taken from everyday life like,
for instance, a family breakfast or a board games scene. Those videos could then show longer
and more complex (inter)actions. The more complex a scene, the more important and insightful
it is to know where participants look at so that future paradigms can largely profit from using eye
tracking. Especially in more complex action scenes, it is crucial to examine whether the
attentional focus of the participants is drawn to the touchings and untouchings during action

observation.

Increasing ecological validity comes with the advantage of increasing the relevance of

real-world-based internal models. Adults are sensitive to context (see e.g., El-Sourani et al.,
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2019; Kemmerer, 2021; Wurm et al., 2012; Wurm & Schubotz, 2017) and | assume that they were
very fast in recognizing that the videos in the experimental session of the reported experiments
were somehow artificial and that the experience-based models that they gathered in the real
world might not be entirely suitable in this specific situation. Therefore, participants could have
been generally more open to expect odd manipulations in the experimental context after having
seen the first handful of stimuli. A context that resembles the real world so that real-world-
based internal models are relevant can be beneficial to investigate the role of experience-based

predictions in ongoing perception.

Regarding the presentation of the actions, VR technology offers an interesting
opportunity. It allows to add naturalistic elements in varying degrees and to program and thus
manipulate displayed movements as needed (for action observation in VR see e.g.,
Lakshminarayanan et al., 2023; Worgotter et al., 2020; Ziaeetabar et al., 2020). In addition,
participants could change their perspective on the scene (through head movement or even
walking through the scene) and eye movements could directly be tracked, nonetheless.
Moreover, in VR the presented action could be adaptive and react to observer behavior (e.g.,
stop when the gaze is averted). Recently, Pooja et al. (2024) offered some guidelines to design
ecologically valid cognitive neuroscience studies of event cognition that offer interesting ideas
for VR and augmented reality, and Schubotz et al. (2023) inspire forward-thinking
methodological VR approaches for studying hand actions that involve the use of tools. Thus, VR
is set to play a significant role in action observation research. However, it must be
acknowledged that VR approaches are currently not MR-compatible (except to a very limited
degree as in Adamovich et al., 2009) and other functional imaging techniques are also difficult to
combine with them. Considering the rapid development in this field in the last decade, | am still

confident that these obstacles can be resolved in the decade to come.
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While VR is an exciting field, there are also valuable research opportunities that remain
closely aligned to the original studies of this thesis. As mentioned earlier, to further investigate
the value of objective event boundaries for subjective event perception, it is important to identify
those TUs that trigger a subjective event boundary in differentiation to those that do not. While it
is a huge advantage for computer vision systems to not have to identify objects, it might be
advantageous to identify at least the effecting object (i.e., the hand or a tool). A follow-up study
could dissociate the TUs that emerge between the hand and an arbitrary object from those TUs
that emerge between objects and object and ground. For either class of TUs, the temporal
co-occurrence with subjective event boundaries could be examined. In the next phase, it may be
exciting to replace hands and objects with animated cubes to help understand whether it is the
hand (as part of the human body) or its functional role as an effector that assigns a special
status to it (if this was the case). Regarding the underlying neural processing of TU incidents,
time-locked analyses could be dissociated for hand-object-TUs to explore whether brain
responses differ between the two classes of TUs. Returning to the computer-vision perspective,
it could be worth testing whether it improves the algorithm to identify the effector in an action

(e.g., by labelling the one that moves independently).

In addition, it is worth deepening the understanding of the effect of object-related
knowledge. For future research, it can be a useful addition to manipulate object information on a
continuum and to set up a rating study measuring also other concepts like affordance,
functional knowledge, object familiarity, and object complexity. As previously done, the number
of actions associated with the object could be assessed (Schubotz et al., 2014) along with
whether the action performed on the object in the concrete stimulus is expected. This would
enable us to gain a differentiated insight into the effect of object-action associations and their

correlation to other concepts.
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Finally, the neural activation patterns underlying event boundary processing need further
empirical work to clarify the functional role of individual regions. Especially the alPL merits
additional attention. In this context, more diverse stimulus material could enable future studies
to disentangle which brain areas are generally involved in event structure perception and which
areas are content-specific, also elucidating their interaction. Equally important, the prominent
role of untouchings, compared to touchings and observer-labeled event boundaries, deserves
in-depth investigation. Considering more extended and complex actions, it is exciting to see
whether untouchings continue to serve as the temporal anchor for prediction. Regarding the
representation of subjectively derived action spaces, the current work merely pointed toward an
initial understanding. The multitude of brain regions that are significantly associated with it
warrants a closer examination, however. Particularly the dimensions underlying the subjective
action space could be investigated in greater depth. To this end, future research can draw

inspiration from studies of object recognition that create similarity spaces.

Looking ahead, the most promising methodological aspects for future research on event
structure perception in action observation lie in increasing ecological validity, identifying key
modulating factors and taking advantage of multidisciplinary approaches. In terms of topical
aspects, future investigations should aim to further ground subjective event annotations in
objective stimulus features, examine domain-general boundary-evoked activation patterns, the

underlying dimensions of action space, and their related representation.
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5 Conclusion

This thesis aimed to examine event perception, being a central cognitive mechanism,
structuring time in a way that enables the brain to form memories and generate predictions. It
investigated whether objective stimulus features in the form of touchings and untouchings
between objects, hands and the ground drive subjective event segmentation and help
understanding event structure perception. Furthermore, the effect of object-associated
knowledge on event structure perception in object-directed actions was considered. At the
same time, the value of objective action categories for understanding neural action

representation was assessed and subjective action categories explored.

The findings indicate that objective event boundaries are a meaningful addition to
subjective event boundaries to understand event structure perception in object-directed
actions. They offer objective anchor points for behavioral action segmentation and help
disentangling the neural signatures of event structure. Specifically, subjectively annotated event
boundaries were mainly motion-driven and at the point of touching, low-level visual inspection
of the scene intensified. The moment when objects un-touch proved to be crucial for attentional
recalibration, memory encoding and predicting the upcoming action step. This prominent role of
untouchings renders them important objective event boundaries in the context of predictive

action processing.

Event structure processing was influenced by the wealth of information an object
provided. Limited object associations rendered subjective boundaries even closer to objective
boundaries and movement information weighed heavier when predicting the upcoming action at
untouching. Simultaneously, limited object associations led to an unrestricted search for
candidate actions. Conversely, rich object associations continuously activated associated
actions and the rich visual information offered by commonplace items dominated processing at

action step synchronization.
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Finally, objective as well as subjective action categories were represented in brain
regions belonging to the action observation network. The subjective action space was
associated with a broad bilateral network while objective action categories were associated to
the representational profile of a single brain area, that is, the alPL. This brain area became a key
region of the current work, and it was elaborated upon the significance of its prominent role in
object-associated action knowledge and action class processing. The results suggest that the

alPL is involved in predicting object-related actions based on associated action knowledge.

This thesis contributes to the literature by offering a new perspective on event structure
perception, combining computer vision with cognitive neuroscience. The inclusion of objective,
stimulus-derived event boundaries allowed a structured view on the neural processes
underlying ongoing event perception. The prominent role of objective boundaries in predictive
processes underscores their fundamental purpose. Moreover, objective action categories
revealed important insights regarding the functional role of the anterior intraparietal sulcus. In
sum, this research offers valuable insights, although the scope is limited due to the

decontextualized action stimuli.

The current results suggest important implications for human-robot cooperation as they
could allow autonomous systems to make reliable predictions about human action. They could
be of practical value for real-world applications in commercial robotics, such as home
assistance technologies. More importantly, they can be relevant for clinical applications. They
could help optimize training protocols used to restore function in neurorehabilitation and inform
the development of robotic systems designed to support or train patients with motor

impairments.

Future studies should identify the key objective events and investigate these in real-
world-like scenarios, inviting interdisciplinary cooperation. Furthermore, boundary-evoked

activation patterns warrant further attention as well as the effects of different contextual
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aspects. Finally, additional research is required to explore the factors that shape categorical

knowledge spaces.

Overall, this thesis provides a foundational understanding of objective, stimulus-derived
features that drive event structure perception and corresponding categories’ representation,
taking the modulation by experience-based knowledge into account. It paves the way for more
detailed investigations into neural event structure processing to eventually comprehend this

central ability that essentially organizes experience.
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7 Abbreviations

Al artificial intelligence

alPL anterior inferior parietal lobule

alPS anterior intraparietal sulcus

aSMG anterior supramarginal gyrus

fMRI functional magnetic resonance imaging
HCP Human Connectome Project

LOC lateral occipital cortex

LOTC lateral occipitotemporal cortex

PHC parahippocampal cortex

pMTG posterior middle temporal gyrus

PMd dorsal premotor cortex

ROI region of interest

RSA representational similarity analysis

rTMS repetitive transcranial magnetic stimulation
SEC semantic event chain

SMG supramarginal gyrus

SPL superior parietal lobule

T touching incident (i.e., the moment when two objects touch)
TU touching and untouching incidents

U untouching incident (i.e., the moment when two objects un-touch)
VR virtual reality
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